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Abstract—This paper deals with the relations between gener-
alized Minty vector variational-like inequality problems, gener-
alized Stampacchia vector variational-like inequality problems
and a class of nonsmooth vector optimization problems by
using the concept of an efficient minimizer of order m in
terms of Clarke subdifferential. Furthermore, we consider weak
formulations of considered generalized Minty and Stampacchia
vector variational-like inequality problems and establish the
relationship between the solution of these vector variational-
like inequality problems and strict minimizer of order m of
considered nonsmooth vector optimization problem. Moreover,
we employ KKM-Fan theorem to establish some existence results
for the solutions of the generalized Minty and Stampacchia vector
variational-like inequality problems. The results of the paper
extend and unify some earlier results of Bhatia (2008), Li & Yu
(2017) and Upadhyay et al. (2017) to the nondifferentiable case
as well as for a more general class of nonconvex functions.

Index Terms—Efficient minimizers of order m, KKM-Fan
theorem, locally Lipschitz functions, strict minimizers of order
m, vector variational-like inequality problems.

I. INTRODUCTION

It is well known that convexity and generalized convexity
have wider applications in optimization theory, engineering,
economics, probability theory and calculus of variations, see
Green & Heller (1981); Rahtu et al. (2006); Smith (1985) and
the references cited therein. Mangasarian (1969) introduced
the concept of pseudoconvex functions as a generalization
of convex functions. Karamardian & Schiable (1990) intro-
duced the class of strongly convex functions of order 2,
which was later generalized by Lin & Fukushima (2003)
as a strongly convex function of order m. Hanson (1981)
introduced the concept of invex functions as a generalization of

convex functions. Invex functions possess several properties,
for example, a critical point is global minima and first order
necessary optimality conditions become sufficient, which led
to the various applications of invex functions in nonlinear
optimization and variational inequality problems, see Ben-
Israel & Mond (1986); Mishra & Upadhyay (2015); Weir &
Mond (1988) and the references cited therein. Kaul & Kaur
(1985) defined the concept of pseudoinvex and quasiinvex
functions to obtain sufficient optimality criteria for nonlinear
programming problems involving these functions. Jeyakumar
& Mond (1992) introduced the concept of strongly α- invex
functions. Reiland (1990) extended the notion of invexity for
nonsmooth functions with the help of generalized gradient
introduced by Clarke (1983).

In vector optimization problems, efficiency is a widely used
solution concept. Since in numerical techniques, algorithms
terminate after certain steps, so we get only approximate solu-
tions. The concept of approximate solutions can be considered
as a satisfactory compromise to the efficient values of the
objective of a vector optimization problem with some relative
error, for details see Deng (1997); Gupta & Mehra (2008) and
references cited therein. Cromme (1978) studied the concept
of strict local minimizers while studying the convergence of
iterative numerical techniques. Auslender (1984) and Ward
(1994) extended the concept of strict local minimizer to a
strict local minimizer of order m. Jiménez (2002) introduced
the notion of a strict minimizer of higher order for vector
optimization problems.

Variational inequality was first introduced by Hartman &
Stampacchia (1980) as a tool for the study of some specific
classes of partial differential equations. Variational inequalities
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are either known as Stampacchia variational inequalities intro-
duced by Stampacchia (1960) or in the form of Minty vari-
ational inequalities introduced by Minty (1967). The notion
of vector variational inequality was introduced by Giannessi
(1980) in finite dimensions. In literature, most of the schol-
ars discussed applications of Stampacchia vector variational
inequality and the Minty vector variational inequality for the
vector optimization problem, for more expositions, see Ansari
& Siddiqi (1998); Ansari & Yao (2000); Bhatia (2008); Gian-
nessi (1998, 2000); Lee (2000); Mishra & Upadhyay (2013);
Upadhyay et al. (2019) and the references cited therein. Li
& Yu (2017) established the relationship between solutions of
vector variational inequalities and vector optimization prob-
lem for directionally differentiable invex functions. Mishra
& Wang (2006) established the relationship between nons-
mooth vector optimization problem and vector variational-like
inequality problems under nonsmooth invexity. Al-Homidan
& Ansari (2010) gave such results for weak efficient solution
of the nonsmooth vector optimization problem. Oveisiha &
Zafarani (2013) established the relationship between vector
variational-like inequality problems and nonsmooth vector
optimization problems using α-invex function in Asplund
spaces with limiting subdifferential.

Motivated by the works of Al-Homidan & Ansari (2010),
Li & Yu (2017), Upadhyay et al. (2017) and Mishra &
Wang (2006), we consider generalized Minty and Stampacchia
vector variational-like inequality problems and a class of
nonsmooth vector optimization problems. We establish the
relationship between the solutions of generalized Minty and
Stampacchia vector variational-like inequality problems and
efficient minimizer of order m of nonsmooth vector optimiza-
tion problems by using the concepts of strong invexity of order
m. We also discuss the weak formulation of generalized Minty
and Stampacchia vector variational-like inequality problems
and establish the relationship between strict minimizer of
order m of vector optimization problems and solutions of
weak generalized vector variational-like inequality problems.
Furthermore, we employ KKM-Fan theorem to establish the
existence of a solution of generalized Minty and Stampacchia
vector variational-like inequality problems.

This paper is organized as follows. In Section II, some def-
initions are given which will be used throughout the paper. In
Section III, we establish the relationship between the solution
of generalized Minty and Stampacchia vector variational-like
inequality problems and efficient minimizer of order m of
nonsmooth vector optimization problems for strongly invex
functions of order m. In Section IV, weak generalized Minty
and Stampacchia vector variational-like inequality problems
are considered and we establish the relationship between the
solution of weak generalized Minty and Stampacchia vector
variational-like inequality problems with strict minimizer of
order m of the vector optimization problem. In Section V,
we discuss the existence of solution of generalized vector
variational-like inequality problems with the help of KKM-
Fan theorem.

II. DEFINITIONS AND PRELIMINARIES

Let Rn be the n-dimensional Euclidean space and −Rn
+

denotes its nonpositive orthant. 0 denotes the zero vector in
Rn. Interior of Rn is denoted by intRn and let 〈., .〉 denotes
the Euclidean inner product. Let Γ ⊆ Rn be a nonempty set
equipped with Euclidean norm ||.||. Let η : Γ× Γ→ Rn be a
vector valued function.

For x, y ∈ Rn, the following convention for equalities and
inequalities will be used throughout the paper.

