Volume 64, Issue 2, 2020
Journal of Scientific Research
Institute of Science, Banaras Hindu University, Varanasi, India.

Binomial Transform of (s, t) - Pell Sequence

Ashwini Panwar* ${ }^{* 1}$, Arfat Ahmad Wani ${ }^{2}$, and S. K. Tiwari ${ }^{1}$
${ }^{1}$ School of studies in Mathematics, Vikram University, Ujjain, India. ashwini.panwar28@gmail.com*, Skt-tiwari75@yahoo.co.in
${ }^{2}$ Department of Mathematics, Cluster University, Jammu, India. arfatahmadwani@gmail.com

Abstract

Several (\mathbf{s}, \mathbf{t}) - type of sequences has been established such as (\mathbf{s}, t) - Fibonacci sequence and (s, t) - Lucas sequence, (s, t) - Jacobsthal etc. Thus in this paper, we give a new type of (s, t) Pell sequence $\left\langle E_{i}(s, t)\right\rangle_{n \in N}$

$E_{n}=2 \mathrm{iE}_{\mathrm{n}-1}+\mathrm{E}_{\mathrm{n}-2} ; \mathrm{n} \geq 2$ and $\mathrm{E}_{0}=(2 \mathrm{~s}-\mathrm{t}), \mathrm{E}_{1}=\mathrm{i}(\mathrm{s}-\mathrm{t})$ where $\mathrm{i}=$ $\sqrt{-1}$ and $s, t \in \mathbf{Z}^{+}$

We also defined a binomial form $\left\langle Y_{\boldsymbol{n}}(s, t)\right\rangle_{n \in N}$ to the new (s, \mathbf{t})Pell sequence and then some fundamental identities for the binomial form $\left\langle Y_{n}(s, t)\right\rangle_{n \in N}$ are obtained.

Index Terms: (s, t) -Fibonacci, (s, t)-Lucas, (s, t)- Pell, (s, t)- Pell matrix, Binomial Form.

I. Introduction

Fibonacci sequence have great significance and plays a significant role almost in every field of science. Some sequences such as Pell, and Pell - Lucas sequences etc have akin frame to the Fibonacci sequence which means, these sequences are the generalized of Fibonacci sequence.

Horadam (1971) given generalized sequence $\left\{W_{n}(a, b, p, q)\right.$ as
$\ldots \mathrm{W}_{-1}, \mathrm{~W}_{0}, \mathrm{~W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \ldots,\left\{\mathrm{~W}_{\mathrm{n}}\right\}: \ldots \frac{p a-b}{q}, \mathrm{q}, \mathrm{b}, \mathrm{pb}-\mathrm{qa}, \mathrm{p}^{2} \mathrm{~b}-$ pqa-qb, \ldots. In which $\mathrm{W}_{0}=0, \mathrm{~W}_{1}=\mathrm{b}$

$$
\begin{equation*}
\mathrm{W}_{\mathrm{n}+2}=\mathrm{pW}_{\mathrm{n}+1}-\mathrm{qW}_{\mathrm{n}} \tag{1}
\end{equation*}
$$

where $\mathrm{a}, \mathrm{b}, \mathrm{p}, \mathrm{q}$ are arbitrary integer and if $\mathrm{a}=0, \mathrm{~b}=1, \mathrm{p}=2$, $q=-1$, then we get Pell sequence.

A very interesting number, Gaussian number were first examined by the German mathematician

Karl Friedrich Gauss in 1832. Gaussian number is a complex number. In Horadam (1963) defined generalized complex Fibonacci sequence and Jordan (1965) defined Gaussian Fibonacci sequence and delineated some properties for Gaussian Fibonacci sequence and classical Fibonacci sequence.

Halici and Oz (2016) introduced Gaussian Pell and Pell Lucas numbers

$$
\begin{equation*}
\mathrm{GU}_{\mathrm{n}+1}=\mathrm{pGU}_{\mathrm{n}}+\mathrm{qGU}_{\mathrm{n}-1}, \mathrm{GU}_{0}=\mathrm{a}, \mathrm{GU}_{1}=\mathrm{b} \tag{2}
\end{equation*}
$$

Where a and b are initial values.

