CHB-201: Section (B) — Physical Chemistry-I

(Thermodynamics)

The word ‘thermodynamics’ implies flow of heat. It deals with energy changes accompanying
all types of physical and chemical processes.

Limitation of thermodynamics: 1. Laws of thermodynamics are not applicable to small
particles like individual atoms or molecule, but laws can be applied to macroscopic system or
very large system.

2. Thermodynamics does not give information about rate at which a given chemical
reaction/process may proceed and also time for this change.

Basic terms used in thermodynamics

System: Any specified portion of the universe or matter, real or
imaginary, separated from the rest of the universe, which is selected
for the thermodynamic treatment is called a system.

Suroundings

Surroundings: Leaving the system the rest of the universe, which
may exchange matter or energy or both with the system, is called
surroundings.

Types of system

Open system:-A system which can exchange energy as well as matter with its surroundings.
Ex: water in an open beaker.

Closed system: When a system can
exchange only energy and not matter J work ves e Yer
with its surroundings. Ex: a chemical ™
reaction taking place in a closed
vessel can exchange only heat with
surrounding

Work: Yes Wark: No
Top: adjustable
Heat: Yes

Top: fixed

Heat: No

).

S

Matter: Yes Matter: No

Matter: No

Isolated system: A system which can - B o - el
neither exchange matter nor energy Open Closed Isolated
with its surrounding.
Ex: The presence of reactants in a thermos flask or any other closed insulated vessel is an
example of an isolated system.

Macroscopic system: A system which consist of a large number of atoms, particles, molecules,
radicals.




Macroscopic properties: Properties of macroscopic system is known as macroscopic properties.
Ex: pressure, temperature, volume, composition, density, viscosity, surface tension, etc. Change
of any macroscopic property changes the state of the system or vice-versa.

State of a system: It is defined by the macroscopic properties. When the macroscopic properties
of a system have specific or definite value it is said that the system is in definite state.

Thermodynamic Equilibrium: If macroscopic properties like temperature, pressure, volume
composition etc. do not change with time.

Types of thermodynamic equilibrium

1. Thermal equilibrium: A system whose temperature do not change along with the
temperature of the surroundings.

2. Mechanical equilibrium: A system which do not perform any mechanical work.
3. Chemical equilibrium: A system whose chemical composition does not change with time
(remains same throughout).

Physical properties of the system
Physical properties of the system are of two types-

1. Extensive property: This property depends on quantity or amount of matter present in the
system. Ex: Mass, volume, energy, no. of moles, enthalpy, entropy etc.

2. Intensive property: This property do not depends on quantity or amount of matter present in
the system. Ex: temperature, pressure, density, viscosity, surface tension and specific heat.

State function: It is the property of the thermodynamic system whose value is definite for a
particular state of the system. When a change is brought about in this particular state of system,
change in state function also occurs. It depends only on initial and final state of the system. Ex:
pressure, temperature, volume, energy are state function.

Path function: When a system passes from one state A to another state B depends on the nature
of the path followed, not on initial and final state. Ex: work done is path function.

Thermodynamic process: If a thermodynamic system
changes from one state to another state the operation is
known as thermodynamic process.

P surroudings

Types of process: 1. Isothermal process: in this process
temperature of the system remains constant throughout the
process i.e. dT=0

(Adiabatic system)



2. Adiabatic process: in this process no heat enters or leaves the system during any stage of the
process i.e. dg=0

3. Isobaric process: in this process pressure of the system remains constant throughout the
process i.e. dP=0

4. Isochoric process: in this process volume of the system remains constant throughout the
process i.e. dV=0

Cyclic process or cycles: When a system return to its initial state after completing the process in
various stages, that is system has completed one cycle and process is known as cyclic process.
Reversible process: If a thermodynamic process is carried out infinitesimally slowly so that at
every stage of it, the system in temperature and pressure remains in equilibrium with
surrounding, This type of process is called reversible process.

Irreversible process: If a thermodynamic process is not carried out infinitesimally slowly so
that at every stage of it, the system do not remains in equilibrium with surrounding, this type of
process is called irreversible process.

“A reversible process cannot be realized in practice because it would require infinite time for
its completion. Hence, almost all processes occurring in nature or laboratory are irreversible.”

Signs for heat (¢) and work (w):

e g is positive, when heat is transferred from the surroundings to the system.
e g is negative when heat is transferred from system to the surroundings.

e wis positive when work is done on the system.

e wis negative when work is done by the system.

First law of Thermodynamics

First law of thermodynamics states that “Energy can neither be created nor destroyed but can
only be transformed from one form to another.” This law is also known as law of conservation of
energy.

Internal Energy (U): It is sum of all possible types of energy present in the system. It is
impossible to calculate the internal energy (U) of a system. Instead, the change in the U of a
system, AU, must be measured.