1) x− y ∈ −Rn
+ ⇐⇒ xi ≤ yi, i = 1, 2, . . . , n;

2) x − y ∈ −Rn
+ \ {0} ⇐⇒ xi ≤ yi, i =

1, 2, . . . , n with strict inequality for at least one i;
3) x− y ∈ −intRn

+ ⇐⇒ xi < yi, i = 1, 2, . . . , n.

The following notions of nonsmooth analysis are from
Clarke (1983).

Definition 1: A function f : Γ→ R is said to be Lipschitz
near x ∈ Γ, if there exists a positive constant K and a
neighbourhood N of x, such that, for any y, z ∈ N , one has

|f(y)− f(z)| ≤ K||y − z||.

The function f is locally Lipschitz on Γ, if it is Lipschitz near
x, for every x ∈ Γ.

Definition 2: Let f : Γ→ R be locally Lipschitz at a given
point x ∈ Γ. The Clarke generalized directional derivative of
f at x ∈ Γ, in the direction v ∈ Rn, denoted by f◦(x; v), is
defined as

f◦(x; v) := lim sup
y→x
t↓0

f(y + tv)− f(y)

t
.

Definition 3: Let f : Γ→ R be locally Lipschitz at a given
point x ∈ Γ. The Clarke generalized subdifferential of f at
x ∈ Γ, denoted by ∂cf(x), is defined as

∂cf(x) := {ξ ∈ Rn : f◦(x; v) ≥ 〈ξ, v〉, ∀v ∈ Rn}.

The following definitions are from Al-Homidan & Ansari
(2010).

Definition 4: Let x be any arbitrary point of Γ. The set Γ
is said to be invex at x with respect to η if, for all y ∈ Γ

x+ λη(y, x) ∈ Γ, ∀λ ∈ [0, 1].

The set Γ is said to be an invex set with respect to η, if Γ is
invex at every point x ∈ Γ with respect to η.

The following notions of strong invexity and monotonicity
are from Jabarootian & Zafarani (2006).

Definition 5: Let Γ be an invex set with respect to η. A
function f : Γ → R is said to be strongly preinvex of order
m ≥ 1 with respect to η on Γ, if there exists a constant c > 0,
such that, for all x, y ∈ Γ and t ∈ [0, 1], one has

f(x+ tη(y, x)) ≤ (1− t)f(x) + tf(y)− t(1− t)c||η(y, x)||m.

Definition 6: A function f : Γ → R is said to be strongly
invex of order m ≥ 1 with respect to η on Γ, if there exists a
constant c > 0, such that, for all x, y ∈ Γ, one has

f(x)− f(y) ≥ 〈ξ, η(x, y)〉+ c||η(x, y)||m, ∀ξ ∈ ∂cf(y).
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Example 1: Let Γ = [−1, 1] and f : Γ→ R, η : Γ×Γ→ R
given by-

f =

{
x2 − 1, if x ≥ 0,

x2 − x− 1, if x < 0,

and η(x, y) =

{
(x− y)1/2, if x ≥ 0 and y < 0,

x− y, elsewhere.

It can be verified that f is a strongly invex function of order
m = 2 with c = 1.

Definition 7: Let T : Γ→ 2Γ be a set valued map. T is said
to be strongly invariant monotone of order m, with respect to
η on Γ, if there exists a constant c > 0, such that, for any
x, y ∈ Γ, and any ξ ∈ T (x), ζ ∈ T (y), one has

〈ξ, η(y, x)〉+ 〈ζ, η(x, y)〉 ≤ −c{||η(y, x)||m + ||η(x, y)||m}.

Condition A. Yang et al. (2003) Let Γ be an invex set with
respect to η. Then the function f : Γ→ R is said to be satisfy
the Condition A, if

f(y + η(x, y)) ≤ f(x), ∀x, y ∈ Γ.

Condition C. Mohan & Neogy (1995) Let Γ be an invex set
with respect to η. Then, η is said to be satisfy the Condition
C if, for all x, y ∈ Γ, λ1, λ2, λ ∈ [0, 1], one has

(i) η(x, x+ λη(y, x)) = −λη(y, x),
(ii) η(y, x+ λη(y, x)) = (1− λ)η(y, x).
Remark 1: Yang et al. (2003) have shown that

η(x+ λ1η(y, x), x+ λ2η(y, x)) = (λ1 − λ2)η(y, x).

The map η(x, x̃) = x− x̃ satisfies all the conditions trivially.
For a nontrivial example of η, satisfying all the above
conditions, we refer to Al-Homidan & Ansari (2010).

Now, we state the following lemma from Jabarootian &
Zafarani (2006), which establishes the relationship between
strongly invex function of order m and strongly invariant
monotonicity of order m of its generalized gradient.

Lemma 1: Let Γ be an invex set with respect to η and
f : Γ → R be locally Lipschitz on Γ. If f is strongly invex
of order m with respect to η, then ∂cf is strongly invariant
monotone of order m with respect to η, that is, for all x, y ∈
Γ, ξ ∈ ∂cf(x) and ζ ∈ ∂cf(y),

〈ξ, η(y, x)〉+ 〈ζ, η(x, y)〉 ≤ −c{||η(y, x)||m + ||η(x, y)||m}.

The following Lebourg mean value theorem from Clarke
(1983) will be used in the sequel.

Theorem 1: Let x and y be points in Γ, and suppose that f
is Lipschitz on an open set containing the line segment [x, y].
Then, there exists a point u in (x, y), such that

f(y)− f(x) ∈ 〈∂cf(u), y − x〉.

Now, we prove the following lemma, which generalizes the
corresponding result from Jabarootian & Zafarani (2006) for
any m > 0.

Lemma 2: Let Γ be an invex set with respect to η such
that η satisfy the Condition C and let f : Γ → R be locally
Lipschitz on Γ. If the function f is strongly invex of order m

with respect to η on Γ, then f is strongly preinvex of order
m with respect to the same η on Γ.

