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Abstract—In statistical literature, various lifetime distributions
have been proposed for analysing the lifetime data. Lindley
distribution is one of them. It is a one-parameter model. But its
suitability is restricted to the data having an increasing failure
rate. In many real situations, data may possess other shapes of
hazard rate function like- decreasing, bathtub, or up-sided down
bathtub, etc. In this research article, we propose a generalization
of Lindley distribution which is capable to fit a variety of
datasets having different shapes of hazard rate function. Several
statistical characteristics and properties of this distribution are
also studied. Finally, to show the suitability and applicability of
the proposed model in real scenarios two different datasets have
been considered.

Index Terms—Lifetime distribution, Lindley distribution, haz-
ard rate function, parameters, Maximum Likelihood Estimation.

I. INTRODUCTION

Hazard rate or failure rate is an important key for modeling
and analysing data in the area of medical, engineering, finance,
insurance, and others. In statistical literature, the exponential
distribution is the most exploited lifetime distribution for
lifetime data having a constant hazard rate function. But,
if the data shows a non-constant hazard rate function, the
use of exponential distribution may lead to wrong results.
To overcome this difficulty, several distributions have been
developed such as Weibull, gamma, log-normal, Lindley dis-
tribution, and many others. Weibull and gamma distributions
contain two parameters and their hazard rate function have
increasing hazard (IHR) and decreasing hazard (DHR) shapes
while Lindley distribution proposed by Lindley, D. V. (1958)
has single parameter and shape of its hazard rate function is
increasing.

Latter, Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008)
has discussed the application of Lindley distribution in real

life scenario and become a very popular lifetime model. After
that versions generalizations of the Lindley distribution have
been discussed by various authors, few of them are Ghitany,
M. E. & Al-Mutairi, D. K. (2008), Mazucheli, J. & Achcar,
J. A. (2011), Nadarajah, S., Bakouch, H. S., & Tahmasbi,
R. (2011), Ghitany (M. E.), Pararai, M., Warahena-Liyanage,
G., & Oluyede, B. O. (2015), Sharma, V. K., Singh, S. K.,
Singh, U., & Agiwal, V. (2015), Zeghdoudi, H. & Nedjar, S.
(2016), Asgharzadeh (A.), Maurya, S. K., Kaushik, A., Singh,
S. K., & Singh, U. (2017b) and Maurya, S. K., Singh, S. K.,
& Singh, U. (2020) etc.

There are several generalization techniques available in
statistical literature, in order to get flexible distributions. For
example, Lehmann, E. L. (1953), Kumaraswamy, P. (1980),
Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998), Shaw,
W. & Buckley, I. (2007), Cordeiro, G. M. & De Castro, M.
(2011), Cordeiro, G. M., Ortega, E. E. M., & Daniel, C. C.
D. C. (2013), Gomes, A. E., Da-Silva, C. Q., & Cordeiro,
G. M. (2015), Kumar, D., Singh, U., & Singh, S. K. (2015),
Maurya, S. K., Kaushik, A., Singh, R. K., Singh, S. K.,
& Singh, U. (2016), Mahdavi, A. & Kundu, D. (2017),
Aryal (G. R. & Yousof), Dey, S., Nassar, M., and Kumar,
D. (2017), Maurya, S., Kaushik, A., Singh, S., & Singh, U.
(2017a), Maurya, S. K., Kumar, D., Singh, S. K., & Singh,
U. (2018) and Goyal, T., Rai, P. K., & Maurya, S. K. (2019)
etc.

Here, we proposed a new generalization of Lindley distri-
bution by using the same technique suggested by Cordeiro,
G. M. & De Castro, M. (2011), which added two additional
shape parameters to the chosen baseline distribution. If G(x)
be the CDF of some baseline model, then the CDF F (x) of
new distribution is
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F (x) = [1− (1−G(x))α]
β

; x > 0,

α, β > 0.
(1)

For α = 1, whatever β may be, it reduces to exponentiated
type distribution defined by Gupta, R. C., Gupta, P. L., &
Gupta, R. D. (1998) and for α = β = 1, it reduces to
the baseline distribution. This shows that this generalization
method may show greater flexibility in terms of fitting crite-
rion.
Let f(x) be the PDF corresponding to CDF F (x) given in
equation (1), then

f(x) = αβ [1−G(x)]
α−1

[1− (1−G(x))
α

]
β−1

g(x); x > 0,

α, β > 0.
(2)

Let G(x) be the CDF of Lindley distribution, then

G(x) = 1− e−θx
[
1 +

θx

(1 + θ)

]
;x > 0,

θ > 0.

