plastic deformation occurs. Obviously, the lower the magnitude of “g,” the
less elastic deformation there is with respect to the plastic deformation.

Usually, any elastic deformation occurring in a collision takes place in
the early part of contact between the two bodies. The plastic deformation
then takes place after the elastic deformation range has been exhausted, and
stops when the two bodies reach the “u” velocity [see Equation (xiii)]. Con-
sequently, as the severity of the collision increases, the “€” value approaches
zero. Likewise, as the severity of the collision decreases, the “¢” value
increases. Generally, the severity of the collision is proportional to the relative
closing speed of the two vehicles.

The following coefficients of restitution, or “e” values, have been found
to occur in passenger vehicles either colliding with a fixed barrier or its
equivalent. An example of a fixed barrier is a well-built brick wall that does
not move or become damaged when it is impacted. Letting the subscripts
“A” denote a vehicle and “B” denote a fixed barrier, then the coefficient of
restitution of a fixed barrier is equal to the following:

€ = [V = Vil [V = Vi1l = —Vau/Vars

because vy, = vz, = 0.

When forward or rearward velocities are 2.5 mph or less, “¢” may be
considered to be 0.9 to 1.0. This is because U.S. federal law, as embodied in
the National Traffic and Motor Vehicle Safety Act of 1966 with amendments,
requires that bumpers on cars made after 1977 be able to withstand a 2.5
mph front or rear impact with a fixed barrier without significant damage
occurring to the vehicle (49 CFR 581, 1987 edition).

For a time prior to 1978, vehicle bumpers were required by law to be
able to withstand a 5 mph impact with a fixed barrier. However, this was
rescinded in 1977, and the current, lower standard was then established. Prior
to 1966, there were no legally mandated bumper standards. Thus, no similar
“g”value can be categorically assigned to vehicle bumpers made prior to 1966.

From experience, it has been found that at impact speeds of about 25
mph, an “¢” value of 0.2 is typical for most passenger cars. At impact speeds
of about 35 mph, an “¢” value of 0.1 is typical, and at speeds exceeding 50
mph, an “¢” value of about 0.004 is typical.

Interestingly, when the above experience-derived values of “¢” are plotted
against the vehicle impact speed, they tend to closely follow the following
equation:

g = e 0065 (xviii)
where € = the coefficient of restitution, s = the vehicle’s speed in mph, and

e = logarithmic “e,” i.e., e = 2.718.

©2001 CRC Press LLC



Plate 15.1 Side impact. Note bumper imprint in crush damage along door.

15.6 Analysis of Forces during a Fixed Barrier Impact

In experimental tests, it has been found that when a 1980 Chevy Citation
weighing 3130 1b was driven into a fixed barrier at 48 mph, the front end
crushed 40.4 in deep across the front of the car.

Using Equation (xviii), it is found that this impact velocity would have
a coefficient of restitution of about 0.044. Using this “e” value, the calculated
rebound velocity would have been about 2 mph. For all practical purposes,
this impact would be deemed a plastic collision.

The pre-impact momentum of the car would have been:

[(3130 1bf)/(32.17 ft/sec?)][(70.4 ft/sec)] = 6850 Ibf-sec.
The postimpact momentum of the car would have been:
[3130 1bf)/(32.17 ft/sec?)][3 ft/sec] = 292 Ibf-sec.
The net change in momentum due to the impact was then 6558 Ibf-sec.
After contact with the wall, the car came to a stop in 40.4 inches. Assuming
that the velocity of the vehicle decreases linearity (i.e., constant deceleration),

then the equation for the speed of the car during impact would be as follows:

70.4 ft/sec — (1.743 ft/in-sec)x =V
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where x = the amount of crush that has occurred, and V = the velocity at
that point during the impact.

If the average velocity during the impact is simply “(1/2)(70.4 ft/sec),
then the time required to stop in 40.4 inches would be 0.0956 seconds. Thus,
the actual impact is literally over in less than the blink of an eye.

Assuming that the force applied by the wall to stop the car was constant,
then the impulse during the impact would be:

F(0.0956 sec) = 6558 Ibf-sec.
F = 68,598 1bf.

If the force would have been applied more or less evenly across the front
of the car, and the front is assumed to be about 72 inches wide and about
30 inches in height, then an equivalent average pressure on the wall to resist
the car impact would have been 32 psi.

The deceleration rate during the impact is estimated as follows:

d = (1/2)at?
d =40.4 in t = 0.0956 sec
a = 8841 in/sec?> = 737 ft/sec’ = 22.3 g’s

From this simple analysis, a few items are noted. First, if the crush depth
is increased, then the deceleration can be decreased and the time of impact
increased. For example, if the crush depth had been 50 in instead of the
40.4 in, then the time of impact would have been 0.118 sec, and the decel-
eration would have been 18.6 g’s instead of 22.3 g’s. The 9.6 in increase in
crush depth, a 24% increase, would have reduced the deceleration by 17%.
This is significant. The degree of injury sustained in a vehicle impact by the
occupants is a direct function of the impact deceleration.

15.7 Energy Losses and “&”

When two bodies collide, some of the total kinetic energy is dissipated in
plastic deformation. The amount of energy loss is given by the following.

(1/2)(myv,,2) + (1/2)(mgvy,?) = E; + (1/2)(m,v,,?)
+ (1/2)(mgvg,?) (xix)
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Bl = (172)m,(vy2 = vy,?) + (1/2)my(vg, 2 —vi,?)

In the above equation, the “v?” terms are considered either vector dot
products, or simply the absolute values of the velocity vectors squared.
The coefficient of restitution, “g,’

g, is given by the following:
€ = Leo/Laer = [Via = Vaol/[Vay = Vi -

Rearranging the above relation for “e” to favor postimpact velocity terms
gives the following:

Vg = €[Va — V] + vy, and (xx)
Var = Vg — €[V — Vgl
Using the above value for “v,,,” the following is generated.

(Va2 = Vah) = Va2 = [V 2 = 2(€) (Vo — vg)) (Vgy) + €2(vy — vi))?] (xxi)
(Var? = Var?) = Va 21 = €2) — v,” + vy vy (2¢) —
Vi Vpa(28) v, Vg, (2€2) — v, *(€?)

Similarly, using the value in Equation (xx) for “vy,,” the following is
generated.

(Vp1* = Vpy?) = v, 2(1 = €2) = v,> + vy v,,(2¢8) — (xxii)
VaVaa(2€) + vy, v, (282) — v,y %(€7)

Substituting the above velocity difference terms, Equations (xxi) and
(xxii), into Equation (xix) gives the following for the energy loss

Elo = (1/2)(my) [V 2(1 — €2) — vp,? + v Vi, (28) — v, v, (2€)  (xxiii)
+ Vo Vg (2€2) — v 2(€2) | +
(172)(myg) [V 2(1 — €2) — v,2 + Vg Var(28) — vy v, (2€)
+ Vo Ve (282) — vy 2(€2) |

«_»

Rearranging Equation (xxiii) to sort out the “¢” terms, and substituting
to favor postimpact velocities, gives the following expression:

ELoss = [(1/82) - 1] [(mAmB)/z(mA + mB)] [VBZ - VA2]2 (XXIV)
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