Proof: Let x̃ = y+λη(x, y), λ ∈ [0, 1]. Since Γ is invex,
x̃ ∈ Γ. Since, f be a strongly invex function of order m with
respect to η on Γ. Then, we have

f(y)− f(x̃) ≥ 〈ξ, η(y, x̃)〉+ c||η(y, x̃)||m

From the Condition C, we get

f(y)− f(x̃) ≥ −λ〈ξ, η(x, y)〉+ cλm||η(x, y)||m. (1)

Similarly, we have

f(x)− f(x̃) ≥ 〈ξ, η(x, x̃)〉+ c||η(x, x̃)||m

= (1− λ)〈ξ, η(x, y)〉+ c(1− λ)m||η(x, y)||m.
(2)

Multiplying Eq. (1) by 1−λ and Eq. (2) by λ and adding the
resulting inequalities, we get

(1− λ)f(y) + λf(x)− f(x̃)

≥c[λm(1− λ) + λ(1− λ)m]||η(x, y)||m. (3)

If 0 < m ≤ 2, then

(1− λ)m−1 + λm−1 ≥ (1− λ) + λ = 1. (4)

If m > 2, then φ(λ) = λm−1 is convex on (0, 1), therefore,

(1− λ)m−1 + λm−1 ≥ (
1

2
)m−2. (5)

Therefore, from Eq. (3), Eq. (4), and Eq. (5), there exist c̄ > 0
independent of x, y, and λ, such that

f(y+λη(x, y)) ≤ (1−λ)f(y)+λf(x)−c̄λ(1−λ)||η(x, y)||m.

Hence, f is strongly preinvex function of order m with respect
to η.

We consider the following nonsmooth vector optimization
problem:

(NVOP) Minimize f(x) = (f1(x), . . . , fp(x))

subject to x ∈ Γ,

where fi : Γ → R, i ∈ I := {1, 2, ..., p} are non-
differentiable locally Lipschitz functions on Γ.

The following notions of efficient minimizer and strict
minimizer of order m with respect to η of (NVOP) are from
Upadhyay et al. (2017).

Definition 8: Let m ≥ 1 be an integer. A point y ∈ Γ is
said to be an efficient minimizer of order m with respect to η
of (NVOP), if there exists a constant c ∈ intRp

+, such that

(f1(x)− f1(y)− c1||η(x, y)||m, . . . ,
fp(x)− fp(y)− cp||η(x, y)||m) /∈ −Rp

+ \ {0}, ∀x ∈ Γ.

Definition 9: Let m ≥ 1 be an integer. A point y ∈ Γ is
said to be a strict minimizer of order m with respect to η of
(NVOP), if there exists a constant c ∈ intRp

+, such that

(f1(x)−f1(y)− c1||η(x, y)||m, ...,
fp(x)− fp(y)− cp||η(x, y)||m) /∈ −intRp

+, ∀x ∈ Γ.
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Remark 2: It is obvious from the above definitions that every
efficient minimizer of order m with respect to η is also a strict
minimizer of order m with respect to η of (NVOP), but the
converse may not be true. To illustrate this fact, we consider
the following nonsmooth vector optimization problem

(P1) Minimize f(x) = (f1(x), f2(x))

subject to x ∈ Γ,

where Γ = [−1, 1], f = (f1, f2) : [−1, 1]→ R2 and
η : [−1, 1]× [−1, 1]→ R2 be defined as:

f1 =

{
x2 − 2x, x ≥ 0,

e−x − 1, x < 0,
f2 =

{
x3 + 1, x ≥ 0,

e−x, x < 0,

and η(x, y) =

{
x− y, x ≥ 0, y ≥ 0, or x < 0, y < 0,

y − x, x ≥ 0, y < 0, or x < 0, y ≥ 0.

It is not hard to verify that y = 0 is a strict minimizer of order
3 with c = (1, 1), but not an efficient minimizer of order 3
with respect to η.

Now, we consider the following generalized Minty and
Stampacchia vector variational-like inequality problems
from Al-Homidan & Ansari (2010), in terms of Clarke
subdifferential:

(GMVVLIP) A generalized Minty vector variational-
like inequality problem is to find x̃ ∈ Γ, such that, for each
y ∈ Γ and for all ξi ∈ ∂cfi(y), i ∈ I, we have

〈ξ, η(y, x̃)〉p = (〈ξ1, η(y, x̃)〉, . . . , 〈ξp, η(y, x̃)〉) /∈ −Rp
+\{0}.

(GSVVLIP) A generalized Stampacchia vector variational-
like inequality problem is to find x̃ ∈ Γ, such that, for each
y ∈ Γ, there exists ζi ∈ ∂cfi(x̃), i ∈ I, we have

〈ζ, η(y, x̃)〉p = (〈ζ1, η(y, x̃)〉, . . . , 〈ζp, η(y, x̃)〉) /∈ −Rp
+\{0}.

III. RELATIONSHIP BETWEEN (GMVVLIP), (GSVVLIP)
AND (NVOP)

In this section, using the tools of nonsmooth analysis
and notion of strong invexity of order m, we establish
certain relations between the solutions of generalized Minty
and Stampacchia vector variational-like inequality problems
(GMVVLIP), (GSVVLIP) and the efficient minimizer of order
m with respect to η of nonsmooth vector optimization problem
(NVOP).

Theorem 2: Let Γ be an invex set with respect to η, such that
η is skew and satisfies the Condition C. Let each fi, i ∈ I be
strongly invex function of order m with respect to η on Γ and
satisfy the Condition A. Then x̃ ∈ Γ is an efficient minimizer
of order m with respect to η of (NVOP) if and only if x̃ is a
solution of (GMVVLIP).

Proof: Let x̃ ∈ Γ be an efficient minimizer of order m
with respect to η of (NVOP). Then, for all x ∈ Γ, there exists
a constant c ∈ intRp

+, such that

(f1(x)− f1(x̃)− c1||η(x, x̃)||m, . . . ,
fp(x)− fp(x̃)− cp||η(x, x̃)||m) /∈ −Rp

+ \ {0}. (6)

Since, each fi, i ∈ I is strongly invex of order m with respect
to η, therefore for all x ∈ Γ and ξi ∈ ∂cfi(x), we have

fi(x̃)− fi(x) ≥ 〈ξi, η(x̃, x)〉+ ci||η(x̃, x)||m, ∀i ∈ I. (7)

Since η is skew, from Eq. (7), we get

fi(x)− fi(x̃) ≤ 〈ξi, η(x, x̃)〉 − ci||η(x, x̃)||m, ∀i ∈ I. (8)

Since ci > 0, from Eq. (8), we have

fi(x)− fi(x̃)− ci||η(x, x̃)||m

≤ 〈ξi, η(x, x̃)〉 − 2ci||η(x, x̃)||m, ∀i ∈ I. (9)

From Eq. (6) and Eq. (9), for all x ∈ Γ, we get

(〈ξ1, η(x, x̃)〉, ..., 〈ξp, η(x, x̃)〉) /∈ −Rp
+ \ {0}.