[^0]- If $\mathrm{p}=\mathrm{q}=1, \mathrm{a}=\mathrm{i}, \mathrm{b}=1$, then we get the Gaussian Fibonacci sequence.
- If $\mathrm{p}=\mathrm{q}=1, \mathrm{a}=2-\mathrm{i}, \mathrm{b}=1+2 \mathrm{i}$, then we get the Gaussian Lucas sequence.
- If $\mathrm{p}=2, \mathrm{q}=1, \mathrm{a}=\mathrm{i}, \mathrm{b}=1$, then we get the Gaussian Pell sequence.
- If $p=2, q=1, a=2-2 i, b=2+2 i$, then we get the Gaussian Pell-Lucas sequence.

In Halici and Oz (2018) introduced Gaussian Pell Polynomials

$$
\begin{equation*}
\mathrm{GP}_{\mathrm{n}+1}(\mathrm{x})=2 \mathrm{xGP}(\mathrm{x})+\mathrm{GP}_{\mathrm{n}-1}(\mathrm{x}) \tag{3}
\end{equation*}
$$

With $\mathrm{GP}_{0}(\mathrm{x})=\mathrm{i}, \mathrm{GP}_{1}(\mathrm{x})=1$.
Chen (2007) established many identities related to binomial transform and given a sequence $\left\{b_{n}\right\}_{n \in Z 0}$ is the binomial transform the sequence $\left\{a_{n}\right\}_{n \in Z 0}$, if

$$
\begin{equation*}
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} \tag{4}
\end{equation*}
$$

many researcher established the generalizations of Fibonacci, Lucas, Pell sequence etc by using parameters s and t then sequence called (s, t)- type sequences and they also established matrix sequences for (s, t) - type sequences.

Hulec and Taskara defined the (s, t) - Pell sequence $\left\{\mathrm{P}_{\mathrm{n}}(\mathrm{s}, \mathrm{t})\right\}$ and the (s, t) - Pell matrix sequence $\{\tilde{u}(\mathrm{~s}, \mathrm{t})\}$ by

$$
\begin{gather*}
\mathrm{P}_{\mathrm{n}}(\mathrm{~s}, \mathrm{t})=2 \mathrm{sP} \mathrm{P}_{\mathrm{n}-1}(\mathrm{~s}, \mathrm{t})+\mathrm{tP}_{\mathrm{n}-2}(\mathrm{~s}, \mathrm{t}), \tag{5}\\
\text { With } \mathrm{P}_{0}(\mathrm{~s}, \mathrm{t})=0, \mathrm{P}_{1}(\mathrm{~s}, \mathrm{t})=1 . \tag{1}\\
\tilde{u}_{\mathrm{n}}(\mathrm{~s}, \mathrm{t})=2 \mathrm{~s} \tilde{u}_{\mathrm{n}-1}(\mathrm{~s}, \mathrm{t})+\mathrm{tu} \tilde{u}_{\mathrm{n}-2}(\mathrm{~s}, \mathrm{t}), \tag{6}\\
\text { with initial conditions } \tilde{u}_{0}(\mathrm{~s}, \mathrm{t})=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \tilde{u}_{1}(\mathrm{~s}, \mathrm{t})=\left(\begin{array}{cc}
2 s & 1 \\
t & 0
\end{array}\right)
\end{gather*}
$$

2. (s, t) - Pell Sequence.

Definition 1. For $\mathrm{s}, \mathrm{t} \in \mathrm{Z}^{+}$and $\mathrm{i}(=\sqrt{-1})$, the ($\left.\mathrm{s}, \mathrm{t}\right)$ - Pell sequence $\left\{E_{n}\right\}_{n \in N}$ is recurrently defined by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=2 \mathrm{i} \mathrm{E}_{\mathrm{n}-1}+\mathrm{E}_{\mathrm{n}-2} ; \quad \mathrm{n} \geq 2 \tag{7}
\end{equation*}
$$

With $E_{0}=(2 s-t), E_{1}=i(s-t)$
The recurrence relation have the characteristic equation $\mathrm{e}^{2}-2 \mathrm{ie}-$ $1=0$ and suppose that φ_{1} and φ_{2} are the roots of this characteristic equation $\varphi_{1}=\mathrm{I}$ and $\varphi_{2}=-\mathrm{i}$.