(3)

Using equation (3) in equations (1) and (2), we get the CDF
& PDF of the new distribution as follows

F (x) =

[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β
(4)

and

f(x) =
αβθ2

(1 + θ)
(1 + x)e−θx

(
e−θx

(
1 +

θx

(1 + θ)

))α−1

×
[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β−1

;

x > 0, α, β, θ > 0.
(5)

There is a nice physical interpretation of the proposed
generalization technique; see Cordeiro, G. M. & De Castro,
M. (2011) for more details.

The rest of the paper is organized in a given sequence.
In Section II, we discussed some statistical characteristics of
proposed distribution such as reliability, hazard rate, nature
of its distribution. Section III, deals with some statistical
properties like moments, conditional moments, mean deviation
about mean and median, quartile function, moment generating
function, cumulative generating function, order statistic, and
its probability distribution function, and entropy of the pro-
posed model. Section IV, we discussed methods of estimation
of parameters of the proposed model.

In Section V, two different datasets are taken to check the
applicability of the proposed distribution to the real problems
related to the medical field, and its performance is also com-
pared with two other existing distributions, and the conclusion
is presented in Section VI.

II. STATISTICAL CHARACTERISTICS

In this section, we have derived various statistical character-
istics of the proposed distribution such as reliability function,
hazard rate function and shape of PDF and CDF.

A. Reliability Function

The reliability function R(x), is the probability that the
system will not fail before time x is obtained for proposed
distribution as

R(x) = P (X ≥ x)

= 1−
[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β
.

(6)

B. Shapes of the PDF, CDF and hazard rate function of the
proposed distribution

The shapes of PDF & CDF reflect the idea whether the
distribution is symmetric or skewed. For different combination
of the values of the parameters β, α and θ, we have plotted
CDF (4) and PDF (5) of the proposed of distribution in Fig.
II-B. This figure shows that the proposed distribution exhibits
a right-skewed type of distribution. Next, the hazard rate
function is an important tool of lifetime data analysis. For
our proposed model, the same is obtained as follows

h(x) =
f(x)

1− F (x)

=
αβθ2

(1 + θ)
(1 + x)e−θx

(
e−θx

(
1 +

θx

(1 + θ)

))α−1

×

[
1−

(
e−θx

(
1 + θx

(1+θ)

))α]β−1

1−
[
1−

(
e−θx

(
1 + θx

(1+θ)

))α]β
(7)

The proposed model is flexible in terms of hazard rate
function. The Fig. 2 shows that the nature of the hazard
rate function of the proposed distribution has non-monotone
(bathtub) and monotone (IHR and DHR) shaped.

III. STATISTICAL PROPERTIES OF THE PROPOSED
DISTRIBUTION

A. Moments

As we know that the soul of a human body is vested in
the heart, in the same way, the soul of a given distribution
is characterized by its moments, with the help of these one
can identify the nature of the considered distribution. If X
be a random variable follows the proposed model, then the
rth moment about origin of X is αβθ2

1+θ K(β, α, θ, r, δ). Where
K(β, α, θ, r, δ) is defined below.

Lemma 3.1

K(β, α, θ, r, δ) =

∫ ∞
0

xr(1 + x)e−δx
(
e−θx

(
1 +

θx

(1 + θ)

))α−1

×
[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β−1

dx

=

∞∑
i=0

∞∑
j=0

j+1∑
k=0

Cβ−1
i Cαi+α−1

j Cj+1
k

× (−1)iθj

(1 + θ)αi+α−1

Γ(k + r + 1)

[θ(αi+ α− 1) + δ]k+r+1
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Fig. 1. Plots of probability density function and cumulative distribution
function

proof :

K(β, α, θ, r, δ)

=

∞∑
i=0

(−1)iCβ−1
i

∫ ∞
0

xr(1 + x)e−δx

×
(
e−θx

(
1 +

θx

(1 + θ)