Hence x̃ is a solution of (GMVVLIP).
Conversely, Let x̃ ∈ Γ be a solution of (GMVVLIP), but not
an efficient minimizer of order m with respect to η of (NVOP).
Then, there exist x ∈ Γ, such that for any c ∈ intRp

+, we have

(f1(x)− f1(x̃)− c1||η(x, x̃)||m, . . . ,
fp(x)− fp(x̃)− cp||η(x, x̃)||m) ∈ −Rp

+ \ {0}. (10)

Let x(t) := x̃ + tη(x, x̃) for all t ∈ [0, 1]. Since Γ is invex
set, x(t) ∈ Γ, for all t ∈ [0, 1].
Choose t′ ∈ (0, 1) arbitrary. By Lemma 2, each fi, i ∈ I
is strongly preinvex of order m with respect to η. Therefore,
there exists c ∈ intRp

+, such that for all i ∈ I, we have

fi(x(t′)) = fi(x̃+ t′η(x, x̃))

≤ (1− t′)fi(x̃) + t′fi(x)− t′(1− t′)ci||η(x, x̃)||m.
(11)

From Eq. (11), it follows that

fi(x̃+t′η(x, x̃))− fi(x̃)

≤ t′[fi(x)− fi(x̃)− (1− t′)ci||η(x, x̃)||m], ∀i ∈ I.
(12)

From the mean value Theorem 1, there exists ti ∈ (0, t′) and
ξi ∈ ∂cfi(x(ti)), where x(ti) = x̃+ tiη(x, x̃), we have

t′〈ξi, η(x, x̃)〉 = fi(x̃+ t′η(x, x̃))− fi(x̃), ∀ i ∈ I. (13)

From Eq. (12) and Eq. (13), we have

〈ξi, η(x, x̃)〉 ≤ fi(x)− fi(x̃)− (1− t′)ci||η(x, x̃)||m, ∀i ∈ I.
(14)

Suppose that t1, t2, ..., tp are all equal to t. From Eq. (10) and
Eq. (14), it follows that

(〈ξ1, η(x, x̃)〉, ..., 〈ξp, η(x, x̃)〉) ∈ −Rp
+ \ {0}. (15)

Then from the Condition C, we have

〈ξi, η(x(t), x̃)〉 = t〈ξi, η(x, x̃)〉, ∀i ∈ I (16)

From Eq. (15) and Eq. (16), it follows that

(〈ξ1, η(x(t), x̃)〉, ..., 〈ξp, η(x(t), x̃)〉) ∈ −Rp
+ \ {0}.

This implies that x̃ does not solve (GMVVLIP). This contra-
dicts our assumption.
Now, consider the case t1, t2, . . . , tp are not all equal. Let
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ti 6= tj , for some i, j ∈ I, ξi ∈ ∂cfi(x(ti)), ξj ∈ ∂cfj(x(tj)),
and i 6= j, then from Eq. (14), we have

〈ξi, η(x, x̃)〉 ≤ fi(x)− fi(x̃). (17)
〈ξj , η(x, x̃)〉 ≤ fj(x)− fj(x̃). (18)

Since fi and fj are strongly invex of order m with respect
to η, therefore, from Lemma 1, ∂cfi and ∂cfj are strongly
invariant monotone of order m with respect to η. Hence, for
all ξi ∈ ∂cfi(x(ti)) and ξ∗j ∈ ∂cfi(x(tj)), we get

〈ξi, η(x(tj), x(ti))〉+ 〈ξ∗j , η(x(ti), x(tj))〉
≤ −ci[||η(x(ti), x(tj))||m + η(x(tj), x(ti))||m]. (19)

Since η is skew, from Eq. (19), it follows that

〈ξi − ξ∗j , η(x(ti), x(tj))〉 ≥ ci||η(x(ti), x(tj))||m,
∀ ξ∗j ∈ ∂cfi(x(tj)). (20)

Similarly,

〈ξ∗i − ξj , η(x(ti), x(tj))〉 ≥ cj ||η(x(ti), x(tj))||m,
∀ ξ∗i ∈ ∂cfj(x(ti)). (21)

If ti > tj , then by Remark 1 and Eq. (20), there exist c̄i > 0,
such that

c̄i||η(x, x̃)||m ≤ 〈ξi − ξ∗j , η(x, x̃)〉. (22)

From Eq. (22), it follows that

〈ξi, η(x, x̃)〉 ≥ 〈ξ∗j , η(x, x̃)〉+ c̄i||η(x, x̃)||m,
where c̄i = (ti − tj)m−1.

From Eq. (17), we have

fi(x)− fi(x̃) ≥ 〈ξ∗j , η(x, x̃)〉+ c̄i||η(x, x̃)||m,
∀ξ∗j ∈ ∂cfi(x(tj)).

If ti < tj , then by Remark 1 and Eq. (21), we get

c̄j ||η(x, x̃)||m ≤ 〈ξj − ξ∗i , η(x, x̃)〉. (23)

From Eq. (23), we have

〈ξj , η(x, x̃)〉 ≥ 〈ξ∗i , η(x, x̃)〉+ c̄j ||η(x, x̃)||m,
where c̄j = (tj − ti)m−1.

From Eq. (18), it follows that

fj(x)− fj(x̃) ≥ 〈ξ∗i , η(x, x̃)〉+c̄i||η(x, x̃)||m,
for any ξ∗i ∈ ∂cfj(x(ti)).

Let, t̄ = min{ti, tj}, we can get ξ̄k ∈ ∂cfk(x(t̄)), such that

〈ξ̄k, η(x, x̃)〉 ≤ fk(x)− fk(x̃)− c̄k||η(x, x̃)||m,
for any k = i, j.

Continuing in this way, there exists ξ∗i ∈ ∂cfi(x(t∗)), such
that t∗ = min{t1, t2, ..., tp} and

〈ξ∗i , η(x, x̃)〉 ≤ fi(x)− fi(x̃)− c̄i||η(x, x̃)||m, ∀ i ∈ I.
(24)

From Eq. (10) and Eq. (24), we get ξ∗i ∈ ∂cfi(x(t∗)), i ∈ I,

(〈ξ∗1 , η(x, x̃)〉, ..., 〈ξ∗p , η(x, x̃)〉) ∈ −Rp
+ \ {0}. (25)

Since η is skew, multiplying Eq. (25) by −t∗ and using the
Condition C, we get

(〈ξ∗1 , η(x(t∗), x̃)〉, ..., 〈ξ∗p , η(x(t∗), x̃)〉) ∈ −Rp
+ \ {0},

which is a contradiction.
Theorem 3: Let Γ be an invex set with respect to η. Let

each fi, i ∈ I be strongly invex function of order m with
respect to η on Γ. If x̃ ∈ Γ be a solution of (GSVVLIP), then
x̃ is an efficient minimizer of order m with respect to η of
(NVOP).