Path 1, AU
Let U, be the energy of a system in state A and Up in state B. The
system changes from state A to state B by following path 1, path 2 S——
a ’

and path 3. Si i i
- .pa 3. Since, U is the state fu{lctlon, so AU depends only on U, a ——>B U,
initial and final state of the system i.e.
AU = U, B— U A
Path 3, AU
The change in AU of a system is affected by two distinct variables.
These two variables are designated at heat (¢), and work (w). Suppose the system while



undergoing change absorbs heat ¢ from the surroundings and also perform some work equal to
w. Hence the change of internal energy AU in the above process will given by

AU=q+w (1)

Equation (1) is the mathematical statement of the first law of thermodynamics.

For isothermal process AU = 0, since internal energy (U) of an ideal gas only depends on
temperature.

Case 1: if work is done on the system by the surroundings (as during the compression of gas) w
is taken as positive so that

AU=q+w

Case 2: if work is done by the system on surroundings (as during the expansion of gas) w is
taken as negative so that

AU=¢q-w

For infinitesimal change equation (1) can be written as

dU =dq + dw (2)

Enthalpy (H): Suppose the change of state of a system is brought at constant pressure. In that
case, there will be change of volume. Let the volume increase from V4 to V3 at constant pressure
P. Then, the work done (w) by the system will be given by

w=-P (Vp-Vy)
Substituting in equation (1)
AU=q-P (Vg.Vy) or Ug-Uy=q-PVg+PVyor (Up+ PVg)—(Uy +PVy) =q - 3)

The quantity U+PV is known as enthalpy. It is equal to the internal energy of the system plus the
product of pressure and volume.

H=U+PV

The equation (3) can be written as

Hg-H;=4H =¢q

Enthalpy is equivalent to the total heat content of a system.

Enthalpy is a state function which depends entirely on the state functions 7, P and U. Enthalpy is
usually expressed as the change in enthalpy (AH) for a process between initial and final states:

AH = AU + PAV (Where AV is the increase in volume undergone by the system)
For infinitesimal change the above expression can be written as:
dH =dU + PdV



Variation of heat of reaction with temperature (Kirchhoff’s equation)

Heat Capacity: Heat capacity is defined as the amount of /eat (q) required to a given mass to
raise the temperature of the system from the lower to higher temperature divide by the
temperature difference.

If the mass of the system is one gram, the heat capacity is called “specific heat”. If the mass of
the system is one mole then the heat capacity is called “molar heat capacity”. It is denoted by C.
Thus the molar heat capacity of a system between temperature 7; and 7, will be given by
expression

C=q9/(T>-T)
Since the heat capacity varies with T, hence the C is defined by differential equation

C=dg/dT oo (1)

The molar heat capacity of a gaseous system is determined at constant volume and constant
pressure.

Molar Heat capacity at constant volume (Cv): From 1% law of thermodynamics
dU =dq + dw or dU = dq + PdV at constant volume dV =0

~.dU=dgq

From the equation C = dq/dT

~Cv=(0U/0T)v

Molar Heat capacity at constant pressure (Cp): At constant pressure, there is a change of
volume and some work is done. Suppose the volume increased is dV and some work is done by
the system is dw.

From 1* law of thermodynamics

dU =dq - dw (" work is done by the system so dw is negative)
ordU =dg - PdV

s.dg =dU+PdV

ordg=dH (-dH =dU + PdV)

From the equation C = dq/dT
Cp =(0H/oT)p



Work done in Reversible lothermal Expansion of an Ideal gas (Maximum work)

Consider one mole of an ideal gas is enclosed in a cylinder fitted with a weightless, frictionless,
movable piston. Let the pressure of the gas be P which is equal to external atmospheric pressure
P. Let the external pressure be reduced by an

Cylindar
infinitesimally small amount dP and the -
corresponding small increase in volume be dV. So =+
the small work done in the expansion process:
dw = -Pext.dV - :1

L]
. dw = -(P-dP).dV Iniind

- dw = -(P.dV —dP.dV)

Since both dP and dV both are small so their product dP.dV is very small and can be neglected in
comparison to P.dV. Then the above equation becomes

dw=-P.dV

When the expansion of gas is carried out reversibly then there will be series of such P.dV terms.
The total maximum work can be obtained by integrating above equation between the limits V;
(initial volume) to V; (final volume).

w=fdw=-f:2PdV
1
PV =RT, ..P=RT/V

W= -RTfVZ 1

- Va_ | Va
v 7@V =-RT Ini2 =-2.303RT log;?

for n mole of gas: w= -2.303nRTlog%
1

for an isothermal expansion, Boyle’s law is applicable, Hence P, V,=P,V, or V,/V|=P,/P;
w =-2.303nRT log% (where P, and P, are initial and final pressure, respectively)
2

» In areversible isothermal expansion maximum work is obtained because Pex = P
> If, Pexe # P, process is not reversible.
» In vacuum, Pey = 0, hence the work done will be zero during expansion.

a. Calculate the work done on a closed system consisting of 50.00 g of argon, assumed ideal,
when it expands isothermally and reversibly from a volume of 5.000L to a volume of
10.00 L at a temperature of 298.15 K.

