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Abstract—This article gives an effective strategy to solve the
system of linear Stratonovich Volterra integral equations. Using
the Bernstein polynomial multiwavelets operational matrix of
integration and its stochastic operational matrix of integration,
the system of linear Stratonovich Volterra integral equations
can be reduced to a system of linear algebraic equations with
unknown coefficients, and the obtained linear algebraic equations
are solved numerically. Error analysis of the proposed method is
given. Numerical examples are presented to show that the method
described is accurate and precise.
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I. INTRODUCTION

In the late 19th century, the stochastic processes were first
analyzed to help us understand financial markets and Brownian
motion. The Itô-integral is named after Kyoshi Itô while the
Stratonovich integral was simultaneously developed by R. L.
Stratonovich [Stratonovich, R. L., (1966)] and D. L. Fisk
[Fisk, D. L., (1964)]. Itô integrals and Stratonovich integrals
are the two stochastic integrals in stochastic processes, of
which, Itô integrals are used in applied mathematics and
Stratonovich integrals are used in physics.

In contrast to the Itô calculus, the Stratonovich integrals are
defined to have the chain rule of ordinary calculus. Integration
by parts and the chain rule are the same as in standard calculus.
Therefore, in the sense of Stratonovich calculus, stochastic in-
tegrals are always taken in applications. The calculus continue
to be very different, even though the manipulation rules are the
same. The processes should be thus adapted as in Itô calculus.
The theory of standard stochastic differential equations for
Stratonovich stochastic differential equations, since they can
be reduced to Itô integrals.

Due to the difficulty and complexity, we often do not
solve Stratonovich Volterra integral equations analytically
and try to solve them numerically. Several numerical meth-
ods are used to solve various stochastic integral equa-
tions. For instance nonlinear stochastic Itô integral equa-
tions [Heydari, M. H. et al., (2015)], nonlinear stochas-
tic Volterra integral equations [Mirzaee, F., Hamzeh, A.
(2015)], Stochastic Volterra equations [Zhang, X. (2010)],
nonlinear Stratonovich Volterra integral equations [Mirzaee,
F., Hadadiyan, E. (2016)], m-dimensional stochastic Itô
Volterra integral equations [Maleknejad, K. et al., (2012)],
stochastic integro-differential equations [Jankovic, S., Ilic, D.
(2010)], nonlinear stochastic integral equation [Asgari, M. et.
al. (2014)], m-dimensional stochastic Itô-Volterra integral
equations [Maleknejad, K. et al. (2012)], stochastic Volterra-
Fredholm integral equations [Khodabin, M. et al. (2012)],
nonlinear stochastic Itô Volterra integral equations [Hashemi,
B. et al. (2017)], two-dimensional linear stochastic Volterra-
Fredholm integral equation [Fallahpour, M. et al. (2016)],
stochastic Volterra integral equations [Shekarabi, F. H. et
al. (2014)], stochastic Volterra integral equations [Khodabin,
M. et al. (2014)], stochastic Itô-Volterra integral equations
[Heydari, M. H. et al. (2014)], reconditined semilinear
stochastic singular and hypersingular integral equations [Ros-
tami Varnos Fadrani, D., Maleknejad, K. (2000)], fractional
stochastic integro-differential equation [Mirzaee, F., Samad-
yar, N. (2017)], two dimensional linear stochastic integral
equations on non-rectangular domains [Mirzaee, F., Samadyar,
N. (2018)], Legendre wavelets Galerkin method for solving
nonlinear stochastic integral equations [Heydari, M. H. et
al. (2016)], nonlinear Stratonovich Volterra integral equations
[Mirzaee, F. et al. (2017)].

In this article, we obtain the approximate solution of
the following system of linear Stratonovich Volterra integral
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equations (SLSVIE) using Berstein polynomial multiwavelets
(BPMW):

y(x) = f(x) +

∫ x

0

k1(x, t)y(t)dt+

∫ x

0

k2(x, t)y(t) o dW (t),

(1)

where

y(x) = [y1(x), y2(x), ..., yn(x)]
T
,

f(x) = [f1(x), f2(x), ..., fn(x)]
T
,

k1(x, t) = [K1i,j(x, t)] , i, j = 1, 2, 3, ..., n,

k2(x, t) = [K2i,j(x, t)] , i, j = 1, 2, 3, ..., n.

where, yi(x) is the unknown to be determined and fi(x),
k1i,j(x, t), and k2i,j(x, t) for i, j = 1, 2, ..., n are the known
functions. The symbol o between integrand and the stochastic
differential denotes the Stratonovich integral.

