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Abstract—The heat transfer models have nowadays engulfed
a large domain of scientific research and many researchers are
actively involved in it. The understanding of effect of temperature
variation and thermal properties of skin under different condi-
tions has a great role in day to day life. The present paper studies
the temperature distribution in human dermal regions with a
temperature dependent perfusion and an oscillatory boundary
condition. A finite difference technique with suitable boundary
and interface conditions is used for predicting the temperature
pattern inside the normal and tumour skin tissue layers. It has
been observed that the presence of sinusoidal heat flux diminishes
the temperature amplitude along the tissue depth. The increase
in perfusion rate increases the rate of heat loss from the tissues
to the blood.

Index Terms—Tumour tissue, Mathematical model, Diffusion,
FDM, Tissue Temperature.

I. INTRODUCTION

The heat distribution of skin has been extensively studied
for various diagnosis in medical sciences (Lang et al. (1999),
Park et al. (2007), Shih et al. (2007)), or even for the study of
the physiological functions of healthy individuals (Shusterman
et al. (1997)). It has nowadays engulfed a large domain of
scientific research and many researchers are actively involved
in it. There is a long standing interest in thermal properties
of the skin (Stoll, A. M.) in order to understand conditions
leading to thermal damage to skin, usually involving contact
with the hot objects (Stoll et al. (1979)). Investigations of such
bioheat transfer problems requires the elevation of temporal
and spatial distributions of temperature. Moreover during the
hyperthermia the transfer of heat may be affected by the flow
of blood and the vascular geometry. Investigation of thermal
properties of skin (Kengne et al. (2012), Dai et al. (2006),
El-dabe et al. (2003), Gowrishankar et al. (2004)) leading
to thermal injuries are usually studied through the classical
equation of Pennes’ bioheat equation (Pennes (H. H.)). The
circulating blood is about 10% of the total blood volume

of a normal human being, therefore the convection diffusion
and perfusion of blood plays an important role in the bioheat
process (Hall & Guyton (2012)). Due to the seminal work of
Pennes’ in 1948 (Pennes, H. H.), the researchers like (Dai et
al. (2006), El-dabe et al. (2003), Frahm et al. (2010)) began
to study the heat transfer in many biological systems with
the help of this fundamental equation called Pennes’ bioheat
equation(Pennes, H. H.)

ρc
∂T

∂t
= div(kgradT )− cbw(T − Tb) +Qm (1)

where ρ, c, k are the density, specific heat and thermal conduc-
tivity of tissue respectively, Tb is arterial blood temperature,
t is time, cb is the specific heat of blood, w is the perfusion
rate per unit volume of the blood, Qm is the metabolic heat
generation per unit volume.
The most recent work using an explicit form of finite differ-
ence method for estimating the temperature variation in human
dermal regions has been studied by Khanday and Fida (Khan-
day & Fida (2015)) and the temperature variation in the human
body along with tumour conditions have been studied recently
(Babita & Neeru (2018), Kamangar et al. (2019),Khalid et
al. (2017)). However, due to the complex vascular structure
in particular and whole body in general,always paves a way
for the researchers to improve the existing theoretical models
for better understanding and for accurate clinical results. The
present paper deals with the temperature distribution in human
dermal regions with a temperature dependent perfusion and
an oscillatory boundary condition. A finite difference scheme
with suitable boundary and interface conditions is used for
predicting the temperature pattern inside the normal and tumor
skin tissue layers.
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Fig. 1. Schematic diagram showing the discretization of the domain of human
dermal regions.

II. MATHEMATICAL MODEL

To study the heat distribution in human dermal regions
through three layers as shown in Fig. (1), we consider size
of the three layers as

• Subcutaneous tissue (L ≤ x ≤ L2) of length l1
• Dermis (L2 ≤ x ≤ L1) of length l2
• Epidermis (L1 ≤ x ≤ L0) of length l3

We consider a special case of the one-dimensional (1-D)
Pennes’ bioheat transfer equation with a constant thermal
conductivity of the tissue and temperature dependent perfusion
as

k
∂2T

∂x2
= ρc

∂T

∂t
+cbwb(T−Ta)+ρbcbwm(T )(T−Ta)+Qm+Qh

(2)
Here, x(0 ≤ x ≤ L) gives the distance from the skin surface
to the body core (in m), t is the time (in s), and T = T (x, t)
measures the local temperature at depth x from the surface at
time t; L is the distance (in m) between the skin surface and
the body core. Therefore, we assume in our investigation that
the skin surface is defined at x = L0 while the body core at
x = L. Qh is the heat source at the skin surface.
The 1-D case of Pennes’ bioheat transfer equation is a good
approximation when heat mainly propagates in the direction
perpendicular to the skin surface. Comparing Eq. (1) and Eq.
(2), it is clear that temperature-dependent blood perfusion
reads

w = wb + ρbwm(T ) (3)