Solution

a. w = —(50.00 g)( i

39938 ¢

0.
)(8.3]4511('[mul'l}l{ll}s.]SKjln(l 001.)

5.000L
= —2151]

The negative sign indicates that work is done on the surroundings by the system.



Reversible Adiabatic Expansion of an Ideal gas

From first law of thermodynamics,

dU =dq + dw

For adiabatic process dq = 0, and for expansion i.e. work done by the system is -ve
~dU=-dw=-PdV

Forideal gas: dU = CvdT (Cv is molar heat capacity at constant volume)
CvdT = -PdV = -(RT/V)dV (From gas law PV=RT .. P=(RT/V)

CdT_ RdV
v v

Integrating above equation between temperatures 7; and 7> when the corresponding volumes are
V1 and Vg.

c, [P = R szd?V or In(T>/T;)=-(R/Cv)In(Vy/V)

T, T Vi
or (To/Ty) = (Vi/Vy) ®
CprCy =R, = (To/Ty) - (Vi/V) P
(To/T)) -(Vi/Vy)T (y=C,/Cv) andy>1
or, (TYT) -(V/V)® P . (1)
Thus, > V>V, and y >1
.. T;<T,. Hence a gas cools during reversible adiabatic expansion.
For ideal gas (P,V,)/T;= (P,V,)/T, or T{/T,=P,Vy/ P,V - (2)
From equation (1) and 2) P/ P,= (VV))’) or PiVi=PV,
or  PV'=constant (This is ideal gas equation for Reversible Adiabatic Expansion)
P

For isothermal expansion PV = constant A

The two expansions are shown in P-V diagram. The
work done is given by the area under the PV curve. The work
done in isothermal expansion is greater than the work done
in adiabatic expansion.

Isothermal




Joule-Thomson effect

If the system of a gas at high pressure is allowed to expand by passing thorough a porous plug
into vacuum or region of low pressure under adiabatic conditions the gas cooled. This effect

called Joule-Thomson effect. Only hydrogen and helium gases are exceptions as they get
warmed up under expansion (compressibility factor Z>1).

[ﬁj =  Joule-Thomson expansion
"

[N EFEEYEEEEY
Pext=P1 P1.T p2.T2 Paxt=P2
[T 77 N

*—— adiabatic, ¢=0
porous partition (throttle)

gas (p, 1) = gas(p, Tz)
/| V7777717

pi I [ T] [T T[]
m_ﬂ P17 ~p2 = P ,[ p2T2 Hm
[ 717 i S T | /777 [

w=pV,-pV, = AU=g+w=pl-pl,=-A(pV)
AU+A(pV)=0 = A(U+pV)=0

AH =0

Joule-Thomson is a constant Enthalpy process.

oH oH
dH = C,dT +| & J dp = CdT:[J d
. (fw g ’ op ),
(aHJ =—C‘p[£] « can measure this (ﬁJ
op T op H Ap H

Define lim AT\ _[eT = i, <« Joule-Thomson Coefficient
Ap—0 P op o

Ap

oH
L] =Gy ond | =G i

For an ideal gas: ), pV=nRT

H=UT)+pV =U(T)+nRT
only depends on T, no p dependence

HT) = [%J =u,r =0 for an ideal gas
2/
-



Joule-Thomson Coefficient for Real gases (Vander Walls gases):

c;;;:‘:.[g@h_ﬁr the Joule-Thomson Coefficient and the Inversion Temperature. The Joule-
Thomson “cocfficient can be easily calculated with the help of the van dér Waals equation. Since,
both a and b are small, the term ab/V? in the van der Waals equation can be neglected provided the

pressure is not too high. The van der Waals equation may then be writien in the form
PV = RT - alV + bP
-Replacing V by RTIP (the approximation used may be noted), we have -
PV = RT - aPIRT + bP
or V=RTIP-alRT + b
Differentiating with respect to \emperature at constant pressure, we get
@Vid)p = RIP + a/RT?
Rearranging Eq. 83, we have
RT = AV -b) + aPIRT
Dividing both sides by PT,
| a1 = | L
I
Substituting the value of R/P from Eq. 87 in Eq. 85, we have

ez [rd A
P

T T T RI?
: av i8] I
- | r(ﬁ]!‘-v_-ﬂ b

Using the well known thermodynamic relation
v=T(2Y) (24
+¥ T(ar),*(ap)p*
Eq. 89 may be written as )
i ([ S ©
& ’ ET = L[E_ I i
x), ~2l2r] 00
It is evident from Eq. 92 that Joule-Thomson coefficient is positive as long as 2a/RT is greater
than b. It becomes zerg if 2a/RT is equal to b and negative if 2a/RT is less than b. Since a, b and R

are constants, it is evident that the magnitude and sign of the Joule-Thomson coefficient depends only
upon the temperature at which the gas is allowed to expand.