3. Binomial Form to the (s, t) - Pell sequence.

In this section we derived a binomial form $\left\langle Y_{n}\right\rangle$ of (s, t) - Pell sequence $\left\langle E_{n}\right\rangle$ and also presented Binet`s formula for $\left\langle Y_{n}\right\rangle$.

Definition 2. For $\mathrm{n} \in Z_{0}$, the binomial form to the (s, t) - Pell sequence $\left\{E_{n}\right\}$ is defined by

$$
\begin{equation*}
Y_{n}=\sum_{j=0}^{n}\binom{n}{j} E_{j} \tag{9}
\end{equation*}
$$

Lemma 1.3 For $\mathrm{n} \in Z_{0}$ the following property holds for $\left\langle Y_{n}\right\rangle$

$$
Y_{n+1}=\sum_{j=0}^{n}\binom{n}{j}\left(E_{j}+E_{j+1}\right)
$$

Proof. We can proof this Lemma by using the relation

$$
\binom{n+1}{j}=\binom{n}{j}+\binom{n}{j-1} .
$$

Theorem. If $\mathrm{s}, \mathrm{t} \in Z^{+}$and $\mathrm{i}(=\sqrt{-1})$ the recurrence relation of the binomial form $\left\langle Y_{n}\right\rangle$ is given by $Y_{n+1}=(2+2 \mathrm{i}) Y_{n}$ $2 \mathrm{i} Y_{n-1}, \mathrm{n} \geq 1$ with $Y_{0}=2 \mathrm{~s}-\mathrm{t}$ and $Y_{1}=\mathrm{s}(2+\mathrm{i})-\mathrm{t}(1+\mathrm{i})$.

Proof. Since $Y_{n+1}=\sum_{j=0}^{n}\binom{n}{j}\left(E_{j}+E_{j+1}\right)$

$$
\begin{gather*}
=E_{0}+E_{1}+\sum_{j=1}^{n}\binom{n}{j}\left(E_{j}+E_{j+1}\right) \\
=E_{0}+E_{1}+\sum_{j=1}^{n}\binom{n}{j}\left(E_{j}+2 i E_{j}+E_{j-1}\right) \\
=(1+2 \mathrm{i}) \sum_{j=1}^{n}\binom{n}{j} E_{j}+\sum_{j=1}^{n}\binom{n}{j} E_{j-1}+E_{0}+E_{1} \\
=(1+2 \mathrm{i}) \sum_{j=1}^{n}\binom{n}{j} E_{j}+(1+2 \mathrm{i}) E_{0}+ \\
\sum_{j=1}^{n}\binom{n}{j} E_{j-1}-(1+2 \mathrm{i}) E_{0}+E_{0}+E_{1} \\
=(1+2 \mathrm{i}) \sum_{j=0}^{n}\binom{n}{j} E_{j}+\sum_{j=1}^{n}\binom{n}{j} E_{j-1}-2 \mathrm{i} E_{0}+E_{1} \\
=(1+2 \mathrm{i}) Y_{n}+\sum_{j=1}^{n}\binom{n}{j} E_{j-1}-2 \mathrm{i} E_{0}+E_{1} \tag{10}
\end{gather*}
$$

