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Abstract—In this paper we give a complete characterization
of composition operators on Lp Spaces (1 ≤ p <∞) which have
finite ascent and finite descent.
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I. INTRODUCTION

Definition 1. Let (X,B, µ) be a σ finite measure space. For
(1 ≤ p < ∞), let Lp(µ) denote the Banach space of all
equivalence class of B-measurable functions on X. Note that
we identify any two functions that are equal µ a.e. on X . Let
v be another measure on the measurable space (X,B) such
that v(A) = 0 for each A ∈ B for which v(A) = 0. Then we
say that the measure v is absolutely continuous with respect
to the measure µ and we write v << µ. By Radon-Nikodym
theorem, there exists a non-negative locally integrable function
fv on X such that the measure v can be represented as

v(A) =

∫
A

fv(x)dµ(x);

for each A ∈ B. The function fv is called the Radon-Nikodym
derivative of the measure v with respect to the measure µ. A
measurable transformation φ : X → X be a non-singular if
µoφ−1 << µ.

Definition 2. Composition Operators on Lp-spaces: Let
φ : X → X be a measurable transformation such that
foφ ∈ Lp(µ) whenever f ∈ Lp(µ). Then Cφ : Lp(µ) →
Lp(µ) is called a “Composition Operator” on Lp(µ) if Cφ is
a bounded linear operator on Lp(µ). It is well-known that
Cφ is a composition operator on Lp(µ)(1 ≤ p < ∞) if
and only if there exists a real number k > 0 such that
µoφ−1(E) ≤ kµ(E) for all E ∈ B. This condition implies
that µoφ−1 << kµ.

Definition 3. Let φ : X → X be a measurable transformation
such that Cφ : Lp(µ) → Lp(µ) is a composition operator.
Let µ1

φ(E) =
∫
φ−1(E)

dµ. Then clearly mu1φ << µ. Hence
µ1
φ(E) =

∫
E
g1φdµ where g1φ denote the Radon-Nikodym

derivative of µ1
φ with respect to µ. For k ≥ 2, we define

µkφ(E) =
∫
φ−1(E)

dµk−1φ . Then it is easy to see that µkφ <<

µk−1φ << ..... << µ1
φ << µφ. Hence µkφ(E) =

∫
E
gkφdµ for

E ∈ B, where gkφ denote the Radon-Nikodym derivative of µkφ
with respect to µ. The following definition are relevant in our
context.

Definition 4. Two measures µ1 and µ2 on a measurable
space(X,B) are called equivalent if µ1 << µ2 << µ1.

Definition 5. A measurable transformation φ : X → X is
said to be essentially surjective if µ(X − φ(X)) = 0.

Definition 6. A measurable transformation φ : X → X is
said to be essentially injective if there exists a measurable
subset E ∈ B such that µ(X − E) = 0 and φ : E → X is
injective.

Definition 7. Ascent and Descent : Let V be a vector space
and T : V → V be a linear operator. Let N(T ) and R(T )
denote the kernel and range of T respectively. Then ascent of
T and descent of T, defined by a(T ) and d(T ), are defined as
follows :

a(T ) = inf
n≥0
{n : N(Tn) = N(Tn + 1)}

and
d(T ) = inf

n≥0
{n : R(Tn) = R(Tn + 1)}.

It is well known that if a(T ) and d(T ) are both finite,
then they are equal. In Kumar (R.,2008) the author has given
a characterization of weighted composition operators which
have both ascent and descent 1. A detailed work can be
found in in monographs and the thesis works Carlson (1990) ,
Chandra & Kumar (2010), Chandra & Kumar (2010), Chandra
& Kumar (2020), Grabiner (1982), Kaashoek & Lay (1972),
Tripathi G.P. (2004).

II. MANUSCRIPT ORGANIZATION

In this section, we give a complete characterization of
composition operators on Lp Spaces (1 ≤ p < ∞) which
have finite ascent and finite descent
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Theorem 1. Let Cφ be a composition operator on
Lp(µ) (1 ≤ p < ∞). Let k be a positive integer. Then
we have

N(Ckφ) = Lp(Xk),

where Xk = {x ∈ X : gkφ(x) = 0} and

Lp(Xk) = {f ∈ Lp(µ) : f(x) = 0 a.e. on X −Xk}.

Proof: For f ∈ Lp(µ), the support of f is

supp(f) = x ∈ X : f(x) 6= 0.

Clearly, we have

Lp(Xk) = {f ∈ Lp : supp(f) ⊆ Xk a.e.}
= {f ∈ Lp(µ) : gkφ|supp(f) = 0}

For f ∈ Lp(Xk) , We have

‖Ckφf‖ =
∫
X

|Ckφf(x)|pdµ(x) =
∫
X

|f(x)|pgkφ(x)dµ(x).