TEmpum:twﬁshmtJmle-Thmmmmfﬁ:icmw sign is known as the inversion
temperature, At this temperature, p; 1 is zero so that i

iRT;=b or T; =2alRb - «(93)

where T; represents the inversion temperature. Thus, the inversion temperature depends upon the van
der Waals constants g and b of the gas.

From the equation (92),

o2 2 o . . . o
Case 1: if é >bh — T< R—Z =T; if T is below inversion temperature, py . is positive. Gas
cools upon expansion.



o2 2 o . . . )
Case 2: if R—‘; <b — T> i =T; if T is above inversion temperature, . is negative. Gas

heats upon expansion.

., 2a 2a . . . . .
Case 3: if P b — T= Pl T; 1if T is equal to inversion temperature, . is zero. Gas

neither cools nor heats upon expansion (ideal gas).

Conclusions: First, since pr is positive at low temperatures and negative at high temperatures, it
must have an inversion temperature. Second, the effect seems to depend (as we expected) on the
attractive and repulsive forces acting between molecules. At low temperatures the attractive
forces predominate. At high temperatures the repulsive forces predominate. So the Joule-
Thomson effect can be explained this way: At low temperatures the intermolecular attraction is
the most important interaction. When the gas is expanded, the average distance between
molecules is increased. This means that the molecules are pulled apart. Since they attract each
other this fakes energy and since the process is adiabatic, the only source of energy is the internal
energy of the gas itself. So, with the internal energy reduced, the gas cools.

On the other hand, at high enough temperatures the predominant interaction is repulsion.
The gas wants to separate. It wants to expand. When it does expand energy is obtained as the
molecules separate. This increases the internal energy of the gas and the gas heats.

“The limitation of the first law of thermodynamics is that it does not say anything about the
direction of flow of heat. It does not say anything whether the process is a spontaneous process
or not. The reverse process is not possible. In actual practice, the heat doesn't convert completely
into work.” There is thus need for another law, viz., the Second law of thermodynamics.



Carnot Cycle

Carnot employed a reversible cycle to demonstrate the maximum convertibility of heat into
work. The system consists of one mole of an ideal gas which is subjected to series of four
operations, commonly termed as four strokes.

The Carnot cycle consists of the following four processes:

1. Reversible isothermal expansion at &

thermodynamic temperature 77 with heat ¢,
taken in (curve AB).

APV, T)) T,>T,
I (isothermal expansion)

aq,

T.B

2. Reversible adiabatic expansion with a fall B vt

of temperature to 75 (curve BC).

3. Reversible isothermal compression at

' (P4 V5T,)
temperature 7> with heat ¢, given out (curve (PVaT)D ) ressaz il
CD). T C

q; 2
4. Reversible adiabatic compression at V.

temperature back to 7' (curve DA).

1. Reversible isothermal expansion:

The gas is taken from A (P,,V,T)) to B (P,,V,,T)). Heat ¢g; is absorbed from the reservoir at
temperature T;. Since the expansion is isothermal, the total change in internal energy is zero
(4U=0) and the heat absorbed by the gas is equal to the work done (w;) by the gas on the
surroundings, which is given as:

From 1* law of thermodynamics

AU = q; +w; (~AU=0)
S =W = RTlan
41

2. Reversible adiabatic expansion:

The gas expand adiabatically from B (P,,V,,T;) to C (P3,V3,T,). Since the expansion is
adiabatic, the heat absorbed by the gas is equal to zero (g=0). The work done (w;) by the gas on
the surroundings, which is given as:

From 1* law of thermodynamics
AU =q +w, (-g=0)
AU = W)

AU = - w; (by convention, w is negative because work is done by the system on the surroundings
during expansion)


https://byjus.com/physics/work-done/
https://byjus.com/physics/work-done/

The internal energy (AU) of one mole of an ideal gas at temperature 7'is CvAT. This is the
kinetic energy of the molecules, and does not depend on the volume occupied by the gas.
Therefore, the change in internal energy in adiabatic expansion is

AU = CvAT = Co(T»Ty) =-w>
So=Wo = CV(Tz-TI)

3. Reversible isothermal compression: The gas is compressed isothermally from the state C
(P3,V3,T,) to D (P4,V4,T). Here, the work done (w;) on the gas by the surroundings is given by:

AU = g, + ws (4U=0 and by convention, w is positive because work is done on the gas by
surroundings during compression, ¢, is heat given to the surroundings)