[by equation (9)]
By substitute n by $\mathrm{n}-1$, we have

$$
\begin{gathered}
Y_{n}=(1+2 \mathrm{i}) Y_{n-1}+\sum_{j=1}^{n-1}\binom{n-1}{j} E_{j-1}-2 \mathrm{i} E_{0}+E_{1} \\
=2 \mathrm{i} Y_{n-1}+\sum_{j=0}^{n-1}\binom{n-1}{j} E_{j}+\sum_{j=1}^{n-1}\binom{n-1}{j} E_{j-1}- \\
2 \mathrm{i} E_{0}+E_{1} \\
=2 \mathrm{i} Y_{n-1}+\sum_{j=1}^{n}\binom{n-1}{j-1} E_{j-1}+\left[\begin{array}{c}
n-1 \\
1
\end{array}\right\rangle E_{0}+\left(\begin{array}{c}
n-1 \\
2
\end{array}\right\rangle E_{1}+ \\
\left.\left\langle\begin{array}{c}
n-1 \\
3
\end{array}\right\rangle E_{2}+\ldots+\left(\begin{array}{c}
n-1 \\
n-1
\end{array}\right\rangle E_{n-2}+\left\langle\begin{array}{c}
n-1 \\
n
\end{array}\right\rangle E_{n-1}\right]-2 \mathrm{i} E_{0}+E_{1} \\
=2 Y_{n-1}+\sum_{j=1}^{n}\binom{n-1}{j-1} E_{j-1}+\sum_{j=1}^{n}\binom{n-1}{j} E_{j-1}-2 \mathrm{i} E_{0}+ \\
E_{1} \\
{\left[\text { since }\left\langle\begin{array}{c}
n-1 \\
n
\end{array}\right\rangle=0\right]} \\
=2 \mathrm{i} Y_{n-1}+\sum_{j=1}^{n}\left[\binom{n-1}{j-1}+\left\langle\begin{array}{c}
n-1 \\
j
\end{array}\right)\right] E_{j-1}-2 \mathrm{i} E_{0}+E_{1} \\
=2 \mathrm{i} Y_{n-1}+\sum_{j=1}^{n}\binom{n}{j} E_{j-1}-2 \mathrm{i} E_{0}+E_{1} \\
=Y_{n}-2 \mathrm{i} Y_{n-1}=\sum_{j=1}^{n}\binom{n}{j} E_{j-1}-2 \mathrm{i} E_{0}+E_{1}
\end{gathered}
$$

Then from equation (10), we have

$$
\begin{aligned}
& Y_{n}-2 \mathrm{i} Y_{n-1}=Y_{n+1}-(1+2 \mathrm{i}) Y_{n} \\
& =Y_{n+1}=Y_{n}-2 \mathrm{i} Y_{n-1}+(1+2 \mathrm{i}) Y_{n} \\
& =2 Y_{n}+2 \mathrm{i} Y_{n}-2 \mathrm{i} Y_{n-1} \\
& =(2+2 \mathrm{i}) Y_{n}-2 \mathrm{i} Y_{n-1}
\end{aligned}
$$

Then we have the characteristic equation of $\left\langle Y_{n}\right\rangle$ is

$$
\rho^{2}-(2+2 \mathrm{i}) \rho+2 \mathrm{i}=0
$$

Let α and β are its roots such that

$$
\begin{equation*}
\alpha=\varphi_{1}+1 \text { and } \beta=-\varphi_{2}+1 \tag{11}
\end{equation*}
$$

And $\alpha+\beta=2+2 \mathrm{i}, \alpha \cdot \beta=2 \mathrm{i}, \alpha-\beta=0$.
Lemma 2. For a square matrix

$$
\mathrm{Y}=\left[\begin{array}{cc}
2+2 i & -2 i \tag{12}\\
1 & 0
\end{array}\right] \text { and } \mathrm{n} \in Z_{0}
$$

The following results hold
$\binom{Y_{n+1}}{Y_{n}}=Y^{n}\binom{Y_{1}}{Y_{0}}$
And $Y^{n}=(\alpha-\beta)^{-1}\left[\begin{array}{cc}\alpha^{n+1}-\beta^{n+1} & -\beta \alpha^{n+1}+\alpha \beta^{n+1} \\ \alpha^{n}-\beta^{n} & -\beta \alpha^{n}+\alpha \beta^{n}\end{array}\right]$
Proof. Since $|Y-\theta I|=0$
$=\left[\begin{array}{cc}2+2 i & -2 i \\ 1 & 0\end{array}\right]=0$
$=\rho^{2}-(2+2 \mathrm{i}) \rho+2 \mathrm{i}=0$
Let α and β be characteristic roots as well as eigen values of matrix Y then eigen vectors corresponding to α and β are $\binom{\alpha}{1}$ and $\binom{\beta}{1}$ respectively.