The article is organized as follows: Properties of Brown-
ian motion, Bernstein polynomial multiwavelets, Block pulse
functions, operational and stochastic operational matrix of
integration of Block pulse functions, operational matrix of in-
tegration of Bernstein polynomial multiwavelets, and stochas-
tic operational matrix of integration of Bernstein polynomial
multiwavelets are explained in section II. Method of solution is
given in III. Error estimate of the proposed method is given in
IV. Some numerical examples based on the proposed method
are given in section V. Finally, the conclusion is drawn in
section VI.

II. PROPERTIES OF BROWNIAN MOTION AND BERNSTEIN
POLYNOMIAL MULTIWAVELETS

In this section, we study some basic definitions related to
Brownian motion and the properties of Block pulse functions.
Also, we study the properties of the Bernstein polynomial
multiwavelets. And we study the operational matrix of integra-
tion of Bernstein polynomial multiwavelets and the stochastic
operational matrix of integration of Bernstein polynomial
multiwavelets.

A. Brownian Motion

Brownian motion is explained in detail in [S. C. Shiralashetti
and Lata Lamani (2020)].

B. Block pulse functions (BPFs)

A set of BPFs [Maleknejad, K. et al., (2012)] φn (x), n =
1, 2, ..., m̂ on the interval [0, 1) are defined as follows:

φn(x) =

{
1, n−1

m̂ ≤ x < n
m̂ ,

0, otherwise,

where x ∈ [0, 1) , n = 1, 2, ..., m̂ and h = 1
m̂ . The properties

of BPFs are as follows:
• The BPFs on the interval [0, 1) are disjoint

φn (x)φm (t) = δnm(x),

n, m = 1, 2, ..., m̂ and δnm is Kronecker delta.

• The BPFs are orthogonal on the interval [0, 1).∫ 1

0

φn (x)φm (t) dt = hδnm(x), n, m = 1, 2, ..., m̂.

• If m̂ → ∞, then the BPFs set is complete; for every
f ∈ L2 ([0, 1)), Parseval’s identity holds,∫ 1

0

f2 (x) dx =

∞∑
i=1

f2n ‖φn (x)‖2 ,

where,

fn =
1

h

∫ 1

0

f(x)φn (x) dx.

Let us consider the first m̂ terms of BPFs and we write them
as a m̂-vector,

φ (x) =
(
φ1(x) φ1(x) · · · φm̂(x)

)T
, x ∈ [0, 1) (2)

The above representation and disjointness property follows:

φ (x)φT (x) =


φ1 (x) 0 · · · 0

0 φ2(x) · · · 0
...

...
. . .

...
0 0 · · · φm̂(x)


m̂×m̂

Furthermore, we have φT (x)φ (x) = 1 and
φ (x)φT (x)FT = DFφ (x) where DF usually denotes
a diagonal matrix whose diagonal entries are related to a
constant vector F = (f1, f2, ..., fm̂)

T .
The operational matrix of integration of BPF [Maleknejad,

K. et al., (2012)] P is given as:

P =
h

2


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1


m̂×m̂

,

and the stochastic operational matrix of integration of BPF
[Maleknejad, K. et al., (2012)] PS is given as:

PS =


W (h

2
) W (h) · · · W (h)

0 W ( 3h
2

) − W (h) · · · W (2h) − W (h)

0 0 · · · W (3h) − W (2h)

...
...

. . .
...

0 0 · · · W ( (2m̂−1)h
2

) − W ((m̂ − 1)h)


m̂×m̂

.