S =2 =W3 = l‘Tzlnﬁ
V3

4. Reversible adiabatic compression: The gas is compressed adiabatically from the state D (P4,
V4, T2) to A (P, Vi, T)). The heat absorbed by the gas is equal to zero (¢g=0). The work done
(w4) on the gas by surroundings, which is given as:

From 1% law of thermodynamics

AU = g + wy (-g=0 and by convention, w is positive because work is done on the gas by
surroundings during compression)

AU:W4
AU = CvAT = Cv(T;-Ty) =wy
oWy = CV(TI-TZ)

The net heat absorbed (¢) by the ideal gas in the whole cycle is given by:

4=q1+(-q2) = RTiIn2 +RTIn2 = RTInZ -RTHI022 e 1)
Vi V3 |41 Vs

Net work done (w) in the whole cycle = (-w;) +(-w3) +w; +wy

- RTﬂn% + CW(T>-Ty) + RTzln? + CW(T;-T>)
1 3
= RTInZ2 + RTn2 = RTInZ - RT,InZ ... )
Vi V3 41 Va

From the equation (1) and (2), ¢ = w. Thus the essential condition for cyclic process that the
net work done is equal to the net heat absorbed is fully satisfied.
A (P1,V)) and B (P,,V>) lies on same isothermal .. P, V,=P,V, ................ 3)

B (P,,V;) and C (P3,V3) lies on same adiabatic .. P,V,'=P3V3y ..., )]


https://byjus.com/physics/work-done/

Again C (P3,V3) and D (P4,Vy) lies on same isothermal .. P3V3=P4Vy4 .......... (5)
Finally D (P4, V4) and A (P, V) lies on same adiabatic .. P4V4'=P, V" ......(6)

Multiplying equation (1), (2), (3) and (4)
PV« Pszy* P3V3« P4V4Y =P, Vo P3V3Y* P4V Pl\/lY

-1 -1 -1 -1 V Vv
or, sz * V4Y = V3Y * V1Y — V2V4=V3V1 — V—Z = V_3
1 4

Now the equation (1) and (2) can be written as:
vV, vy Vs
q= RTllllV—1 -RTzlllV—1 = ll(Tl-Tz)lllV—1 . (7)
w=RTyn2 -RT;In> = RT-Ton2 ... (8)
1 4 1

Efficiency of a Heat Engine (n): The Efficiency (n) of an engine is the net work done (w) on the
surroundings divided by heat absorbed (g;).

n= qil =(q:1-q2) q1=(T;- T))/ T;.......... 9)
=12,z

n=1 o T e (10)
1><T,

<l

It means heat cannot be completely converted in to work.

Question: calculate the maximum efficiency of an engine operating between 110°C and 25°C.

. _ 4. T2 _ 4 298K _ _
Solution: n= l-T1 1 363K 0.222 =22.2%

Question: Heat supplied to a Carnot engine is 1897.8 kJ. How much useful work can be done by
the engine works between 0°C and 100°C.

Solution: n= % = (TI- Tg)/ T, S W= ql(TI' Tz)/ T,

Work done by the engine (w) = 1897.8kJ(373K-273K)/373K = 508.7k]J



Entropy

T
From Carnot cycle: Az _q.22
q1 Ty
or B @) or A= constant
Ty T

qrev 18 the heat exchanged in a process carried out reversibly at a temperature T.

drev

—, > Tepresents a definite quantity or state function called “Entropy”. It is shown by ‘S’.
Thus, % =S =Entropy

Concept of Entropy: In equation (1) giving +ve sign to heat absorbed (¢;) and giving —ve sign
to heat giving out to surroundings. Thus the equation (1) can be written as

n__ 2
Ty T,
Q@ o, 9@
or —+ = =0
Ty T

In a cyclic process carried out reversibly the summation of % terms is equal to zero.

Thus in a cyclic process the entropy of system is zero.

Any cyclic process, if carried out reversibly, can be shown to A
consist of a series of Carnot cycles. Consider a cyclic process in
which the change from state A to state B and back to state A
(see Fig.) is carried out reversibly. The path ABA may consider
a series of small Carnot cycles. The lines slanting horizontally
stand for an isothermal and slanting vertically stand for
adiabatic processes.

PRESSURE ——=

In this cyclic process,

B

B2y BT, =0 VOLUME —s
Tq T, T3 Ty Fig. 2. Entropy change in a reversible
q &yclic process. -

When the change are infinitesimal }; dT—q =0

Since the cycle is performed in two steps A—B and B—A

d Bdq | (Ad
Thenz?q=fA?q+fB?q=0

.. A T_ B T



The quantity ff % is called entropy and denoted by S. If S4 is the entropy in initial staec A and Sg
is the entropy in final state B, then change in entropy is given by

Bd
AS = Sp- Sa= [, 7"

For infinitesimal small change: dS = %

At constant temperature for finite change: AS = %

Entropy is an extensive property and its unit is J/K.