))α+iα−1

dx

=

∞∑
i=0

(−1)iCβ−1
i

(1 + θ)αi+α−1

∫ ∞
0

(1 + θ(1 + x))αi+α−1xr

× (1 + x) exp [−θx(αi+ α− 1)− δx]dx

=

∞∑
i=0

(−1)iCβ−1
i

(1 + θ)αi+α−1

∞∑
j=0

Cαi+α−1
j θj

∫ ∞
0

xr

× (1 + x)j+1 exp[−x(θ(αi+ α− 1) + δ)]dx

=

∞∑
i=0

∞∑
j=0

Cβ−1
i Cαi+α−1

j

(−1)iθj

(1 + θ)αi+α−1

j+1∑
k=0

Cj+1
k

×
∫ ∞

0

xk+r exp[−x(θ(αi+ α− 1) + δ)]dx

=

∞∑
i=0

∞∑
j=0

j+1∑
k=0

Cβ−1
i Cαi+α−1

j Cj+1
k

(−1)iθj

(1 + θ)αi+α−1

× Γ(k + r + 1)

[θ(αi+ α− 1) + δ]k+r+1
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Fig. 2. Hazard rate function plot for various choice of parameters.

Thus, the rth raw moments about origin is given below

E[Xr] =
αβθ2

(1 + θ)
K(β, α, θ, r, δ)

and the first four moments about origin can be obtained
r = 1, 2, 3 and 4.

B. Conditional Moments

For lifetime models, it is also of interest to know what the
value of E[Xn|X > t] (conditional moments) is, before its
calculation for the proposed distribution, first we state the
following lemma.
Lemma 3.2

L(β, α, θ, r, δ, t) =

∫ ∞
t

xr(1 + x)e−δx

×
(
e−θx

(
1 +

θx

(1 + θ)

))α−1

×
[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β−1

dx

=

∞∑
i=0

∞∑
j=0

j+1∑
k=0

Cβ−1
i Cαi+α−1

j Cj+1
k

× (−1)iθj

(1 + θ)αi+α−1

× Γ((k + r + 1), (θ(αi+ α− 1) + δ)t)

where Γ(n, z) = (n− 1)!e−z
n−1∑
l=0

zl

l!
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proof :∫ ∞
t

xr(1 + x)e−δx
(
e−θx

(
1 +

θx

(1 + θ)

))α−1

×
[
1−

(
e−θx

(
1 +

θx

(1 + θ)

))α]β−1

dx

=

∞∑
i=0

∞∑
j=0

j+1∑
k=0

Cβ−1
i Cαi+α−1

j Cj+1
k

(−1)iθj

(1 + θ)αi+α−1
(k + r)!

× exp[−(θ(αi+ α− 1) + δ)t]×
k+r∑
l=0

(θ(αi+ α− 1) + δ)l

l!

⇒ E(Xr|X > t) = αβθ2

(1+θ)L(β, α, θ, r, δ, t)

C. Quantile Function

The quantile function Q(p) of the proposed distribution is
the solution of equation

F (Q(p)) = p

⇒
[
1−

{
e−θQ(p)

(
1 +

θQ(p)

1 + θ

)}α]β
= p; 0 < p < 1.

⇒ e−θQ(p)(1 + θ + θQ(p)) = (1 + θ)(1− p1/β)1/α

put Z(p) = −1− θ − θQ(p) for 0 < p < 1

then Z(p)eZ(p) = −(1 + θ)e−(1+θ)(1− p1/β)1/α

So, the solution of this is

Z(p) = W
[
−(1 + θ)e−(1+θ)(1− p1/β)1/α

]
; 0 < p < 1

where W (·) is Lambert W function and also

Q(p) = −1− 1

θ
− 1

θ
W
(
−(1 + θ)e−(1+θ)(1− p1/β)1/α

)
;

0 < p < 1.
(8)

Now, on putting p = 1/2, in equation (8), we get the median
(ηd) of the proposed model.