Proof: Let x̃ ∈ Γ be a solution of (GSVVLIP), for any
y ∈ Γ, there exists ζi ∈ ∂cfi(x̃), i ∈ I, such that

(〈ζ1, η(y, x̃)〉, . . . , 〈ζp, η(y, x̃)〉) /∈ −Rp
+ \ {0}. (26)

Since each fi, i ∈ I is strongly invex function of order m
with respect to η, there exists a constant c ∈ intRp

+, such that

〈ζi, η(y, x̃)〉+ ci||η(y, x̃)||m ≤ fi(y)− fi(x̃), ∀y ∈ Γ.
(27)

From Eq. (26) and Eq. (27), we have

(f1(y)− f1(x̃)− c1||η(y, x̃)||m, ...,
fp(y)− fp(x̃)− cp||η(y, x̃)||m) /∈ −Rp

+ \ {0}.

Hence, x̃ ∈ Γ is an efficient minimizer of order m with respect
to η of (NVOP).

Remark 3: The converse of the Theorem 3 may not hold.
For example, consider the following nonsmooth vector opti-
mization problem

(P2) Minimize f(x) = (f1(x), f2(x))

subject to x ∈ Γ,

where, f = (f1, f2) : [−1, 1]→ R2 and η : [−1, 1]×[−1, 1]→
R2 be defined as:

f1 =

{
x2 − x, x ≥ 0,

x2 − 2x, x < 0,
f2 =

{
x2 + ex, x ≥ 0,

x2 + e−x, x < 0,

and η(x, y) =

{
1− y, x ≥ 0 and y < 0,

x− y, elsewhere.

It can be verified that the functions fi, i = 1, 2 are strongly
invex functions of order 2 with ci = 1, i = 1, 2 with respect
to η on [−1, 1]. Now, we can evaluate that

∂cf1(x) =


2x− 1, x > 0,

[−2,−1], x = 0,

2x− 2, x < 0,

and ∂cf2(x) =


2x+ ex, x > 0,

[−1, 1], x = 0,

2x− e−x, x < 0.

It is not hard to verify that x̃ = 0 is an efficient minimizer
of order 2 with c = (1, 1). But x̃ = 0 is not a solution of
(GSVVLIP), as for any y > 0, there does not exist any ζi, i =
1, 2, such that

(〈ζ1, η(y, x̃)〉, 〈ζ2, η(y, x̃)〉) /∈ −R2
+ \ {0}.
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From Theorem 2 and 3, we have the following result.
Corollary 1: Let Γ be an invex set with respect to η such

that η is skew and let each fi, i ∈ I satisfies the Condition
A, η satisfies the Condition C. If x̃ ∈ Γ solves (GSVVLIP),
then x̃ is a solution of (GMVVLIP).

Now, we consider the following weak formulation of
generalized Minty and Stampacchia vector variational-like
inequality problems from Al-Homidan & Ansari (2010), in
terms of Clarke subdifferential:

(WGMVVLIP) A weak generalized Minty vector variational-
like inequality problem is to find x̃ ∈ Γ, such that, for each
y ∈ Γ and for all ξi ∈ ∂cfi(y), i ∈ I, we have

〈ξ, η(y, x̃)〉p = (〈ξ1, η(y, x̃)〉, ..., 〈ξp, η(y, x̃)〉) /∈ −intRp
+.

(WGSVVLIP) A weak generalized Stampacchia vector
variational-like inequality problem is to find x̃ ∈ Γ, such that,
for each y ∈ Γ, there exists ζi ∈ ∂cfi(x̃), i ∈ I, we have

〈ζ, η(y, x̃)〉p = (〈ζ1, η(y, x̃)〉, ..., 〈ζp, η(y, x̃)〉) /∈ −intRp
+.

IV. RELATIONSHIP BETWEEN (WGMVVLIP),
(WGSVVLIP) AND (NVOP)

In this section, we establish some results which show the
relationship among the solutions of weak generalized Minty
and Stampacchia vector variational-like inequality problems
(WGMVVLIP), (WGSVVLIP) and strict minimizer of order
m with respect to η of the nonsmooth vector optimization
problem (NVOP).

Proposition 1: Let Γ be an invex set with respect to η such
that η is skew and let each fi, i ∈ I be strongly invex of order
m with respect to η. If x̃ solves (WGSVVLIP), then x̃ is a
solution of (WGMVVLIP).

Proof: Since x̃ ∈ Γ solves (WGSVVLIP), then for any
z ∈ Γ, there exist ζi ∈ ∂cfi(x̃), i ∈ I, such that

(〈ζ1, η(z, x̃), . . . , 〈ζp, η(z, x̃)) /∈ −intRp
+. (28)

Since, fi, i ∈ I is strongly invex of order m with respect to
η, then from Lemma 1, ∂cfi is strongly invariant monotone
of order m with respect to η. Therefore, there exists a
constant c ∈ intRp

+, such that for all ζi ∈ ∂cfi(x̃), ξi ∈
∂cfi(z), and z ∈ Γ, we get

〈ξi − ζi, η(z, x̃)〉 ≥ ci[||η(z, x̃)||m + ||η(x̃, z)||m], ∀i ∈ I.
(29)

From Eq. (28) and Eq. (29), we get

(〈ξ1, η(z, x̃)〉, ..., 〈ξp, η(z, x̃)〉) /∈ −intRp
+.

Hence, x̃ ∈ Γ is a solution of (WGMVVLIP).

Al-Homidan & Ansari (2010) prove the following result.
Proposition 2: Let Γ be an invex set with respect to η and

let each fi, i ∈ I be locally Lipschitz. If x̃ ∈ Γ solves
(WGMVVLIP), then x̃ solves (WGSVVLIP).

From Propositions 1 and 2, we have the following result.
Theorem 4: Let Γ be an invex set with respect to η such

that η is skew and let each fi, i ∈ I be strongly invex of

order m. Then x̃ solves (WGSVVLIP) if and only if x̃ solves
(WGMVVLIP).

Proposition 3: Let Γ be an invex set with respect to η such
that η is skew and let each fi, i ∈ I be strongly invex of
order m. If x̃ ∈ Γ solves (WGSVVLIP), then x̃ is a strict
minimizer of order m with respect to η of (NVOP).