Entropy Change in an Isothermal Expansion of an Ideal Gas. In isothermal expuﬁion of an
ideal gas carried out reversibly, there will be no change in internal energy, i.e., AU=0 and hence
from the First law equation (viz., AU=q+w),

Qv = - W

In such a case, the-work done.in the expansion of.n moles of a gas from volume V) to ¥; at
constant temperature T, is given by "

-w = nRT In (V4/Vy) : )
a Geey = - W = nRT In (Vo/Vy) )
Hence,  AS = gu/T = UTXnRT In Vo/V; = nR In(Va/V)) )



Calculation of Entropy Change of an Ideal Gas with Change in P, V and T. Since entropy of

& sysiem varies with the state of the system, its value for a pure gaseous substance will depend upon

any two of the three variables T, P and V. Since T is taken generally as one of the variables, the

. secopd variable to be considered may be V or. P. Thus, the two' variables to bé considered are either
Tand Vor T and P. '

When T and V are the two variables. The increase in entropy of the gas for an inﬁniicsim!ly
small change is given by the expression

dS = dgp /T |
where dg,,, is the small amount of heat absorbed by the gas (system) reversibly from the surroundings
at temperature T,
 According 1o the equation of the First law of thermodynamics, viz., AU = g+w, we have
dGrey = dU - dv/

If the work involved is due to expansion of the gas, then, for an infinitesimal increase in volume
dV against a pressure P, . -t -

.~dw = PV l ’
Substituting the value of dU from Cy = (3U/3T), and - dw from Eq. 38, we have
dqe, = CydT + PdV
For one mole of an ideal gas, 3
 dge, = CydT + RT dVIV
44T = dS = Cy dTIT + R dVIV

For 2 finite change of state of a system, the entropy change (AS) is obtained by integrating the
above equation between the limits of the initial state 1 and the final state 2. Assuming Cy 1o be
constant within the temperature range T and Ty, for one mole of the gas we have

Vy

rar dav
M=52—SI=C|;.E ==—+R i
] r 1 v
Thus, e M“Cphﬁﬂl‘f‘klﬂ WVal¥, ) -(42)

For n moles of the ideal gas, the above equation may be writtep as
AS = nCyln (I/Ty) + nR In (Va/v))

It is evident that the entropy change for the change of state of an ideal gas depends upon the
initial and final volumes as well as oa the initial and final temperatures. &

At constant Volume V=V, .. AS = nC,In(T,/T) ) B
When T and P are the two variables. If P, is the pressure of the ideal gas in the initial state
and P, in the final state, then . o .
i e o PV, = RT; for ohe mole of the gasin the inltial state
P,V, = RT; for one mole of the gas in the final state.
VilVy = ALAPTY)
Substituting in Eq. 42, for one mole of the gas, we have
' AS = Cyln Ty/T; + R1n Ty/Ty - R In Py/P,
Remembering that Cp -~ Cy = R
AS = Cpl:ll T;ﬂ'l -RiIn PIIPI
For n moles of the ideal gas,
AS = nCp In (T3/T)) - nR In (Py/P))

It is evident from the above equations that the entropy change for the changt_of st;lt:e of an ﬁga!
gas depends on the initial and final pressure as well as on the initial 4nd final temperature.

At constant pressure P=P,, .. AS =nC,In(T»/T)



“The Second Law of Thermodynamics states that the state of entropy of the entire universe
will always increase over time. The second law also states that the changes in the entropy in the
universe can never be negative.”

ASuniv=ASsys+ASsurr>0

Entropy change in spontaneous processes:
ASuniv>0 for spontaneous process
ASuniv <0 for non-spontaneous process (spontaneous in opposite direction which is impossible)

ASuniv =0 for reversible process (system is at equilibrium)

Physical significance of entropy: (1) Entropy is measure of disorder of system. Higher the
disorder of system higher is the entropy. Melting of a solid or evaporation of a liquid always
increases the entropy.

(2) Entropy is measure of probability. Therefore there is a relationship between entropy (S) and
thermodynamic probability (W).

S =k*h’lW

A solid at absolute zero considered to be in a most ordered state. In this case W=1 i.e. S =0. The
entropy of crystalline solid at absolute zero (0 K) is zero. This is third law of thermodynamics.