D. Mean Deviation

After considering the measure of central tendencies i.e.
mean and median, we have also derived the measure of
scatteredness in terms of mean deviation about the mean (µM )
and median (ηd). The mean deviation about mean (δ1(x)) and
mean deviation about median (δ2(x)) and can be defined as

δ1(x) =

∫ ∞
0

|X − µM |f(x)dx

δ2(x) =

∫ ∞
0

|X − ηd|f(x)dx

respectively. Then, for our proposed model

δ1(x) =

∫ µM

0

(µM − x)f(x)dx+

∫ ∞
µM

(x− µM )f(x)dx

=2µMF (µM )− 2µM + 2

∫ ∞
µM

xf(x)dx

and similarly,

δ2(x) =

∫ ηd

0

(ηd − x)f(x)dx+

∫ ∞
ηd

(x− ηd)f(x)dx

=ηdF (ηd)−
∫ ηd

0

xf(x)dx− ηd[1− F (ηd)]

+

∫ ∞
ηd

xf(x)dx

=− µM + 2

∫ ∞
ηd

xf(x)dx.

thus, by Lemma 3.2∫ ∞
µM

xf(x)dx =
αβθ2

(1 + θ)
L(β, α, θ, 1, θ, µM )∫ ∞

ηd

xf(x)dx =
αβθ2

(1 + θ)
L(β, α, θ, 1, θ, ηd)

δ1(x) = 2µMf(µM )− 2µM +
αβθ2

(1 + θ)
L(β, α, θ, 1, θ, µM )

δ2(x) = −µM +
αβθ2

(1 + θ)
L(β, α, θ, 1, θ, ηd)

E. Generating Functions

Let X denotes a random variable follow the proposed
distribution. Then from Lemma 3.1, the moment generating
function is defined as

MX(ξ) = E(eξX) =
αβθ2

(1 + θ)
K(β, α, θ, 0, θ − ξ); ξ < θ

Similarly, the characteristic function of proposed model is
given below

φX(ξ) = E(eiξX) =
αβθ2

(1 + θ)
K(β, α, θ, 0, θ − iξ); ξ ∈ R

and the corresponding cumulant generating function is

KX(ξ) = ln

(
αβθ2

1 + θ

)
+ lnK(β, α, θ, 0, θ − iξ) ∀ ξ < θ

F. Order Statistics

Let us define

V (x) =

(
e−θx

(
1 +

θx

1 + θ

))
(9)

Then, the CDF and PDF of proposed model is

F (x) = [1− V α(x)]β

f(x) =
αβθ2(1 + x)e−θx

(1 + θ)
V α−1(x)[1− V α(x)]β−1

respectively.
Now, the PDF fk:n(x) of the kth order statistic Xk of a
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random sample x1, x2, ..., xn of size n from the proposed
distribution having PDF (5) is obtained as follows

fk:n(x) =
n!

(k − 1)!(n− k)!
[F (x)]k−1[1− F (x)]n−kf(x)

=
n!

(k − 1)!(n− k)!

n−k∑
l=0

(−1)lCn−kl [F (x)]k+l−1f(x)

=
n!

(k − 1)!(n− k)!

αβθ2(1 + x)e−θx

(1 + θ)

n−k∑
l=0

(−1)lCn−kl

× V α−1(x)[1− V α(x)]β(k+l)−1

=
n!

(k − 1)!(n− k)!

αβθ2(1 + x)e−θx

(1 + θ)

n−k∑
l=0

∞∑
m=0

(−1)l+m

× Cn−kl Cβ(k+l)−1
m [V α(1+m)−1(x)]

G. Renyi Entropy

An entropy is a popular measure of uncertainty and pro-
posed by various authors. The Renyi entropy (Renyi, A.
(1961)) is one of the famous measure of uncertainty and
defined as

JR(γ) =
1

1− γ
ln[

∫
fγ(x)dx]; γ > 0, γ 6= 1.

Now, the Renyi entropy for the random variable X having
proposed distribution with PDF (5) is calculated as follows∫

fγ(x)dx =

(
αβθ2

(1 + θ)

)γ ∫ ∞
0

(1 + x)γe−γθx[V (x)]γ(α−1)

×[1− V α(x)](β−1)γdx

=

(
αβθ2

(1 + θ)

)γ ∞∑
i=0

C
γ(β−1)
i (−1)i

∫ ∞
0

[V (x)]i+γα−γ

×(1 + x)γe−γθxdx

=

(
αβθ2

(1 + θ)

)γ ∞∑
i=0

C
γ(β−1)
i (−1)i

×
∫ ∞

0

(
1 +

θx

1 + θ

)γα−γ+i

(1 + x)γe(−γθx+γα−γ+i)dx

∫
fγ(x)dx =

(
αβθ2

(1 + θ)

