

Volume 65, Issue 1, 2021

Journal of Scientific Research

Institute of Science, Banaras Hindu University, Varanasi, India.

Ascent and Descent of Composition Operator on L^p Spaces

Pradeep Kumar*

Assistant Director, Directorate of Census Operations, Uttarakhand, India, pradeep28_bhu@yahoo.co.in*

Abstract—In this paper we give a complete characterization of composition operators on L^p Spaces $(1 \le p < \infty)$ which have finite ascent and finite descent.

Index Terms—Composition Operator, Ascent, Descent, Measurable space, Measurable function.

I. INTRODUCTION

Definition 1. Let (X, B, μ) be a σ finite measure space. For $(1 \leq p < \infty)$, let $L^p(\mu)$ denote the Banach space of all equivalence class of B-measurable functions on X. Note that we identify any two functions that are equal μ a.e. on X. Let v be another measure on the measurable space (X, B) such that v(A) = 0 for each $A \in B$ for which v(A) = 0. Then we say that the measure v is absolutely continuous with respect to the measure μ and we write $v << \mu$. By Radon-Nikodym theorem, there exists a non-negative locally integrable function f_v on X such that the measure v can be represented as

$$v(A) = \int_A f_v(x) d\mu(x);$$

for each $A \in \mathbf{B}$. The function f_v is called the Radon-Nikodym derivative of the measure v with respect to the measure μ . A measurable transformation $\phi : X \to X$ be a non-singular if $\mu o \phi^{-1} << \mu$.

Definition 2. Composition Operators on Lp-spaces: Let $\phi : X \to X$ be a measurable transformation such that $fo\phi \in L^p(\mu)$ whenever $f \in L^p(\mu)$. Then $C_{\phi} : L^p(\mu) \to L^p(\mu)$ is called a "Composition Operator" on $L^p(\mu)$ if C_{ϕ} is a bounded linear operator on $L^p(\mu)$. It is well-known that C_{ϕ} is a composition operator on $L^p(\mu)(1 \le p < \infty)$ if and only if there exists a real number k > 0 such that $\mu o\phi^{-1}(E) \le k\mu(E)$ for all $E \in \mathbf{B}$. This condition implies that $\mu o\phi^{-1} << k\mu$.

Definition 3. Let $\phi: X \to X$ be a measurable transformation such that $C_{\phi}: L^{p}(\mu) \to L^{p}(\mu)$ is a composition operator. Let $\mu_{\phi}^{1}(E) = \int_{\phi^{-1}(E)} d\mu$. Then clearly $mu_{\phi}^{1} << \mu$. Hence $\mu_{\phi}^{1}(E) = \int_{E} g_{\phi}^{1} d\mu$ where g_{ϕ}^{1} denote the Radon-Nikodym derivative of μ_{ϕ}^{1} with respect to μ . For $k \geq 2$, we define $\mu_{\phi}^{k}(E) = \int_{\phi^{-1}(E)} d\mu_{\phi}^{k-1}$. Then it is easy to see that $\mu_{\phi}^{k} << \frac{1}{*Corresponding Author}$ DOI: 10.37398/JSR.2021.650135 $\mu_{\phi}^{k-1} << \dots << \mu_{\phi}^{1} << \mu_{\phi}$. Hence $\mu_{\phi}^{k}(E) = \int_{E} g_{\phi}^{k} d\mu$ for $E \in \mathbf{B}$, where g_{ϕ}^{k} denote the Radon-Nikodym derivative of μ_{ϕ}^{k} with respect to μ . The following definition are relevant in our context.

Definition 4. Two measures μ_1 and μ_2 on a measurable space(X, B) are called equivalent if $\mu_1 \ll \mu_2 \ll \mu_1$.

Definition 5. A measurable transformation $\phi : X \to X$ is said to be essentially surjective if $\mu(X - \phi(X)) = 0$.

Definition 6. A measurable transformation $\phi : X \to X$ is said to be essentially injective if there exists a measurable subset $E \in \mathbf{B}$ such that $\mu(X - E) = 0$ and $\phi : E \to X$ is injective.

Definition 7. Ascent and Descent : Let V be a vector space and $T : V \to V$ be a linear operator. Let N(T) and R(T)denote the kernel and range of T respectively. Then ascent of T and descent of T, defined by a(T) and d(T), are defined as follows :

and

$$d(T) = \inf_{n \ge 0} \{n : R(T^n) = R(T^n + 1)\}$$

 $a(T) = \inf_{n \ge 0} \{n : N(T^n) = N(T^n + 1)\}$

It is well known that if a(T) and d(T) are both finite, then they are equal. In Kumar (R.,2008) the author has given a characterization of weighted composition operators which have both ascent and descent 1. A detailed work can be found in in monographs and the thesis works Carlson (1990), Chandra & Kumar (2010), Chandra & Kumar (2010), Chandra & Kumar (2020), Grabiner (1982), Kaashoek & Lay (1972), Tripathi G.P. (2004).