Free energy and maximum work functions

Work function (A) and the free energy function (G) are given by equatio:
A=U-TS ...... (66) and G=H-TS ............... (67)

Since, U, H and § depend oanly wpon the state of a system (the temperamre is included in the
state), ﬂuwﬂmmﬂhmdﬂﬂdmkpﬂdmm;mﬂmmuﬂy Let the
three functions in Eq. 66. 4t constant T, be 4,, U, and §, so that

=U|-TE; ' lﬂil

Let an appreciable change take place at the same temperature T so that the three functicas in

mhummufﬁ:mmbmmd; U and §;. Then,

hH=U-TS -(69)
SubmngEq 68 from Eq. 69, we have ) .
Ay-A =(Uh-U)-T(5-85) or AA=AU-TAS ..70)
where A4 is the change in the function A, AU is the corresponding change in internal energy and AS
is the change in entropy of the system.
Suppmﬁehngcmﬂumfemuhmghuhmﬂmwmblgudummmmrm
that the heat absorbed is equal 10 grey.
Since from Eq. 28, AS = g,/T, hence, mhsnmtm;mEq 10, wehw:
AA = AU - gy AT
From the equation of the First law of thermodynamics, viz., AU = g + w, it follows that
Wiey = AU - gy -{T2)
If work is done by the system, it is negative so that .
'-“"rev =AU - Qv o .{'ﬁ]
Comparing Eq. 71 with Eq. T3,
—AA = Wy ' - AT4)

Since the process is carried out revcrslhljn w represents the maximum work, It is thus clear that
decrease in the function A (i.e., - Ad) gives the maximum work that can be done by the system
during the given change.. The !"umlluu A is, therefore, termed as the work: Iun:tinu. 111I: is also
referred (0 as' Helmholtz free energy or Helmholtz function, - .

If G, H and 5, represent the thermodynamic functions Inll.':lni‘lil] state and Gy, Hy and §, in
the final state, the temperature remaining conistant at T, we have from Eq. 67,
: Gy - Gy = (Hy- Hy) - T($; - §;) or AG = AH - TAS _ .{75)
But, as already shown in Chapter 13, at constant pressure
AH = AU + PAV '
AG = AU + PAV - TAS
Cumnngmlh[iq 70,
AG = AA + PAV
Since AA is equal to - w (Eq. 74), hence
AG =-w+ PAY or - AG = w- PAV

mmfﬁfummmwmmmummhmmmmn
P. Therefore, - AG gives the maximum work obtainable from a sysiem other than that due to change
of volume, at constant temperature and pressure. The work other than that due to change of volume is
called the met work. Thus,

MNet work = w- PAV = - AG .y ]

3 3 3



mmmyht%kﬂw:tmnhmhﬂm. This qumtiyisufminpmuinmw

chemistry ; it_i: mndmhonu:aflhcm American physicist, J.W. Gibbs (1839-1903).
Variation of Free Energy Cinge“’ﬁh T:.m.imraMM and Pressure, The variation of free energy

change with variation of temperature and pressure may now be considered. According to Eq. 67,

G=H-T§
Since H=U+PV, hence G=U + PV- TS .(B0)
Upon differentiation, dG = dU + PdV + VdP - TdS - SdT .- (81)
The First law equation for an infinitesimal change may be writien as
dg = dU - dw _ SR+
Ifﬂ}ewmkdnmumlyﬁuetnupmlnn,then.-dwzmv
dg = dU + PdV - .(83)
For a reversible process, . : : . -
dS = dg/T  or TdS = dg = dU + PdV ..-(84)
CMhinthqs.E[an:lMuhyc _
dG = VdP - SdT ..(85)

This equation gives change of free energy when a system undergoes, reversibly, a change of
pressure as well as change of temperature.

I pressure remains constant, L., dP=0, then, from Eq 85

dG = - 84T or (3GIeT)p = - § _ | ...(86)
On the other hand, if temperature remaiss constant, i.e., dT'=0, then, from Eq. 85,
dG = VdP or (3GIdP)r = V «87)

Lﬂhefmmugynfgtjtmkﬂ;inﬂ:;inithlmtend{'h‘mﬂuﬁmlm-nmm
_wmhﬂ;wmmehﬂmm.ﬂmmumpum.'l‘hen,imngmhgﬂq,m.Itu:
fmeenﬂgrthmgc.ﬂﬁ,iagivmby. ) ’ .

’ P B
AG =G,~G, = _L’ VP .(88)
* where Py and P, are the initial and final pressures, respectively,
lfbumuurmiup;'hmmrmmw-m

M}:RIszH[nﬂhRflnﬂ .{89)
R P A -
where V) and V; are the initial and final volumes, respectively,
- For n moles of the gas, :
AG = nRT In (P/Py) = nRT In (Vy/V;) ..{90)

Example 17. Calculate the free energy change (AG) which occurs whea 1 mole of an ideal gas expands
mﬂmuﬁmm-'mm-—uﬂwumﬁ.