Let eigen vectors $\mathrm{V}_{1}=\left[\begin{array}{ll}\alpha & \beta \\ 1 & 1\end{array}\right]$ and diagonal matrix $\mathrm{V}_{2}=$ $\left[\begin{array}{ll}\alpha & 0 \\ 0 & \beta\end{array}\right]$

Then $\mathrm{Y}^{\mathrm{n}}=\mathrm{V}_{1} \cdot \mathrm{~V}_{2}{ }^{\mathrm{n}} \cdot \mathrm{V}_{1}{ }^{-1}$

$$
\begin{gathered}
=(\alpha-\beta)^{-1}\left[\begin{array}{ll}
\alpha & \beta \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\beta \\
-1 & \alpha
\end{array}\right] \\
=(\alpha-\beta)^{-1}\left[\begin{array}{cc}
\alpha^{n+1}-\beta^{n+1} & -\beta \alpha^{n+1}+\alpha \beta^{n+1} \\
\alpha^{n}-\beta^{n} & -\beta \alpha^{n}+\alpha \beta^{n}
\end{array}\right] \cdot
\end{gathered}
$$

Theorem. (Binet's Formula for the binomial form $\left\langle\boldsymbol{Y}_{\boldsymbol{n}}\right\rangle$)
For a square matrix $\mathrm{Y}=\left[\begin{array}{cc}2+2 i & -2 i \\ 1 & 0\end{array}\right]$ and $\mathrm{n} \in Z_{0}$, we have

$$
\begin{align*}
& Y_{n}=A \alpha^{n}+B \beta^{n}, \mathrm{~A}=\frac{Y_{1}-\beta Y_{0}}{\alpha-\beta} \text { and } \mathrm{B}=\frac{\alpha Y_{0}-Y_{1}}{\alpha-\beta} \tag{13}\\
& Y_{n}=(2 \mathrm{~s}-2 \mathrm{t})\left[\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right]-\mathrm{s}(2+3 \mathrm{i})\left[\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right] \tag{14}
\end{align*}
$$

Proof. Since $Y=\left[\begin{array}{cc}2+2 i & -2 i \\ 1 & 0\end{array}\right]$ and

$$
\begin{aligned}
& Y^{n}=(\alpha-\beta)^{-1}\left[\begin{array}{cc}
\alpha^{n+1}-\beta^{n+1} & -\beta \alpha^{n+1}+\alpha \beta^{n+1} \\
\alpha^{n}-\beta^{n} & -\beta \alpha^{n}+\alpha \beta^{n}
\end{array}\right] \\
& \left.=\begin{array}{cc}
Y_{n+1} \\
Y_{n}
\end{array}\right) \quad(\alpha- \\
& \beta)^{-1}\left[\begin{array}{cc}
\alpha^{n+1}-\beta^{n+1} & -\beta \alpha^{n+1}+\alpha \beta^{n+1} \\
\alpha^{n}-\beta^{n} & -\beta \alpha^{n}+\alpha \beta^{n}
\end{array}\right]\binom{Y_{1}}{Y_{0}} \\
& \\
& =\binom{Y_{n+1}}{Y_{n}}=(\alpha-\beta)^{-1}\binom{Y_{1} \alpha^{n+1}-Y_{1} \beta^{n+1}-Y_{0} \beta \alpha^{n+1}+Y_{0} \alpha \beta^{n+1}}{Y_{1} \alpha^{n}-Y_{1} \beta^{n}-Y_{0} \beta \alpha^{n}+Y_{0} \alpha \beta^{n}}
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
& Y_{n}=\frac{Y_{1} \alpha^{n}-Y_{1} \beta^{n}-Y_{0} \beta \alpha^{n}+Y_{0} \alpha \beta^{n}}{\alpha-\beta} \\
= & Y_{n}=\left[\frac{\left(Y_{1}-Y_{0} \beta\right) \alpha^{n}+\left(\alpha Y_{0}-Y_{1}\right) \beta^{n}}{\alpha-\beta}\right] \\
= & A \alpha^{n}+B \beta^{n}
\end{aligned}
$$