II. MANUSCRIPT ORGANIZATION

In this section, we give a complete characterization of composition operators on L^p Spaces $(1 \le p < \infty)$ which have finite ascent and finite descent

Theorem 1. Let C_{ϕ} be a composition operator on $L^{p}(\mu)$ $(1 \leq p < \infty)$. Let k be a positive integer. Then we have

$$N(C^k_\phi) = L^p(X_k),$$

where $X_k = \{x \in X : g_{\phi}^k(x) = 0\}$ and

$$L^{p}(X_{k}) = \{ f \in L^{p}(\mu) : f(x) = 0 \text{ a.e. on } X - X_{k} \}.$$

Proof: For $f \in L^p(\mu)$, the support of f is

$$supp(f) = x \in X : f(x) \neq 0.$$

Clearly, we have

$$L^{p}(X_{k}) = \{f \in L^{p} : supp(f) \subseteq X_{k} a.e.\}$$
$$= \{f \in L^{p}(\mu) : g^{k}_{\phi|supp(f)} = 0\}$$

For $f \in L^p(X_k)$, We have

$$\|C_{\phi}^{k}f\| = \int_{X} |C_{\phi}^{k}f(x)|^{p} d\mu(x) = \int_{X} |f(x)|^{p} g_{\phi}^{k}(x) d\mu(x).$$

Hence

$$\begin{split} \|C_{\phi}^{k}f\| &= \int_{X-X_{k}} |f(y)|^{p} g_{\phi}^{k}(x) d\mu(y) + \int_{X_{k}} |f(y)|^{p} g_{\phi}^{k}(x) d\mu(y) \\ \text{Thus } f \in N(C_{\phi}^{k}). \text{ So that } N(C_{\phi}^{k}) = L^{p}(X_{k}) \subseteq N(C_{\phi}^{k}). \end{split}$$

Conversely, let $f \in N(C_{\phi}^k)$. Then $f \circ \phi^k = 0$ a.e. We have

$$0 = \int_X |f(\phi^k(x))|^p d\mu(x) = \int_X |f(x)|^p g_{\phi}^k(x) d\mu(x).$$

Which implies that $g_{\phi|supp(f)}^k = 0$ a.e. So that $f \in L^p(X_k)$. Thus $N(C_{\phi}^k) \subseteq L^p(X_k)$.

Theorem 2. Let C_{ϕ} be a composition operator on $L^{p}(\mu)(1 \leq p < \infty)$. Let k be a positive integer. Then C_{ϕ} is injective if and only if ϕ^{k} is essentially surjective, where ϕ^{k} denote the k-th iterate of ϕ .

Proof: If C_{ϕ} is injective, then using Theorem 1, we see that $L^{p}(X_{k}) = 0$. Thus $g_{\phi}^{k}(x) \neq 0$ a.e. This implies that $\mu(X_{k}) = 0$. Therefore ϕ^{k} is essentially surjective. Now we show that

$$X - X_k = \phi^k(X).$$

Clearly $\phi^k(X) \subseteq X - X_k$. Also for each $E \in \mathbf{B}$ such that $E \subseteq X - \phi^k(X)$, we have

$$0 = \mu_{\phi}^k(E) = \int_E g_{\phi}^k(x) d\mu(x.)$$

Which implies that $g_{l/E}^k = 0$. This implies that $E \subseteq X_k$. Thus $X - \phi^k(X) \subseteq X_k$. Hence $X - X_k \subseteq \phi^k(X)$. This proves that $\phi^k(X) = X - X_k$. Note that we have used the fact that $\mu_{\phi}^k < < \neq \mu o(\phi^k)^{-1}$.

Theorem 3. Let C_{ϕ} be a composition operator on $L^{p}(\mu)(1 \leq p < \infty)$. Let k be a positive integer. Then C_{ϕ} has ascent k if and only if the measure μ_{ϕ}^{k} and μ_{ϕ}^{k+1} are equivalent measure.

Proof: Suppose μ_{ϕ}^k and μ_{ϕ}^{k+1} are equivalent measure.

Thus $\mu_{\phi}^k << \mu_{\phi}^{k+1} << \mu_{\phi}^k$. Then

1

$$X_k = \{x \in X : g_{\phi}^k(x) = 0\} \\ = \{x \in X : g_{\phi}^{k+1}(x) = 0\} \\ = X_{k+1}.$$

Hence by Theorem 1,

$$N(C_{\phi}^{k+1}) = L^{p}(X_{k+1})$$
$$= L^{p}(X_{k})$$
$$= N(C_{\phi}^{k}).$$

Thus $a(C_{\phi}) = k$.