C. Bernstein Polynomial Multiwavelets(BPMW)

BPMW ψn,m(x) = ψ(k, n,m, x) have four arguments: n =
0, 1, ..., 2k − 1, k is assumed to be any positive integer, m is
the order of Bernstein polynomials and x is the normalized
time. BPMW [Suman, S. et al. (2014)] are defined on the
interval [0, 1) as follows:

ψn,m(x) =

{
2

k
2WBm(2kx− n), n

2k
≤ x < n+1

2k
,

0, otherwise.
(3)

where, m = 0, 1, ...,M . The Berstein polynomials Bm(x) of
degree m are defined on the interval [0, 1) as,

Bi,m(x) =

(
m
i

)
xi(1− x)m−i, i = 0, 1, ...,m. (4)
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Berstein polynomials are also recursively defined on the inter-
val [0, 1) as,

Bi,m(x) = (1− x)Bi,m−1(x) + xBi−1,m−1(x). (5)

In equation (5), WBm is the orthonormal form of Berstein
polynomials of order m. These orthonormal form of Berstein
polynomials are obtained by using Gram- Schmidt orthonor-
malization process on Berstein polynomials [Suman, S. et
al. (2014)] Bi,m(x). For instance, for M = 3, orthonormal
polynomials are given by,

WB0(x) =
√

7
[
(1− x)3

]
,

WB1(x) = 2
√

5

[
3x(1− x)2 − 1

2
(1− x)3

]
,

WB2(x) =
10
√

3

3

[
3x2(1− x)− 3x(1− x)2 +

3

10
(1− x)3

]
,

and

WB3(x) = 4

[
x3 − 9

2
x2(1− x) + 3x(1− x)2 − 1

4
(1− x)3

]
.

D. Function approximation

Suppose f(x) ∈ [0, 1) is expanded in terms of the BPMW
as

f(x) =

∞∑
m=0

∞∑
n=1

fn,mψn,m(x) = FTψ(x), (6)

Truncating the above infinite series, we get

f(x) =

M−1∑
m=0

2k−1∑
n=1

fn,mψn,m(x) = FTψ(x), (7)

where F and ψ(x) are m̂×1 (m̂ = (2k−1)(2M+2)) vectors
given by

F = [f0,0, f0,1, .., f0,M ,

f1,0, .., f1,M , .., f2k−1,0, .., f2k−1,M ]T , (8)

and

ψ(x) = [ψ0,0, ψ0,1, .., ψ0,M ,

ψ1,0, .., ψ1,M , .., ψ2k−1,0, .., ψ2k−1,M ]T . (9)

Using the collocation point xj = j−0.5
m̂ , equation (9) reduces

to m̂× m̂ BPMW coefficient matrix. For instance, for k = 1
and M = 1, we get

ψ(x) =


ψ0,0(x)
ψ0,1(x)
ψ1,0(x)
ψ1,1(x)

 =


1.5785 0.0585 0 0
1.3341 0.8400 0 0

0 0 1.5785 0.0585
0 0 1.3341 0.8400

 .
E. Operational matrix of integration (OMI) of Bernstein poly-
nomial multiwavelets

Theorem 2.1: Let ψ(x) and φ(x) be the m̂-dimensional
BPMW and BPF vector, respectively. Then, ψ(x) can be
expressed using BPF as follows:

ψ(x) = Sφ(x), (10)

where S is a m̂× m̂ block matrix given by,

Si,j = ψi

(
2j − 1

2m̂

)
, i, j = 1, 2, ..., m̂.

Proof: See [S. C. Shiralashetti and Lata Lamani (2020)].

Theorem 2.2: If ψ(x) is the m̂-dimensional BMPW vector
defined in equation (9), then the integral of this vector is
derived as: ∫ x

0

ψ(t)dt = SPS−1ψ(x) = λψ(x). (11)

where, λ is the OMI of BPMW, P is the OMI for BPF, and
S is introduced in (10).

Proof: See [S. C. Shiralashetti and Lata Lamani (2020)].