Proof: Let x̃ ∈ Γ solves (WGSVVLIP), but not a strict
minimizer of order m with respect to η of (NVOP). Then there
exist z ∈ Γ such that for any c ∈ intRp

+, we have

(f1(z)− f1(x̃)− c1||η(z, x̃)||m, . . . ,
fp(z)− fp(x̃)− cp||η(z, x̃)||m) ∈ −intRp

+. (30)

Since each fi, i ∈ I is strongly invex of order m with respect
to η, there exists a constant c ∈ intRp

+, such that

〈ζi, η(z, x̃)〉 ≤ fi(z)− fi(x̃)− ci||η(z, x̃)||m,
∀ζi ∈ ∂cfi(x̃). (31)

From Eq. (30) and Eq. (31), for all ζi ∈ ∂cfi(x̃), i ∈ I, we
get

(〈ζ1, η(z, x̃)〉, ..., 〈ζp, η(z, x̃)〉) ∈ −intRp
+,

which is contrary to our assumption that x̃ solves
(WGSVVLIP).

Proposition 4: Let Γ be an invex set with respect to η such
that η is skew and let each fi, i ∈ I be strongly invex of order
m. If x̃ ∈ Γ is a strict minimizer of order m with respect to
η of (NVOP), then x̃ solves (WGMVVLIP).

Proof: Let x̃ ∈ Γ is a strict minimizer of order m with
respect to η of (NVOP) but does not solves (WGMVVLIP).
Therefore, there exist z ∈ Γ and ξi ∈ ∂cfi(z), i ∈ I, such
that

(〈ξ1, η(z, x̃)〉, . . . , 〈ξp, η(z, x̃)〉) ∈ −intRp
+. (32)

Since η is skew and each fi, i ∈ I is strongly invex of order
m with respect to η, there exists a constant c ∈ intRp

+, such
that, for all ξi ∈ ∂cfi(z), we get

fi(z)− fi(x̃) ≤ 〈ξi, η(z, x̃)〉 − ci||η(z, x̃)||m, ∀i ∈ I. (33)

Since ci > 0, ∀i ∈ I, from Eq. (33), we have

fi(z)− fi(x̃)− ci||η(z, x̃)||m ≤ 〈ξi, η(z, x̃)〉 − 2ci||η(z, x̃)||m,
≤ 〈ξi, η(z, x̃)〉. (34)

From Eq. (32) and Eq. (34), we get

(f1(z)− f1(x̃)−c1||η(x̃, z)||m, ...,
fp(z)− fp(x̃)− cp||η(x̃, z)||m) ∈ −intRp

+,

which contradicts the assumption that x̃ is an efficient mini-
mizer of order m with respect to η of (NVOP).

From Theorem 4 and Propositions 3 and 4, we have the
following result.

Theorem 5: Let Γ be an invex set with respect to η such
that η is skew and let each fi, i ∈ I be strongly invex of
order m. Then x̃ ∈ Γ solves (WGSVVLIP) if and only if it is
a strict minimizer of order m with respect to η of (NVOP).
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V. EXISTENCE OF SOLUTIONS FOR (GMVVLIP) AND
(GSVVLIP)

In this section, by employing KKM-Fan theorem, we
establish the conditions under which the solution of
generalized Minty and Stampacchia vector variational-like
inequality problems (GMVVLIP) and (GSVVLIP) exist.

The following definition and lemma are from Li & Yu
(2017).

Definition 10: Let X be a nonempty subset of topological
vector space Y . A multifunction Φ : X → 2Y is a KKM map
if for any finite subset {y1, y2, . . . , yn} of X , it satisfies

co{y1, y2, . . . , yn} ⊂
n⋃

i=1

Φ(yi),

where co{y1, y2, . . . , yn} denotes the convex hull of
{y1, y2, . . . , yn}.

Lemma 3 (KKM-Fan theorem): Let X be a nonempty
convex subset of a topological vector space Y , and let Φ :
X → 2Y be a KKM map with closed values. If there is a
point x̄ ∈ X such that Φ(x̄) is compact, then⋂

x∈X
Φ(x) 6= φ.

The following theorem establishes the conditions for the
existence of solutions for generalized Minty vector variational-
like inequality problem (GMVVLIP).

Theorem 6: Let each fi : Γ→ R, i ∈ I be locally Lipschitz
and the following conditions are satisfied:

1) For each i ∈ I, 〈ξi, η(x, y))〉+ 〈ζi, η(y, x)〉 ≥ 0,
∀ ξi ∈ ∂cfi(x) and ζi ∈ ∂cfi(y).

2) η is affine in second argument.
3) For all x ∈ Γ, (〈ζ1, η(x, x))〉, . . . , 〈ζp, η(x, x)〉) /∈ Rp

+ \
{0}, ∀ζi ∈ ∂cfi(x), i ∈ I.

4) The set valued map G(x) = {y ∈ Γ : (〈ξ1, η(x, y)〉,
. . . , 〈ξp, η(x, y)〉) /∈ −Rp

+\{0}, ∀ ξi ∈ ∂cfi(x), i ∈ I},
∀x ∈ Γ is closed valued.

5) There exists nonempty compact sets P,Q ⊂ Γ such that
Q is convex and for each y ∈ Γ\P , there exists x ∈ Q,
such that y /∈ G(x).

Then (GMVVLIP) is solvable on Γ.
Proof: We define a map

H(x) := {y ∈ Γ : (〈ζ1, η(y, x)〉, . . . , 〈ζp, η(y, x)〉)
/∈ Rp

+ \ {0},∀ζi ∈ ∂cfi(y), i ∈ I}, ∀x ∈ Γ.

From definition of H , it is clear that x ∈ H(x).
Therefore, H(x) is nonempty. Now we have to show that H(x)
is a KKM map on Γ. On contrary, suppose that H(x) is not
a KKM map, then there exists {y1, y2, . . . yn} ⊂ Γ, λj ≥ 0,
j = 1, 2, . . . , n, with

∑n
j=1 λj = 1, such that

x̃ =

n∑
j=1

λjyj /∈
n⋃

j=1

H(yj). (35)

Hence, for all yj , j = 1, 2, ..., n, we have

(〈ζ1, η(x̃, yj)〉, . . . , 〈ζp, η(x̃, yj)〉) ∈ Rp
+ \ {0},

∀ζi ∈ ∂cfi(x̃), i ∈ I. (36)

that is, for each yj , j = 1, 2, ..., n and for all ζi ∈ ∂cfi(x̃),
we have

〈ζi, η(x̃, yj)〉 ≥ 0, ∀i ∈ I, with strict inequality for
atleast one i. (37)

Multiplying Eq. (37) by λj , j = 1, 2, ..., n and adding the
resulting inequalities, we get
n∑

j=1

λj〈ζi, η(x̃, yj)〉 ≥ 0, with strict inequality for atleast one i.