Where $\mathrm{A}=(\alpha-\beta)^{-1}\left(Y_{1}-Y_{0} \beta\right) \alpha^{n}$

$$
\begin{aligned}
& =(\alpha-\beta)^{-1}[s(2+i)-t(1+i)-\beta(2 s+t)] \alpha^{n} \\
& =(\alpha-\beta)^{-1}[2 \mathrm{~s}+\mathrm{is}-\mathrm{t}-\mathrm{it}-2 \beta s-\beta t] \alpha^{n} \\
& =(\alpha-\beta)^{-1}\left[2 \mathrm{~s} \alpha^{n}+\mathrm{i} s \alpha^{n}-\mathrm{t} \alpha^{n}-\mathrm{it} \alpha^{n}-2 \beta s \alpha^{n}-\right.
\end{aligned}
$$

$\left.\beta t \alpha^{n}\right]$

$$
\begin{aligned}
= & (\alpha-\beta)^{-1}\left[2 \mathrm{~s} \alpha^{n}+\mathrm{is} \alpha^{n}-\mathrm{t} \alpha^{n}-\mathrm{it} \alpha^{n}-2 s(2+\right. \\
& \left.2 i-\alpha) \alpha^{n}-\mathrm{t}(2+2 \mathrm{i}-\alpha) \alpha^{n}\right]
\end{aligned}
$$

[from equation (12)]

$$
\begin{aligned}
& \quad=(\alpha-\beta)^{-1}\left[2 \mathrm{~s} \alpha^{n}+\mathrm{is} \alpha^{n}-\mathrm{t} \alpha^{n}-\mathrm{it} \alpha^{n}-4 \mathrm{~s} \alpha^{n}-\right. \\
& \left.4 \mathrm{is} \alpha^{n}+2 \mathrm{~s} \alpha^{n+1}-2 \mathrm{t} \alpha^{n}-2 i t \alpha^{n}+t \alpha^{n+1}\right] \\
& =(\alpha-\beta)^{-1}\left[2 \mathrm{~s} \alpha^{n+1}-\mathrm{s}(2+3 \mathrm{i}) \alpha^{n}+\mathrm{t} \alpha^{n}(\alpha-3-3 i)\right] \\
& \quad=(\alpha-\beta)^{-1}\left[2 \mathrm{~s} \alpha^{n+1}-\mathrm{s}(2+3 \mathrm{i}) \alpha^{n}-2 t \alpha^{n+1}\right]
\end{aligned}
$$

Similarly

$$
\mathrm{B}=-(\alpha-\beta)^{-1}\left[2 \mathrm{~s} \beta^{n+1}-\mathrm{s}(2+3 \mathrm{i}) \beta^{n}-2 t \beta^{n+1}\right]
$$

Then

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{n}} \quad=\quad(\alpha-\beta)^{-1} \quad\left[2 \mathrm{~s} \quad \alpha^{n+1}-\mathrm{s}(2+3 \mathrm{i}) \alpha^{n}-\right. \\
& \left.2 t \alpha^{n+1}-2 \mathrm{~s} \beta^{n+1}+\mathrm{s}(2+3 \mathrm{i}) \beta^{n}+2 t \beta^{n+1}\right] \\
& =\frac{2 s\left(\alpha^{n+1}-\beta^{n+1}\right)}{\alpha-\beta}-\mathrm{s}(2+3 \mathrm{i}) \frac{\left(\alpha^{n}-\beta^{n}\right)}{\alpha-\beta}-2 \mathrm{t} \frac{\left(\alpha^{n+1}-\beta^{n+1}\right)}{\alpha-\beta} \\
& =(2 \mathrm{~s}-2 \mathrm{t}) \frac{\left(\alpha^{n+1}-\beta^{n+1}\right)}{\alpha-\beta}-\mathrm{s}(2+3 \mathrm{i}) \frac{\left(\alpha^{n}-\beta^{n}\right)}{\alpha-\beta} .
\end{aligned}
$$