F. Stochastic operational matrix of integration (SOMI) of
Bernstein polynomial multiwavelets

Theorem 2.3: If ψ(x) is the m̂-dimensional BMPW vector
defined in equation (9), then the Itô-integral of this vector is
derived as:∫ x

0

ψ(t)dW (t) = SPSS
−1ψ(x) = λSψ(x). (12)

where, λS is the SOMI of BPMW, PS is the SOMI for BPF,
and S is introduced in (10).
Proof: See [S. C. Shiralashetti and Lata Lamani (2020)].

Remark 2.4: If F is a m̂ vector, then

ψ(x)ψT (x)F = F̃ψ(x), (13)

where, ψ(x) is the BPMW coefficient matrix for the colloca-
tion point xj = j−0.5

m̂ and F̃ is a m̂× m̂ matrix given by

F̃ = ψ(x)F̄ψ−1(x), (14)

where F̄ = diag(ψ−1(x)F ). Also, for a m̂× m̂ matrix G,

ψT (x)Gψ(x) = ĜTψ(x), (15)

where ĜT = Xψ−1(x), in which X = diag(ψT (x)Gψ(x)).

III. METHOD OF SOLUTION

In this section we consider the SLSVIE given in equation
(1) as follows,

yi(x) = fi(x) +

∫ x

0

(k1i1(x, t)y1(t) + ...+ k1in(x, t)yn(t))dt

+

∫ x

0

(k 2i1(x, t)y1(t) + ...+ k 2in(x, t)yn(t)) o dW (t).

(16)

Approximating yi(x),fi(x), k1i j , and k2i j for j = 1, 2, ..., n
as follows:

yi(x) ' CT
i ψ(x) = Ciψ

T (x). (17)

fi(x) ' FT
i ψ(x) = ψT (x)Fi, (18)

k 1i j(x, t) ' ψT (x)K 1i jψ(t) = ψT (t)K 1Ti jψ(x), (19)

k 2i j(x, t) ' ψT (x)K 2i jψ(t) = ψT (t)K 2Ti jψ(x), (20)
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where Ci and Fi, are Bernstein polynomial multiwavelets
coefficient vectors and K1i,j , K2i,j are Bernstein polynomial
multiwavelet matrices. We denote them as follows:

Ci =
[
ci1 ci2 ... cm̂

]T
,

Fi =
[
fi1 fi2 ... fm̂

]T
,

K1ij(x, t) '
[
k1ijst

]
, s, t = 1, 2, ..., m̂,

K2ij(x, t) '
[
k2ijst

]
, s, t = 1, 2, ..., m̂.

Substituting (17), (18), (19), and (20) in (16), we get

CT
i ψ(x) ' FT

i ψ(x) +

(∫ x

0

ψ(t)ψT (t)C1dt

)
K11iψ(x) + ...

+

(∫ x

0

ψ(t)ψT (t)Cm̂dt

)
K11m̂ψ(x)

+

(∫ x

0

ψ(t)ψT (t) C1o dW (t)

)
K21iψ(x) + ...

+

(∫ x

0

ψ(t)ψT (t)Cm̂ o dW (t)

)
K21m̂ψ(x).

Using Remark 2.4, we get

CT
i ψ(x) ' FT

i ψ(x) + ψT (x)

(∫ t

0

C̃1ψ(t)dt

)
K1T1iψ(x) + ...

+ ψT (x)

(∫ x

0

ψ(t)ψT (t)C̃m̂dt

)
K1T1m̂ψ(x)

+ ψT (x)

(∫ x

0

ψ(t)ψT (t)C̃1o dW (t)

)
K2T1iψ(x) + ...

+ ψT (x)

(∫ x

0

ψ(t)ψT (t)C̃m̂ o dW (t)

)
K2T1m̂ψ(x),

(21)

where C̃i, i = 1, 2, ..., m̂ is a m̂ × m̂ matrices. Using the
OMI of BPMW and SOMI of BPMW, we get

CT
i ψ(x) ' FT

i ψ(x) + ψT (x)K 1T1iC̃1 λψ(x) + ...

+ ψT (x)K 1T1pC̃m̂ λψ(x)

+ ψT (x)K2T1iC̃1λSψ(x) + ...