Solution : Substituting the given data in Eq. 90, we have
AG = (8314 ) K mol™) (310 K) In (55 dm"/1000 dm®) = - 74768 J mol™



The Maxwell Relations. The various expressions connecting i enthalpy
i internal ¥ ¥
Helmholiz free energy (4) and Gibbs free energy (G), with lrnflcva.m pnr;fetﬁ;(?unh as mﬂéf]v

pressure, temperature and volume, may be put as

0] dU = TdS - PdV
{ii) dH = TdS + VdP
i) dA = - 84T - PdV "~
(iv) dG = - 84T + VdP
If V is constant so that dV is zero, then, Eq. (i) yields the result
(BUIaS)y = T B )
If § constant 5o that d is zero, then Eq. (i) yields the result _
@UIaWg = - P ' -(92)

Differcntiating Eq. 91 with respect to V keeping § constant and differentiating Eq. 92 with
respect to § keeping V constant, we get

FUNBSHEV) = (aTIoV)g -(93)

and _ PUIEVNES) = - (aPIas), _ . _ R

It follows from Eqs. 93 and 94 that ' ' o

(ToVg = - @PRSYy - .99)
Mwﬂm the same mathématical procedure as above, the following expressions can be easily
(@TIaP) = (BV/aSs) from (ii) .96
(88/W)y = (BP/ET)y from (ité) -97)
(8S/aPy; = - (3V/aD), from (iv) )

Egs. 95 10 98 are known as Maxwell's relations.
Another set of Maxwell's relationships, which can also be derived from equatioas (i) 1o iv), are

as follows :
(PURS)y = (BHES) from (i) and i) - " A99)
(@UIW)g = (@AeVyy. - from (i) and (iii) .£100)
(BHIOF)s = (8GIOP)r . from (i) and (iv) .{101)
(@d/aTyy = (6GeTp from (iii) and (iv) .(102)

The Gibbs-Helmholtz equation

From Maxwell’s relation: dG =-SdT +VdP ....1

At constant pressure dP = 0: S(0G/OT)p=-S ... 2
Also AG = AH-TAS

or -AS=(AG-AH)/ T ... 3

From equation 2 and 3

(0G/0T)p =(AG-AH)/ T ... AG=AH+T(0G/0T)p ........4 The equation (4) known as
Gibbs -Helmholtz equation. The Gibbs-Helmholtz Equation is very important because it
relates the change in Gibbs energy to its temperature dependence, and the position of
equilibrium to change in enthalpy.



Van’t-Hoff equation

The Van't Hoff equation relates the change in the equilibrium constant, K, of a chemical
reaction to the change in temperature, T, given the standard enthalpy change, AH’, for the
process. From Gibbs -Helmbholtz equation,

AGY = AH? + {

0 (A(.’“)]

o1

Zero superscripts are indicating standard values

AHD AG(}
Tz T T2 T

_ AH® [0 [AG
o T ot T ),

Van’t Hoff isotherm
— RT InKp = AG®
or, — R InKp = AG®/T

a (AG")
aT

or,

Differentiating with respect to temperature at constant pressure

R (')Iu[\',n) B “(L AG")
& Jp 18T\ T Jlp

Comparing the above two-equation

dinKp  AH"
or  Rr?

This is the differential form of the van 't Hoff equation; it's not the most useful thing to us though
because it only tells you the slope of a plot of InKp against 7 at one given point. We usually
separate the variables and integrate with respect to both sides:

In Kp ™ AH°
/m . d(n K) — — )
P: =

AT 1 1
Sl ] e
I@z IQ’I R (Tl Tz)

So, if you know the equilibrium constant Kp; at a certain temperature 7; and you want to find the
equilibrium constant Kp, at a different temperature 75, you can just plug in your values into the
equation and solve for Kp,.



Note that this equation supports what you know of Le Chatelier's principle; if the reaction is
exothermic, AH°<0, and if you increase the temperature from 7; to 7,>7) then (1/7,—1/72)>0.
The RHS of the equation is therefore negative, and that means that In Kp,<InKp;= Kp»< Kp,
which implies that the equilibrium position has shifted to the left.

Van’t Hoff equation: The above equation can be written at temperature (7)
AH®

anp =— F + c

where c is integrated constant

For an exothermic reaction, heat is released, making the net enthalpy change negative. Thus,

0

according to the definition of the slope: slope =— A%

. . AHO
For an exothermic reaction, AH’ < 0 (and the gas constant R > 0), so slope = — — > 0

Thus, for an exothermic reaction, the van 't Hoff plot should always have a positive slope.

For an endothermic reaction, heat is absorbed, making the net enthalpy change positive. Thus,

0

according to the definition of the slope: slope =— A%

For an endothermic reaction, AH’>0

(and the gas constant R > 0), so

AH®
slope = —— < 0 AHO

Slope = ———

Thus, for an endothermic reaction, the
van 't Hoff plot should always have a

negative slope. I I

Exothermic Reaction Endothermic Reaction
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