)γ ∞∑
i=0

C
γ(β−1)
i (−1)i+j

×
∞∑
j=0

C
γ(α−1)+i
j

∫ ∞
0

(
θx

1 + θ

)j
×
∞∑
k=0

(−1)kCγkx
ke−γ(θx−α+1)+idx

or
∫
fγ(x)dx =

(
αβθ2

(1 + θ)

)γ (
θ

1 + θ

)j
×
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j+kC
γ(β−1)
i

×Cγ(α−1)+i
j Cγk exp[−(x(α− 1)− i)]

×Γ(k + j + 1)

(γθ)k+j+1

Thus the final expression of Renyi entropy is

JR(γ) =
1

1− γ

[
γ ln

(
αβθ2

1 + θ

)
+ j ln

(
θ

1 + θ

)
+ ln ξc

]

where ξc =
∑∞
i=0

∑∞
j=0

∑∞
k=0(−1)i+j+kC

γ(β−1)
i C

γ(α−1)+i
j

× Cγk exp[−(x(α− 1)− i)] Γ(k+j+1)
(γθ)k+j+1

IV. ESTIMATION OF PARAMETERS

After the selection of an appropriate model, the next task
is to obtain the estimate of the unknown parameters of the
model. There are a number of methods discussed in statistical
literature out of which we are considering the maximum
likelihood method of estimation for the parameters β, α and
θ of the proposed distribution.

Maximum Likelihood Method of Estimation:
The maximum likelihood method of estimation is a cleaver
method of estimation as we try to obtain values of the
parameters for which the sample in hand has the highest
probability to come in hand. It has several interesting desirable
properties such as it provides consistent estimators, sufficient
statistics (if it is/ are exists), etc. Let us consider a random
sample of size n from the proposed distribution, then its
likelihood function is given by

L =

n∏
i=1

f(xi; θ)

=

(
αβθ2

1 + θ

)n n∏
i=1

(1 + xi)
ne−θxi

n∏
i=1

(
e−θxi

(
1 +

θxi
(1 + θ)

))α−1

×
n∏
i=1

[
1−

(
e−θxi

(
1 +

θxi
(1 + θ)

))α]β−1

.

And hence, the log-likelihood function is obtained as
follows

lnL =n ln

(
αβθ2

1 + θ

)
+

n∑
i=1

ln(1 + xi)− θ
n∑
i=1

xi

+ (α− 1)

n∑
i=1

ln(V (xi)) + (β − 1)

n∑
i=1

ln[1− V α(xi)]

(10)

where, V (xi) is defined in (9).
Now, differentiating (10) with respect to θ, α & β and equated
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to zero, we get

∂ lnL

∂θ
= 0

⇒n(θ + 2)

θ(1 + θ)
−

n∑
i=1

xi +
(α− 1)

(1 + θ)2

n∑
i=1

e−θxixi

× [1− (1 + θ)(θxi + θ + 1)]

+
(β − 1)

(1 + θ)2

n∑
i=1

αV α−1(xi)

V α(xi)− 1
e−θxixi

× [1− (1 + θ)(θxi + θ + 1)] = 0

∂ lnL

∂α
= 0

⇒n

α
+

n∑
i=1

ln(V (xi))

+ α(β − 1)

n∑
i=1

V α(xi) ln(V (xi))

1− V α(xi)
= 0

and

∂ lnL

∂β
= 0

⇒ n

β
+

n∑
1

ln(1− V (xi)) = 0.

The simultaneous solution of the above likelihood equations
constitutes MLEs of θ, α & β. However, analytical solutions
are not possible. Therefore, we use an approximation tech-
nique to solve the above normal equations with the help of R
Core Team (2020) software.

V. REAL DATA APPLICATION

Here, we have considered two real datasets to show the
applicability of the proposed distribution with two different
models belongs to the same family of distributions which are
Lindley (Lindley, D. V. (1958)) and new generalized Lindley
distribution (NGLD) (Elbatal, I., Merovci, F., & Elgarhy, M.
(2013)) with PDF

f(x) =
e−θx

1 + θ

(
θα+1xα−1

Γα
+
θβxβ−1

Γβ

)
; x > 0

θ, α, β > 0.