To completely determine the temperature distribution, it is
necessary to associate boundary conditions with the the partial
differential Eq. (2). In our case, we associate with Eq. (2) the
oscillatory heat flux boundary condition which is described as
follows Shih et al. (2007)

−k∂T
∂x

= q0e
ωt + ρbwm(T ) (4)

where q0 and ω are the heat flux on the skin surface and the
heating frequency respectively and q0e

it is the time-dependent
surface heat flux. No heat loss is assumed at x = L and
the body core temperature is regarded as constant (Tc) by
considering the fact that the biological body tends to keep
its core temperature stable for normal function and therefore,
we can take

T (x, t)|x=L = Tc. (5)

TABLE I
PROPERTIES OF VARIOUS TYPES OF TISSUES KENGNE ET AL. (2012)

Tissue Thermal Conductivity(k) Density (ρ) Specific Heat(c)
[W/m/0C] [Kg/m3] [Ws/Kg/0C]

Muscle 0.642 1000 3, 500

Tumor 0.642 1000 3, 500

Dermis 0.450 1200 3, 300

Subcutaneous 0.190 1000 2, 675

TABLE II
PARAMETERS AND THEIR PHYSIOLOGICAL VALUES USED IN THE STUDY

KENGNE ET AL. (2012),GOWRISHANKAR ET AL. (2004)

Parameter Unit Value

Heat flux (q0) W/m2 500

Metabolic heat generation (Qm) W/m3 33800

Density of blood(ρb) Kg/m3 1060

Specific heat of blood(cb) Ws/Kg/0C 3500

Width of skin(L) m 0.02
Arterial blood temperature(Tb) 0C 370C

Thickness of subcutaneous tissue(l1) µm 1800

Thickness of Dermis(l2) µm 2000

Thickness of epidermis(l3) µm 80

Thermal conductivity of subcutaneous tissue(k1) Wm−1 0C−1 0.19

Thermal conductivity of dermis(k2) Wm−1 0C−1 0.45

Thermal conductivity of epidermis(k3) Wm−1 0C−1 0.23

III. SOLUTION

Since the blood perfusion is temperature dependent, the
model Eq. (2) is non-linear. Thus the analytical solution is not
applicable. Therefore, we employ a finite difference technique
for obtaining the solution of Eq. (2) along with conditions
given by Eq. (3), Eq. (4), & Eq. (5). We take the discretization
of the domain as shown in Fig. (1). The grid points Tj and
Tk are assumed to lie on the interfaces. In addition to the
boundary conditions Eq. (4), Eq. (5), we assume the continuity
of the temperature and flux at the inner interfaces as

Tb− = Tb+ (6)

ki
∂Tb−

∂x
= ki+1

∂Tb+

∂x
Tc− = Tc+

ki
∂Tc−

∂x
= ki+1

∂Tc+

∂x

The temperature dependent blood perfusion in the normal and
tumour tissues is based on the results described in Kengne et
al. (2012)

WMuscle(T ) = 0.45 + 3.55 exp

(
−(T − 45)2

12

)
, T ≤ 45 (7)

= 4.0 , T > 45

WTumour(T ) = 0.833, T < 37 (8)

=
0.833(T − 37)4.8

5438
, 37 ≤ T ≤ 42

= 0.416, T > 42
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The temperature dependent blood perfusion in the normal and
tumor tissues is taken as( given in Lang et al. (1999)) Further,
we assume the temperature dependent perfusion in dermis and
subcutaneous tissue linearly depends on temperature. That is

wds = ω0(1 + γT ) (9)

where ω0 and γ denote the normal perfusion and the linear
coefficient of temperature dependence.
For the inner points of the discretization, we use the standard
first-order time and second-order space finite differencing.
That is, the space-order finite differencing at the point j is
given by

∂Tj
∂t

=
ki(Tj−1 − 2Tj + Tj+1)

∆x2
(10)

where Tj is the temperature at the spatial point j in the layer
i.
The time differencing for the points on the interfaces, we use
central difference method as

∂Tj
∂t

=
Di+1

∂Tb+

∂x −Di
∂Tb−
∂x

∆x
(11)

First-order forward and backward differences for the spatial
derivative for the model Eq. (2) and using Eq. (7) then give
(Hickson et al. (2009), Hickson et al. (2009)

∂Tj
∂t

=
Di+1

(
Tj+1−Tj

∆x

)
−Di

(
T−j−Tj−1

∆x

)
∆x

+ (12)