(38)

Since η is affine in second argument, from Eq. (38), we have

〈ζi, η(x̃,

n∑
j=1

λjyj)〉 ≥ 0.

From the definition of x̃, we get

〈ζi, η(x̃, x̃)〉 ≥ 0 ∀i ∈ I, with strict inequality for
atleast one i.

It follows that,

(〈ζ1, η(x̃, x̃)〉, ..., 〈ζp, η(x̃, x̃)〉) ∈ Rp
+ \ {0},
∀ζi ∈ ∂cfi(x̃), i ∈ I,

which contradicts our assumption. Hence, H(x) is a KKM
map on Γ. Now, we have to show that H(x) ⊂ G(x), ∀x ∈ Γ.
If x̃ /∈ G(x), then there exist x ∈ Γ, such that

(〈ξ1, η(x, x̃)〉, . . . , 〈ξp, η(x, x̃)〉) ∈ −Rp
+ \ {0},

∀ξi ∈ ∂cfi(x), i ∈ I. (39)

From Eq. (39), it follows that,

〈ξi, η(x, x̃)〉 ≤ 0, ∀i ∈ I, with strict inequality for
atleast one i. (40)

From condition (i), we have

〈ξi, η(x, x̃)〉+ 〈ζi, η(x̃, x)〉 ≥ 0, ξi ∈ ∂cfi(x),

ζi ∈ ∂cfi(x̃), i ∈ I. (41)

From Eq. (40) and Eq. (41), we get

〈ζi, η(x̃, x)〉 ≥ 0, ∀i ∈ I, with strict inequality for
atleast one i. (42)

From Eq. (42), there exist x ∈ Γ, such that

(〈ζ1, η(x̃, x)〉, ..., 〈ζp, η(x̃, x)〉) ∈ Rp
+ \ {0}, ∀ζi ∈ ∂cfi(x̃).

Therefore, x̃ /∈ H(x). Since, we have shown that H(x) ⊂
G(x) for any x ∈ Γ. Hence, G is also a KKM map. From
conditions 4 and 5, G(x) is a closed subset of the compact
set. Thus, H(x) is also a compact set. From the KKM-Fan
Theorem ⋂

x∈Γ

G(x) 6= φ,

which means that for all x ∈ Γ, we get a x̃ ∈ Γ, such that

(〈ξ1, η(x, x̃)〉, ..., 〈ξp, η(x, x̃)〉) /∈ −Rp
+ \ {0},
∀ξi ∈ ∂cf(x), i ∈ I.
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Hence, (GMVVLIP) is solvable on Γ.

The following example illustrates the significance of Theo-
rem 6.

Example 2: Let f = (f1, f2) : [−1, 1] → R2 and
η : [−1, 1]× [−1, 1]→ R2 be defined as:

f1(x) =

{
x2 + 1, x ≥ 0,

x2 + e−x, x < 0,
f2(x) =

{
x2, x ≥ 0,

x2 − x, x < 0,

and η(x, y) =

{
1− y, x ≥ 0 and y < 0,

x− y, elsewhere.

It is clear that η is affine in second argument. Now, we can
evaluate that

∂cf1(x) =


2x, x > 0,

[−1, 0], x = 0,

2x− e−x, x < 0

and ∂cf2(x) =


2x, x > 0,

[−1, 0], x = 0,

2x− 1, x < 0.

Now, we show that the conditions (1)-(5) of the Theorem 6
are satisfied.
(i) We have to verify the condition (1), that is, for all ξi ∈
∂cfi(x) and ζi ∈ ∂cfi(y),

〈ξi, η(x, y))〉+ 〈ζi, η(y, x)〉 ≥ 0, i = 1, 2.

For the function f1, the following cases arise
Case (i) x > 0, y > 0,

〈2x, x− y〉+ 〈2y, y − x〉 = 2(x− y)2 ≥ 0.

Case (ii) x < 0, y < 0,

〈2x− e−x, x− y〉+ 〈2y − e−y, y − x〉
= 2(x− y)2 − (e−x − e−y)(x− y)

≥ 0.

Case (iii) x > 0, y < 0,

〈2x, 1− y〉+ 〈2y − e−y, y − x〉
= 2y2 − 4xy + (x− y)e−y + 2x

≥ 0.

Case (iv) x < 0, y > 0,

〈2x− e−x, x− y〉+ 〈2y, 1− x〉
= 2x2 − 4xy + 2y + (y − x)e−x

≥ 0.

Similarly, we can show that the condition (1) is also satisfied
for the function f2.
(ii) Since, for all x ∈ [−1, 1], η(x, x) = 0, therefore,

(〈ξ1, η(x, x)〉, 〈ξ2, η(x, x)〉) /∈R2
+ \ {0},
∀ξi ∈ ∂cfi(x), i = 1, 2.

(iii) It is clear from the definition of G,

G(x) =


[−1, x], x > 0,

[0, 1], x = 0,

[x, 1], x < 0.

(iv) Let us consider the set P = [−1, 0] and Q = [0, 1]. It is
clear that Q is convex and for all y ∈ [−1, 1] \P, there exists
a x < y, such that y /∈ G(x).

Furthermore, we can verify that x̃ = 0 is a solution of
(GMVVLIP).
On the lines of the proof of Theorem 6, we have the following
theorem for the existence of solution for (GSVVLIP).

Theorem 7: Let each fi : Γ→ R, i ∈ I be locally Lipschitz
of order m and the following conditions are satisfied:

1) For each i ∈ I, 〈ξi, η(y, x))〉+ 〈ζi, η(x, y)〉 ≥ 0,
∀ξi ∈ ∂cfi(x) and ζi ∈ ∂cfi(y).

2) η is affine in second argument.
3) For all x ∈ Γ, (〈ξ1, η(x, x)〉, . . . , 〈ξp, η(x, x)〉) /∈ Rp

+ \
{0}, ∀ξi ∈ ∂cfi(x).

4) The set valued map G(x) = {y ∈ Γ : (〈ζ1, η(x, y)〉,
. . . , 〈ζp, η(x, y)〉) /∈ −Rp

+ \ {0}, ∀x ∈ Γ, ζi ∈ ∂cfi(y)}
is closed valued.

5) There exists nonempty compact sets P,Q ⊂ Γ such that
Q is convex and for each y ∈ Γ\P , there exists x ∈ Q,
such that y /∈ G(x).

