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Abstract: In this paper, we have studied regularity of some
“incomplete” Pal type interpolation problems on non-uniformly
distributed nodes. We have omitted real and complex nodes from
set of non-uniformly distributed nodes. These types of Pal type
interpolation problems are different from the problems, where one
or two nodes are added to the set of interpolation points.

Index Terms: Médbius transform, Non-uniformly distributed

nodes, Pl type interpolation, Regularity,

I. INTRODUCTION

R. Brueck (Brueck, 1996) considered non-uniformly
distributed nodes on the unit disk, which are obtained by
applying Mobius transform

Ty (2) =
to the set U, of the zeros of (z" — 1) and U,, of the zeros of
(z™ + 1). The sets T, (U,,) & T, (Uy,) are the sets of zeros of the
polynomials defined by following;

v,(la) @D=cz+a)"-A+a2)® (D)

W,(la) @D=cz+a)"+A +az)" (2)

2 0<a< 1,
1-az

M. G. de Bruin, M. A. Bokhari and H. P. Dikshit, studied
certain cases of Pal type interpolation involving the zeros of the
polynomials given by (1) and (2), (De Bruin, & Dikshit, 2005 ;
De Bruin, 2005; Dikshit, 2003; Bokhari, Dikshit, & Sharma,
2000; De Bruin, Sharma, & Szabados, 1998).

M. G. de Bruin (De Bruin, M. G., 2002) considered Pal type
interpolation problem on pairs of the zeros of polynomials given
by equations (1) and (2), where he has omitted one or two real
nodes from set of interpolation points. He omitted z = +1 from

v{ () and/or z = —1 from w ™ (z) and summed up all results
as ‘incomplete’ Pal type interpolation problems.
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We have investigated regularity of Lacunary Polynomial
Interpolation problems of certain kinds (Pathak, & Tiwari,
2017; Pathak, & Tiwari, 2018; Pathak, & Tiwari, 2019). We
have studied regularity of (0, 1) ‘incomplete’ Pal type Birkhoff
interpolation for following pairs, where ¢ is any non-zero
complex node (Pathak, & Tiwari, 2018);

(a)
Wni1(2) (a)
. {—Z 9y (z)},

()
2
i (), 2]

i { Wi () vé“)(z)}

T oz+1
Y ﬁ‘iﬁ(z) w‘”(z)}
( ) )
(2) wy, 1(2)
V. {z+1 oz-¢ }

Letm, = { P(2) € C(z), degree of P(z) < n}, be the set of
polynomials of degree less than or equal to n with complex
coefficients. Let A(z) € m, and B(z) € m,, then for a given
positive integer r the problem of (0, ) Pal type interpolation on
the pair {A(z), B(z)}is to find a polynomial P(z) € T, ym—1,
which assumes arbitrary prescribed values at the zeros of A(z)
and arbitrary prescribed values of the rt" derivative at the zeros
of B(z). The problem is regular if and only if any P(z)
satisfying the corresponding homogeneous system of equations

P(y;) = 0; where A(y;) =0; i=12,..,n

P™(z) =0;where B(z)=0; j=12,...m
vanishes identically. Here the zeros of A(z), B(z) are assumed
to be simple. The problem is known as Hermite-Birkhoff
interpolation, if A(z) = B(z) (Lorentz, G. G., Riemschneider, S.
D. & Jetter, K.,1983).

Il. MAIN RESULTS

We have omitted zeros z = +1 from v (z) and/or z = +¢
from w,(l“) (z), where ¢ is any non-zero complex node.
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THEOREM 1. Let0 <a <1, n=>2and w(z), v (z) be
the polynomials defined by equations (1), (2), then the (0, 1)

W2n+1(z) vZn) (Z)}

P&l type interpolation problem for th ir{
al type interpolation problem for the pair {=22L=, 2

7ew®,  (2) and ¢ v{(2) is regular.

PROOF. Here we have total (4n — 2) interpolation points.

W§n+1(2) .
Let P(2) = o0 Q(2); where Q(z) € myp_3.
Then P(2) € my,_3, With
. w(a) (2)
P(w;) = 0; where w; is a zero of % pi=12,..,2n,
P’(vj) = 0; where v; is a zero of (2;1 (1)) j=12,..,(2n - 2).

The posed problem will be regular, if P(z) = 0.
As P'(v;) = 0, we get

(v = Owimea (v)Q' () + {(Vj = )lwime (D] =

2(311(UJ)}Q(VJ) =0 3)
From equation (2), we get
Woa (7)) = A+ @) (v + 1) + @)™, )
(Wi (D] = @+ D(1 + @) (v; + )" (5)

From equation (3), (4) and (5), we get
(v — O+ 1DQ'(v) +{2n+ (v, — () — (v +
1)3Q(v;) = 0.
Now Q(z) € m,,_3, the left hand side of equation belongs to
Tyn_3 and has (2n — 2) zeros,
Q(z) satisfies following differential equation
z-DE+1DQ'(@) +{2n+1D(z- - (z+1}Q(=)
1P
IRNCEEE N
for some constant C.
The integrating factor of differential Equation (6) is given by
( ) (Z+ 1)2n+1
zZ)=——>—
v @-0)
The solution of differential equation (6) is given by
_ (1) v ()
0@ = ¢ | e h D
Z+12n+1 t+12n1
( ) D™ e = f ( 2)
(z - C-02c-1D
C—(t+1)2n1 0=>C=0
= =3 = U.
-9t -1) t=g =1
Hence,

(6)

dt,
v (t)dt,

vl (©)

Q(2) = 0.