α1(Tj − Tb) + α2(Tj − Tb)
[
α(Tj − 37)4.8

]
+Q

where α1 = cbwb

ρc , α2 = cbρb
ρc and Q = Qm+Qh

ρc
Rearranging Eq. (12), we get

∂Tj
∂t

=
Di+1Tj+1 − (Di+1 +Di)Tj +DiTj−1

∆x2
(13)

+α1(Tj − Tb)
+α2(Tj − Tb)

[
α(Tj − 37)4.8

]
+Q

Similarly, for the point Tk we have

∂Tk
∂t

=
Di+1Tk+1 − (Di+1 +Di)Tk +DiTk−1

∆x2
(14)

+α1(Tk − Tb)
+α2(Tk − Tb)

[
α(Tk − 37)4.8

]
+Q

The Eqs. (13 & 14) can be solved by using standard integration
techniques such as Euler time stepping. For example

T (x+ ∆t) = T (t) + ∆tχT (t) (15)

where the T and χ are respectively vector and matrix nota-
tions.
The mixed boundary condition at L0, given by Eq. (16), is
included in the finite difference scheme by adding a fictitious
point Tn+1 at a distance ∆x to the right of boundary at L0

as:
∂T

∂t
= −q0

k
(16)

Discretizing Eq. (16), we have

Tn+1 − Tn
∆x

= −q0

k
(17)

Now substituting the value of Tn+1 from Eq. (17) into the Eq.
(14), we get

∂Tn
∂t

=
Di+1(Tn − q0∆

k )− (Di+1 +Di)Tk +DiTn−1

∆x2
(18)

+α1(Tn − Tb)
+α2(Tn − Tb)

[
α(Tn − 37)4.8

]
+Q

IV. DISCUSSION

The transport of heat by conduction and by temperature
dependent perfusion in the dermal regions of the human
body in normal and tumour tissues has been studied
through Pennes bioheat equation. The oscillating boundary
condition has been incorporated into the model for better
estimates of the temperature distribution. The skin has a
non-perfused epidermis layer and deep tissue consists of
dermis and subcutaneous layers in which the perfusion plays
an important role for estimating the variations of temperature
distribution. Prediction of spatial temperature distribution
and the role of oscillatory heat flux has been studied in this
model for normal tissue and tumour tissue. The results were
illustrated with the help of graphs obtained by the MATLAB
and FlexPDE softwares.
The uncontrolled and replicated growth of tumour cells
leads to the un- usual temperature variations in the normal
tissues surrounding it. The tumour cells can be damaged
by applying a concentrated beam of heat radiations at the
site of the source of the tumour called local hyperthermic
therapy. The continuous application of the heat may damage
the normal tissue cells surrounding the tumour region. It is
thus imperative to study the heat distribution in the normal
as well as in tumour tissue regions of the human body. A
mathematical model based on Pennes bioheat equation has
been taken with some appropriate terms for analysing the
variation in tissue temperature. MATLAB and Flex- PDE
softwares were used for simulation purposes and the analysis
of the results were obtained by using finite difference method.
The in vivo and in vitro studies reveal the fact that the
response of tissue to the external heat stress is temperature
dependent (Gowrishankar et al. (2004), Davies et al. (1977)).
For example, in the commonly used clinical hyperthermia,
the temperature rise of 41 − 430C enhances the blood flow
significantly (Erdamn et al. (1998)).

V. CONCLUSION

We solved the model Eq. (2) with the help of finite dif-
ference method discussed in the paper and the results were
plotted using MATLAB and FlexPDE (2009) softwares. Figs.
(5, 6) respectively show the temperature response at dermal
region for different values of heating frequencies, ω = 0.001,
ω = 0.005 and ω = 0.01. The Figs. (2, 3) show the
temperature distribution through the normal muscle tissue and
the tumour tissue respectively at time t = 3600s in the absence
and in the presence of sinusoidal heat flux. It is clear from the
graphs that the sinusoidal heat flux affects the temperature
amplitude over the time. Thus, the presence of sinusoidal heat
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Fig. 2. Temperature distribution across the normal muscle tissue layers at t=1
hr.

Fig. 3. Temperature distribution across the skin layers in presence of tumour
tissue at t=1 hr.

flux diminishes the temperature amplitude along the tissue
depth. The peak temperature in the curves shown in Fig. (4)
depicts a decrease due to the increase in rate of perfusion by
increased temperature. The increase in perfusion rate increases
the rate of heat loss from the tissues to the blood.
Figs. (7, 8) show that the arterial blood temperature has no
effect on the sinusoidal temperature at the dermal regions for
both normal and tumour tissues. Also, we conclude that the
average temperature value at the skin surface is approximately
equal to the arterial blood temperature. Further, as the arterial
blood perfusion raises, the temperature increases rapidly.
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