Then (GSVVLIP) is solvable on Γ.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have established the relationship between
the solutions of generalized Minty and Stampacchia vector
variational-like inequality problems (GMVVLIP), (GSVVLIP)
and efficient minimizers of order m of nonsmooth vector
optimization problems (NVOP) using the assumption of the
strongly invex function of order m. We also consider the
weak formulation of generalized Minty and Stampacchia
vector variational-like inequality problems (WGMVVLIP),
(WGSVVLIP) and establish the relationship between the solu-
tions of these vector variational-like inequality problems and
strict minimizers of order m of the nonsmooth vector opti-
mization problem (NVOP). Employing KKM-Fan theorem, we
establish the existence result for the solutions of generalized
Minty and Stampacchia vector variational-like inequality prob-
lems (GMVVLIP), (GSVVLIP). Suitable examples are given
to illustrate the significance of these results. The results of
the paper extend and unify some earlier results of Bhatia
(2008), Li & Yu (2017) and Upadhyay et al. (2017) to the
nondifferentiable case as well as for a more general class
of nonconvex functions. Further, the tools of Michel-Penot
subdifferentials, Michel & Penot (1984), Mordukhovich limit-
ing subdifferentials, Mordukhovich (2006) or convexificators,
Demyanov & Jeyakumar (1997) may be employed to sharpen
the corresponding results in this paper.

ACKNOWLEDGMENT

The first author is supported by Science and Engineering
Research Board, Department of Science and Technology, Gov-
ernment of India, through grant number “ECR/2016/001961”.

Institute of Science, BHU Varanasi, India 289



Journal of Scientific Research, Volume 64, Issue 1, 2020

REFERENCES

Al-Homidan, S., & Ansari, Q.H. (2010). Generalized Minty
vector variational-like inequalities and vector optimization
problems. Journal of Optimization Theory and Applications
Vol. 144. (pp. 1–11).

Ansari, Q.H., & Siddiqi, A.H. (1998). A generalized vector
variational-like inequality and optimization over an efficient
set. In M. Brokate & A.H. Siddiqi (Eds.), Functional Anal-
ysis with Current Applications in Science, Engineering, and
Industry: Vol. 377. Pitman Research Notes in Mathematics
(pp. 177–191).

Ansari, Q.H., & Yao, J.C. (2000). On nondifferentiable and
nonconvex vector optimization problems. Journal of Opti-
mization Theory and Applications Vol. 106. (pp. 475–488).

Auslender, A. (1984). Stability in mathematical programming
with nondifferentiable data. SIAM Journal on Control and
Optimization Vol. 22 (pp. 239–254).

Ben-Israel, A., & Mond, B. (1986). What is invexity? Aus-
tralian Mathematical Society. Journal. Series B. Applied
Mathematics Vol. 28 (pp. 1–9).

Bhatia, G. (2008). Optimality and mixed saddle point criteria
in multiobjective optimization. Journal of Mathematical
Analysis and Applications Vol. 342 (pp. 135–145).

Clarke, F.H. (1983). Optimization and Nonsmooth Analysis.
John Wiley and Sons, New York.

Cromme, L. (1978). Strong uniqueness : A far-reaching crite-
rion for the convergence of iterative numerical procedures.
Numerische Mathematik Vol. 29 (pp. 179–193).

Demyanov, V.F., Jeyakumar, V. (1997). Hunting for a smaller
convex subdifferential. Journal of Global Optimization Vol.
10 (pp. 305–326).

Deng, S. (1997). On approximate solutions in convex vector
optimization. SIAM Journal on Control and Optimization
Vol. 35 (pp. 2128–2136).

Giannessi, F. (1998). On Minty variational principle. In F.
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Jiménez, B. (2002). Strict efficiency in vector optimization.
Journal of Mathematical Analysis and Applications Vol. 265
(pp. 264–284).

S. Karamardian, S., & Schaible, S. (1990). Seven kinds
of monotone maps. Journal of Optimization Theory and
Applications Vol. 66 (pp. 37–46).

Kaul, R.N., & Kaur, S. (1985). Optimality criteria in nonlinear
programming involving nonconvex functions. Journal of
Mathematical Analysis and Applications Vol. 105 (pp. 104–
112).

Lee, G.M. (2000). On relations between vector variational
inequality and vector optimization problem. In X.Q. Yang,
A.I. Mees, M.E. Fisher & L.S. Jennings (Eds.), Progress
in Optimization (pp. 167–179). II: Contributions from Aus-
tralia.

Li, R., & Yu, G. (2017). A class of generalized invex functions
and vector variational-like inequalities. Journal of Inequal-
ities and Applications (pp. 2–14).

Lin, G.H. & Fukushima, M. (2003). Some exact penalty results
for nonlinear programs and mathematical programs with
equilibrium constraints. Journal of Optimization Theory and
Applications Vol. 118 (pp. 67–80).

Mangasarian, O.L. (1969). Nonlinear Programming. McGraw-
Hill, New York.

Minty, G.J. (1967). On the generalization of a direct method
of the calculus of variations. Bulletin of the American
Mathematical Society Vol. 73 (pp. 314–321).

Mishra, S.K., & Wang, S.Y. (2006). Vector variational-like
inequalities and nonsmooth vector optimization problems.
Nonlinear Analysis. Theory, Methods & Applications (pp.
1939–1945).

Mishra, S.K., & Upadhyay, B.B. (2013). Some relations be-
tween vector variational inequality problems and nonsmooth
vector optimization problems using quasi efficiency. Posi-
tivity Vol. 17 (pp. 1071–1083).

Mishra, S.K., & Upadhyay, B.B. (2015). Pseudolinear Func-
tions and Optimization. Chapman and Hall, CRC Press.

Michel, P., & Penot, J.P. (1984). Calcul sous-differentiel
pour des founctions Lipschitiziennes et nonlipschitziennes.
Comptes Rendus Mathematique Academie des Sciences,
Paris Vol. 12 (pp. 269–272).

Mordukhovich, B.S. (2006). Variational Analysis and Gener-
alized Differentiation I: Basic Theory. Springer, Berlin.

Mohan, S.R., & Neogy, S.K. (1995). On invex sets and
preinvex functions. Journal of Mathematical Analysis and
Applications Vol. 189 (pp. 901–908).

Oveisiha, M., & Zafarani, J. (2013). Generalized Minty vector
variational-like inequalities and vector optimization prob-
lems in Asplund spaces. Optimization Letters Vol. 7 (pp.
709–721).

Rahtu, E., Salo, M., & Heikkilä, J. (2006). A new convexity
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