We have considered two real datasets. The first dataset shows
a sample of remission times (measured in months) of 128
bladder cancer patients and proposed by Lee, E. T. & Wang, J.
(2003). The second dataset is the survival times (measured in
days) of 72 guinea pigs infected with virulent tubercle bacilli
and reported by Bjerkedal, T. (1960). We have considered
these datasets because the NGLD is a three-parameters model
and was reported by Elbatal, I., Merovci, F., & Elgarhy,
M. (2013) shows that it is a more suitable model for the
considered datasets. So, we want to compare the proposed
model with three-parameters NGLD.

The various criterion like p-value, AIC (Akaike Information
Criterion) and BIC (Bayesian information criterion) are used

to check the fitting of the distributions. Also, we have cal-
culated the negative of log-likelihood value (− lnL)and KS
(Kolmogorov-Smirnov) test statistic.

Firstly, we consider the p-values for checking which models
are fitted to the considered dataset and after that we calculate
the other mentioned criterion to know which model is more
suitable for the data set among the considered model. It is
worthless to mentioned here that the smaller values of AIC,
BIC, KS test statistic and − lnL indicate a better fit of
distributions. We have also calculated the MLEs of parameters
for various distributions. All these values are given in Table I.
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Fig. 3. ECDF plots of considered datasets.

Data
set

Distribution ML
Esti-
mates

KS p-
value

AIC BIC lnL

θ α β Statistic
1 Lindley 0.196 - - 0.074 0.083 841.06 843.892 839.04

NGLD 0.18 4.679 1.324 0.081 0.391 831.501 840.057 825.501
Proposed 0.365 0.388 0.852 0.067 0.283 830.194 838.750 824.194

2 Lindley 0.868 - - 0.232 0.000 215.857 218.133 213.857
NGLD 1.861 3.585 2.737 0.089 0.612 194.364 201.194 188.364
Proposed 1.022 1.486 2.827 0.087 0.649 193.921 200.751 187.921

TABLE I
TABLE FOR ML ESTIMATE, LOG LIKELIHOOD VALUE, KS STATISTIC,

P-VALUE, AIC AND BIC

From Table I, we can say that for dataset 1, all model fitted
well at 5% level of significance and KS distance along with
model selection criterion having least values of AIC and BIC
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Fig. 4. Fitted density, Relative histogram and Kernel density plots for
proposed distribution.

for the proposed distribution. Also, the negative of logarithmic
of likelihood value is least for the proposed model.
Also, for dataset 2, only NGLD and proposed model fit well
at desired level of significance (i.e. 5%), and similar result are
obtained with same model selection criterion. Hence, we can
say that proposed model fit well for both the datasets very
well in comparison to other considered models. Graphics are
widely used to gather information of any kind of data can be
understand and interpreted by anyone easily. Fig. 3 and Fig.
4 empirical CDF and kernel density with histogram plot for
the considered datasets respectively.

VI. CONCLUSION

In this paper, we have generalized Lindley distribution
with a single parameter using the generalization technique
suggested by Cordeiro, G. M. & De Castro, M. (2011). The
technique adds two additional shape parameters and hence the
resulting distribution has three parameters. The new distribu-
tion, thus obtained is flexible in the sense of having different
shapes of hazard rate function. It has IHR, DHR and bathtub
shapes of hazard rate function. We have studied its various
statistical properties like moments, conditional moments, reli-
ability, quantile function, mean deviation about its mean and

median, moment generating function, characteristic function,
cumulant generating function and its order statistics. The
maximum likelihood estimators of the parameters of this new
distribution is obtained on the basis of the complete sample
from it. Two suitable real datasets have been considered to
show the applicability of the proposed distribution in real
lifetime scenario. The criterion is taken as AIC, BIC, KS test
statistic and log-likelihood along with empirical cumulative
distribution function and kernel density with relative histogram
plot in Fig. 3 and Fig. 4 respectively. The results shows that the
same tools are also defined for Lindley distribution and NGLD.
We observed from comparative Table I that our proposed
distribution outperforms the other two distributions for the
considered datasets in terms of AIC, BIC, KS test statistic
and log-likelihood fitting criterion. Thus we recommend its
further use to analyze different types of real datasets with a
hope to get a better model.
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