

AN INSTITUTION OF NATIONAL IMPORTANCE ESTABLISHED BY AN ACT OF PARLIAMEN

Semester VI (CHB-601) Separation of molecules by chromatographic techniques

Dr Meenakshi Singh Professor of Chemistry Mahila Mahavidyalaya Banaras Hindu University Varanasi, INDIA

Polarity of Substances

Polarity

- Property of a substance whereby the positions of the electrons give rise to positive and negative poles
- Water: Polar

Methane: Nonpolar

Miscibility of solvents

- Solvents of similar polarities can be easily dissolved together.
- Polar and nonpolar molecules have a similar relationship to that of water and oil.

Water

Acetic acid

Nonpolar (Hydrophobic) Functional Groups and Polar (Hydrophilic) Functional Groups

- Nonpolar Functional Groups
 - $- (CH_2)_n CH_3$
 - Alkyl groups
 - $-C_6H_5$
 - Phenyl groups

- Polar Functional Groups
 - -COOH
 - Carboxyl groups
 - -NH₂
 - Amino groups
 - -OH
 - Hydroxyl groups

Partition Chromatography

- A liquid (or a substance regarded as a liquid) is used as the stationary phase, and the solute is separated according to whether it dissolves more readily in the stationary or mobile phase.
- Liquid-liquid chromatography

Normal Phase / Reversed Phase

	Stationary phase	Mobile phase
Normal phase	High polarity (hydrophilic)	Low polarity (hydrophobic)
Reversed phase	Low polarity (hydrophobic)	High polarity (hydrophilic)

Reversed Phase Chromatography

- Stationary phase: Low polarity
 - Octadecyl group-bonded silical gel (ODS)
- Mobile phase: High polarity
 - Water, methanol, acetonitrile
 - Salt is sometimes added.

Hydrophobic Interaction

Network of hydrogen bonds

...the network is broken and...

Stationary Phases

Silica

- Silica, silica gel and silicic acid- terms commonly applied to materials produced by acidification of silicate solutions followed by washing and drying.
- enormous surface area ~500 m²/g.
- surface consists of –Si-OH groups spaced at intervals of ~5Å

Alumina

- Highly active alumina is produced by overnight air drying at 400°C.
- surface area 150 m²/g.
- a monolayer of water amounts 3.5 x 10⁻⁴ mL/ m²

Cellulose

It holds microscopic pools of water

From Liquid Chromatography to High Performance Liquid Chromatography

- Higher degree of separation!
 - \rightarrow Refinement of packing material (3 to 10 µm)
- Reduction of analysis time!
 - → Delivery of eluent by pump
 - → Demand for special equipment that can withstand high pressures

The arrival of high performance liquid chromatography!

Flow Channel Diagram for High Performance Liquid Chromatograph

What does a high pressure LC look like?

(1) Describing the 5 major HPLC components and their functions ...

1. Pump:

- The role of the pump is to force a liquid (called the mobile phase) through the liquid chromatograph at a specific flow rate, expressed in milliliters per min (mL/min).
 - Normal flow rates in HPLC are in the 1- to 2-mL/min range.
 - Typical pumps can reach pressures in the range of 6000-9000 psi (400- to 600-bar).
- During the chromatographic experiment, a pump can deliver a constant mobile phase composition (isocratic) or an increasing mobile phase composition (gradient).

2. Injector:

- The injector serves to introduce the liquid sample into the flow stream of the mobile phase.
 - Typical sample volumes are 5- to 20-microliters (µL).
 - The injector must also be able to withstand the high pressures of the liquid system.
- An autosampler is the automatic version for when the user has many samples to analyze or when manual injection is not practical.

Solvent Delivery Pump: Representative Pumping Methods

- Syringe pump
- Plunger pump
- Diaphragm pump

Solvent Delivery Pump: Schematic Diagram of Plunger Pump

Manual Injector

Manual Injector: Operating Principle of Sample Injection

Manual Injector: Injection Method

- Syringe measurement method
 - It is desirable that no more than half the loop volume is injected.
- Loop measurement method
 - It is desirable that at least 3 times the loop volume is injected.