Hence

‖Ckφf‖ =
∫
X−Xk

|f(y)|pgkφ(x)dµ(y)+
∫
Xk

|f(y)|pgkφ(x)dµ(y).

Thus f ∈ N(Ckφ). So that N(Ckφ) = Lp(Xk) ⊆ N(Ckφ).

Conversely, let f ∈ N(Ckφ). Then foφk = 0 a.e. We have

0 =

∫
X

|f(φk(x))|pdµ(x) =
∫
X

|f(x)|pgkφ(x)dµ(x).

Which implies that gkφ|supp(f) = 0 a.e. So that f ∈ Lp(Xk) .
Thus N(Ckφ) ⊆ Lp(Xk).

Theorem 2. Let Cφ be a composition operator on Lp(µ)(1 ≤
p <∞. Let k be a positive integer. Then Cφ is injective if and
only if φk is essentially surjective, where φk denote the k-th
iterate of φ.

Proof: If Cφ is injective, then using Theorem 1, we see
that Lp(Xk) = 0. Thus gkφ(x) 6= 0 a.e. This implies that
µ(Xk) = 0. Therefore φk is essentially surjective. Now we
show that

X −Xk = φk(X).

Clearly φk(X) ⊆ X − Xk. Also for each E ∈ B such that
E ⊆ X − φk(X), we have

0 = µkφ(E) =

∫
E

gkφ(x)dµ(x.)

Which implies that gkl/E = 0. This implies that E ⊆ Xk.

Thus X − φk(X) ⊆ Xk. Hence X − Xk ⊆ φk(X). This
proves that φk(X) = X − Xk. Note that we have used the
fact that µkφ << 6= µo(φk)−1.

Theorem 3. Let Cφ be a composition operator on Lp(µ)(1 ≤
p <∞). Let k be a positive integer. Then Cφ has ascent k if
and only if the measure µkφ and µk+1

φ are equivalent measure.

Proof: Suppose µkφ and µk+1
φ are equivalent measure.

Thus µkφ << µk+1
φ << µkφ. Then

Xk = {x ∈ X : gkφ(x) = 0}
= {x ∈ X : gk+1

φ (x) = 0}
= Xk+1.

Hence by Theorem 1,

N(Ck+1
φ ) = Lp(Xk+1)

= Lp(Xk)

= N(Ckφ).

Thus a(Cφ) = k.
Conversely, suppose a(Cφ) = k, where k is the smallest posi-
tive integer. Then N(Ck+1

φ ) = N(Ckφ). Hence by Theorem 1,
we have

Lp(Xk) = Lp(Xk+1).

This implies that Xk+1 = Xk. But

Xk+1 = {x ∈ X : gk+1
φ (x) = 0}

and
Xk = {x ∈ X : gkφ(x) = 0}.

Hence µk+1
φ << µkφ << µk+1

φ . Therefore µk+1
φ and µkφ are

equivalent.

Theorem 4. d(Cφ) = k if k is the smallest positive integer
for which φ : R(φk)→ R(φk) is essentially injective.

Proof: φ : R(φk) → R(φk) is essentially injective. We
prove that R(Ckφ) = R(Ck+1

φ ).

Clearly R(Ck+1
φ ) ⊆ R(Ckφ). Let f ∈ R(Ckφ) This implies that

f = Ckφ(g); for some g ∈ Lp(µ). Thus f = goφk. Since
φ : R(φk) → R(φk) is essentially injective. There exists a
measurable subset E of R(φk) such that µ(R(φk) − E) = 0
and φ : E → R(φk) is injective.Suppose g = Cφh. Define h
as follows:

h(x) =

{
g(φ−1(x)) if x ∈ R(φk)

0 otherwise

Then clearly h ∈ Lp(µ). Further, Ck+1
φ h = hoφk+1 =

goφk(since g = hoφ) = f. This implies f ∈ R(Ck+1
φ ).

Hence R(Ckφ) ⊆ R(Ck+1
φ ).Therefore R(Ckφ) = R(Ck+1

φ ).
Thus d(Cφ) = k.

Remark 1. The following Theorem is a consequence of the
Theorem 2 (above) and the fact that if a(T ) and d(T ) are
both finite then a(T ) = d(T )for any linear operator T.

Theorem 5. If a(Cφ) and d(Cφ) are both finite then a(Cφ) =
d(Cφ) = k if and only if there exists a smallest positive integer
k such that µkφ and µk+1

φ are equivalent measures.

Remark 2. The following example shows that if a(Cφ) is
finite, it is not necessary that d(Cφ) is finite.

Example 1. Let X = N,B = P (X) = Power set and µ =
counting measure.
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Now we define φ : N→ N as follows:

φ(n) =

{
1 n = 1, 2

n− 1 n > 2

Then Cφ is a composition operator on Lp(X,B, µ). It is easy
to verify that a(Cφ) = 0 but d(Cφ) =∞.
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