THEOREM 2. Let 0 < a@ < 1, n = 2 and w'¥(2), v (2) be the
polynomials defined by equations (1), (2), then (0, 1) Pal type
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interpolati blem for the pair {“mu® Y @) .
Interpolation prooblem Tor e palr - 21’ —(

wi® () and +¢ & v{% (2) is regular.
PROOF. Here we have total (4n — 3) interpolation points.

wie) @
Let P(2) = (2’2"'}2 Q(z); where Q(z) € myp_3.
Then P(z) € my,_, With,
P(w;) = 0; where w; is a zero of VZZ’Z‘“((ZZ)), =12,..,2n - 1),
/ : : Oy
P'(v;) = 0; where v; is a zero of (22 o) =12, @2n - 2).
The posed problem will be regular, if P(z) = 0.
As P'(v;) = 0, we get
(" = ¢ msa ()Q () + {(v” = ¢)waria o =

2v]W2n+1(vj)}Q(v}) =0.

From equations (4) & (5), we get

(v2 =)+ DQ'(v) +{@n + D)(v2 - ) -
13Q(v;) = 0.

Now Q(z) € m,,_3, the left hand side of equation belongs to
m,_3 and has (2n — 2) zeros,

Thus Q(z) satisfies following differential equation

(22 =)+ 1DQ' (@) +{(2n+ 1)(z* —{*) — 22(z

vZn()
+DJOE) = C P ™

The integrating factor of this differential equation (7) is given
by

ZUj(vj +

(Z + 1)2n+1
NGRE

The solution of differential equation (7) is given by

_ P(t) Vi (©)
QO(Z)Q(Z) - Cf(tz—(z)(t+1)(t2—l)
(Z + 1)2n+1

3 (t+1)* 1
g D= Cf @ -1
2n—-1

@ - (-1

@ (#)dt,

t=+{,t=1
Hence,

Q(2) = 0.

THEOREM 3. Let0 < @ < 1, n = 2 and w'™ (2), v (2) be the
polynomials defined by equations (1), (2), then the (0,1) Pal

v @) w;"’)@_} 7€

e interpolation problem for the air{ ,
typ p p p -1 @+

w'® (2) is regular.
PROOF. Here we have total (2n — 1) interpolation points.

A @ oy
Let P(z) = HQ(Z), where Q(z) € m,_,.
Then P(z) € m,,_, with,

P(v;) = 0; where v; is a zero of "“S) i=12,..,n,
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w®@) .
@+ 0
The posed problem will be regular, if P(z) = 0.

As P'(w;) = 0, we get
(w;—1) 15(-):—)1(W])Q (w;) + {(WJ - 1) 15‘?1("‘/1')], -

P'(w;) = 0; where w; is a zero of 1,2, .., (n—1).

r(lﬂ(wj)}o(wj) = 0. ®)
Now since,

W +a)" = —(1+aw)". 9)
Equations (1) & (9) gives

T(l'fr)l(wj) =1+ a)(l + W])(WJ +a)h, (10)
[v 7E'j‘r)l(wj)] =+ DA+ a)(wj +a)™ (11

From equations (8), (10) & (11), we get

(W = 1) (w; + 1)Q'(w;) +{(n + D(w; — 1) — (w; +
1)}e(w;) = o.

Now Q(z) € m,_,, the left hand side of equation belongs to
,_, and has (n — 1) zeros,

Q(z) satisfies following differential equation

2*-DQ'@+{(n+D(z-1) - (z+ 1D}

Wi (2)
. 12
@+ 9 12
The integrating factor of differential equation (12) is given by
_(z+ 1+t
¢(2) = W
The solution of differential equation (12) is given by
_ [ e@w
Mnmw—cfa:7ﬁjjﬁa,
(z+ D (t+ 1" @
ﬁ@( z) = C+OGE—12 w, ~(D)dt,
(t+1)" @
C—r— =0=>C=0.
C+OE—D2 " © t=1t=— N
Hence,
Q(2) =0.
O

THEOREM 4. Let0 <a <1, n =2 and w9 (z), v”(2) be
the polynomials defined by equations (1), (2), then the (0, 1)
Wone1 (@) vy <z>}

Pal type interpolation problem for the palr{ 210 D))’

—¢ew(®, (z)and —¢ ¢ v’V (2) is regular.

PROOF. Here we have total (4n — 1) interpolation points.
(a)

Let P(z) = %SZ)Q(Z); where Q(z) € Typ_5.

Then P(z) € my,_, with,

(a)
Wane: (2 Lo
@) i=1,2..,2n,

v (@ .
(z+1) '’
The posed problem will be regular, if P(z) = 0.

P(w;) = 0; where w; is a zero of

P'(v;) = 0; where v; is a zero of ji=12,..,2n-1).
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As P'(v;) = 0, we get
(v + Owins ()@ (v)) + {(”j + ) Wi ] =

2(511(171)}Q(’71) =0.
From equations (4) & (5), we get
W+ +DQ'(v) +{Cn+ (v + ) — (v +
13Q(v;) = 0.
Now Q(z) € m,,_,, the left hand side of equation belongs to
Tyn—o and has (2n — 1) zeros,
Q(z) satisfies following differential equation
@+DE+1DQ'(@ +{2n+1D(z+ - (z+ D}Q(2)
_c vz(,’?(z)
(z+1)
The integrating factor of differential Equation (13) is given by
( ) (Z + 1)2n+1
zZ) =————
v @+0)

The solution of differential equation (13) is given by

[ e®vR®
9(2)Q(2) = C E:ﬁ@:ﬁﬂa

(Z + 1)2n+1 3 (t )211—1
@+ @= | @+ )2
(ki =0=C=0

(t+9)? B e

(13)

v\ (t)dt,

vl (©)

t=—¢
Hence,

Q(2) = 0.
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