Conversely, suppose $a(C_{\phi}) = k$, where k is the smallest positive integer. Then $N(C_{\phi}^{k+1}) = N(C_{\phi}^{k})$. Hence by Theorem 1, we have

$$L^p(X_k) = L^p(X_{k+1}).$$

This implies that $X_{k+1} = X_k$. But

$$X_{k+1} = \{x \in X : g_{\phi}^{k+1}(x) = 0\}$$

and

$$X_k = \{ x \in X : g_{\phi}^k(x) = 0 \}.$$

Hence $\mu_{\phi}^{k+1} << \mu_{\phi}^{k} << \mu_{\phi}^{k+1}$. Therefore μ_{ϕ}^{k+1} and μ_{ϕ}^{k} are equivalent.

Theorem 4. $d(C_{\phi}) = k$ if k is the smallest positive integer for which $\phi : R(\phi^k) \to R(\phi^k)$ is essentially injective.

Proof: $\phi : R(\phi^k) \to R(\phi^k)$ is essentially injective. We prove that $R(C_{\phi}^k) = R(C_{\phi}^{k+1})$. Clearly $R(C_{\phi}^{k+1}) \subseteq R(C_{\phi}^k)$. Let $f \in R(C_{\phi}^k)$ This implies that $f = C_{\phi}^k(g)$; for some $g \in L^p(\mu)$. Thus $f = go\phi^k$. Since $\phi : R(\phi^k) \to R(\phi^k)$ is essentially injective. There exists a measurable subset E of $R(\phi^k)$ such that $\mu(R(\phi^k) - E) = 0$ and $\phi : E \to R(\phi^k)$ is injective. Suppose $g = C_{\phi}h$. Define h as follows:

$$h(x) = \begin{cases} g(\phi^{-1}(x)) & \text{if } x \in R(\phi^k) \\ 0 & \text{otherwise} \end{cases}$$

Then clearly $h \in L^p(\mu)$. Further, $C_{\phi}^{k+1}h = ho\phi^{k+1} = go\phi^k$ (since $g = ho\phi$) = f. This implies $f \in R(C_{\phi}^{k+1})$. Hence $R(C_{\phi}^k) \subseteq R(C_{\phi}^{k+1})$. Therefore $R(C_{\phi}^k) = R(C_{\phi}^{k+1})$. Thus $d(C_{\phi}) = k$.

Remark 1. The following Theorem is a consequence of the Theorem 2 (above) and the fact that if a(T) and d(T) are both finite then a(T) = d(T) for any linear operator T.

Theorem 5. If $a(C_{\phi})$ and $d(C_{\phi})$ are both finite then $a(C_{\phi}) = d(C_{\phi}) = k$ if and only if there exists a smallest positive integer k such that μ_{ϕ}^{k} and μ_{ϕ}^{k+1} are equivalent measures.

Remark 2. The following example shows that if $a(C_{\phi})$ is finite, it is not necessary that $d(C_{\phi})$ is finite.

Example 1. Let $X = \mathbf{N}, \mathbf{B} = P(X) = Power set and <math>\mu = counting$ measure.

Now we define ϕ : $\mathbf{N} \rightarrow \mathbf{N}$ *as follows:*

$$\phi(n) = \begin{cases} 1 & n = 1, 2\\ n-1 & n > 2 \end{cases}$$

Then C_{ϕ} is a composition operator on $L^{p}(X, \mathbf{B}, \mu)$. It is easy to verify that $a(C_{\phi}) = 0$ but $d(C_{\phi}) = \infty$.

REFERENCES

- Carlson, J.W. (1990). Hyponormal and Quasinormal Weighted Composition Operators on ℓ^2 . Rocky Mountain J.Math.20, 399-407.
- Chandra, H. & Kumar, P. (2010). Ascent and Descent of Product and Sum of two Composition Operators on l^p Spaces. Journal of Scientific Research, 54(1, 2), 223-231.
- Chandra H., & Kumar P. (2010). Ascent and Descent of Composition Operators On *l^p* Spaces, Demonstratio Mathematica, XLIII, No.1, 161-165.
- Chandra H. & Kumar P. (2020). Essential Ascent and Essential Descent of a Linear Operator and a Composition Operator. South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 16, August, Issue 2, 13-22.
- Grabiner S. (1982). Uniform Ascent and Descent of Bounded Operators. J.Math. Soc.Japan, 34, 317-337.
- Kaashoek M.A., Lay D.C. (1972). Ascent, Descent and Commuting Perturbations. Trans. Amer. Math. Soc. 169,35-47.
- Kumar, D.C. (1985). Weighted Composition Operators. Thesis University of Jammu.
- Kumar, R.(2008). Ascent and Descent of Weighted Composition Operators On L^p spaces. Matmatick Vesnik 60,47-51.
- Tripathi G.P. (2004). A Study of Composition Operators and Elementary Operators. Thesis, Banaras Hindu University.