Hence proved

Theorem. (Generalized Sum for $\left\langle\boldsymbol{Y}_{\boldsymbol{n}}\right\rangle$)

For $m, n, r \in Z_{0}$, and $\left\langle M_{n}\right\rangle$, we have

$$
\sum_{l=1}^{n} Y_{m l+r}=\frac{-Y_{m(n+1)+r}+(i+1)^{m} Y_{m n+r}+Y_{m+r^{-}}(i+1)^{m} Y_{r}}{\left[M_{m}+(i+1)^{m}+1\right]}
$$

Proof. Let

$$
\mathrm{S}=\sum_{l=1}^{n} Y_{m l+r}
$$

Multiplying both sides by $\left[M_{m}+(i+1)^{m}+1\right]$, we have
$\mathrm{S}\left[M_{m}+(i+1)^{m}+1\right]=M_{m} \sum_{l=1}^{n} Y_{m l+r}+(i+1)^{m} \sum_{l=1}^{n} Y_{m l+r}$
$+\sum_{l=1}^{n} Y_{m l+r}$
Let
$\mathrm{S}\left[M_{m}+(i+1)^{m}+1\right]=S_{1}+S_{2}+S_{3}$
Here
$S_{1}=M_{m} \sum_{l=1}^{n} Y_{m l+r}$
And
$S_{2}=(i+1)^{m} \sum_{l=1}^{n} Y_{m l+r}$

$$
=(i+1)^{m}\left[Y_{m+r}+Y_{2 m+r}+\ldots+Y_{m n+r}\right]
$$

Add and subtract Y_{r} on R.H.S. we get
$S_{2}=(i+1)^{m}\left[Y_{m n+r}-Y_{r}+Y_{r}+Y_{m+r}+Y_{2 m+r}+\ldots+\right.$
$\left.Y_{m(n-1)+1}\right]$
And $S_{3}=\sum_{l=1}^{n} Y_{m l+r}$
Add and subtract $Y_{m(n+1)+1}$ on R.H.S. we have
$S_{3}=\left[Y_{m(n+1)+r}+Y_{m+r}+Y_{2 m+r}+\ldots+Y_{m n+r}+Y_{m(n+1)+1}-\right.$
$\left.Y_{m(n+1)+1}\right]$
Now
$\mathrm{S}\left[M_{m}+(i+1)^{m}+1\right]=$
$-Y_{m(n+1)+r}+Y_{m+r}+(i+1)^{m} Y_{m n+r}-(i+1)^{m} Y_{r}+$

$$
+\sum_{l=1}^{n}\left[-Y_{m(l+1)+r}+Y_{m(l+1)+r}\right]
$$

[by using equation (13)]

Hence
$\sum_{l=1}^{n} Y_{m l+r}=\frac{-Y_{m(n+1)+r^{+}+(i+1)^{m} Y_{m n+r}+Y_{m+r^{-}}(i+1)^{m} Y_{r}}}{\left[M_{m}+(i+1)^{m}+1\right]}$

REFERENCES

Chen K. W., (2007), Identities from the Binomial Transform, Journal of Number Theory, 124(1), 142 - 150.
Hordam A. F., (1971), Pell Identities, The Fibonacci Quarterly, 9(3), 245-252, 263.
Hulec H. and Taskara N. (2012), On the (s, t) - Pell and (s, t) -Pell- Lucas sequences and their matrix representations, Applied Mathematical Letters, 25(10), 1554-1559.
Halici S. and Oz S., (2016), On Some Gaussian Pell and PellLucas Numbers, Ordu Universitesi Bilim ve Teknoloji Dergisi, 6, 8- 18.
Hordam A. F., (1963), Complex Fibonacci Numbers and Fibonacci Quaternions, The American Mathematical Monthly, 70(3), 289-291.
Halici S. and Oz S., (2018) On Gaussian Pell Polynomials and their some properties, Palestine Journal of Mathematics, 7(1), 251-256.
Jordan J. H., (1965), Gaussian - Fibonacci and Lucas Numbers, Fibonacci Quarterly, 3(4), 315- 318.

[^0]: * Corresponding Author