+ ψT (x)K2T1pC̃m̂λSψ(x). (22)

Let X1 = K1T1m̂C̃1λ, ...,Xm̂ = K1T1pC̃m̂λ and Y1 =

K2T1iC̃1λS , ..., Ym̂ = K2T1m̂C̃m̂λS . Again using Remark 1,
we get

CT
i ψ(x)−

(
X̂T

1 ψ(x) + ...+ X̂T
m̂ψ(x)

)
−
(
Ŷ T
1 ψ(x) + ...+ Ŷ T

m̂ψ(x)
)
' FT

i ψ(x). (23)

That is

CT
i −

(
X̂T

1 + ...+ X̂T
m̂

)
−
(
Ŷ T
1 + ...+ Ŷ T

m̂

)
' FT

i . (24)

Solving this linear system of equations we get the unknown
vectors Ci , i = 1, 2, ..., m̂. Substituting these unknown vectors
in equation (17), we get the solution SLSVIE given in equation
(16).

IV. ERROR ESTIMATE

Error estimate procedure is given in [S. C. Shiralashetti and
Lata Lamani 2020].

V. COMPUTATIONAL EXPERIMENTS
Test problem 5.1: Consider the SLSVIE [Mirzaee, F.,

Samadyar, N. (2017)]{
y1(x) = 1−

∫ x
0 ty2(t)dt+

∫ x
0 y1(t) o dW (t)−

∫ x
0 y2(t) o dW (t),

y2(x) =
∫ x
0 ty1(t)dt+

∫ x
0 y1(t) o dW (t) +

∫ x
0 y2(t) o dW (t),

(25)
where, x ∈ [0, 1). The exact solution of (25) is
y(x) = (y1(x), y2(x))

=

(
eW (x) cos

(
x2

2
+W (x)

)
, eW (x) sin

(
x2

2
+W (x)

))
,

where, y(x) = (y1(x), y2(x)) is the unknown stochastic
process and W (x) is the Brownian motion. Table I shows the
numerical results obtained by the method described in section
III (BPWM), and Bernoulli polynomials method (BPM) for
k = 1 and M = 0. Comparison of absolute errors (AE)
of BPWM, and BPM for k = 1 and M = 0 are shown
in table II. Table III shows the maximum absolute errors of
BPWM, and BPM of test problem 5.1 for k = 1 and M = 0.
Figure 1 shows the graphs of exact, BPMW solution, and
Bernoulli polynomials solution of test problem 5.1 for k = 1
and M = 0.

TABLE I
COMPARISON OF EXACT, BPWM, AND BPM FOR TEST PROBLEM 5.1 FOR

k = 1 AND M = 0.

y1(x) y2(x)

x Exact BPM BPMW Exact BPM BPMW

0 1.0000 0.6505 0.9582 0 -0.4560 -0.1909
0.1 0.9126 0.6724 0.9445 -0.2981 -0.4697 -0.1844
0.2 0.9021 0.6981 0.9308 -0.3149 -0.4834 -0.1674
0.3 0.8916 0.7276 0.9171 -0.3317 -0.4971 -0.1398
0.4 0.8811 0.7608 0.9034 -0.3485 -0.5108 -0.1017
0.5 0.8706 0.7977 0.8897 -0.3652 -0.5245 -0.0532
0.6 0.8601 0.8383 0.8760 -0.3820 -0.5382 0.0059
0.7 0.8496 0.8827 0.8623 -0.3988 -0.5519 0.0755
0.8 0.8391 0.9308 0.8486 -0.4156 -0.5656 0.1556
0.9 0.8286 0.9826 0.8349 -0.4324 -0.5793 0.2462

TABLE II
COMPARISON OF AE OF BPM, AND BPMW FOR k = 1 AND M = 0 FOR

TEST PROBLEM 5.1.

y1(x) y2(x)

x BPM BPMW BPM BPMW

0 0.3495 0.0418 0.1909 0.4560
0.1 0.2401 0.0320 0.1137 0.1716
0.2 0.2039 0.0288 0.1476 0.1685
0.3 0.1640 0.0256 0.1919 0.1654
0.4 0.1203 0.0224 0.2467 0.1623
0.5 0.0729 0.0192 0.3121 0.1592
0.6 0.0217 0.0160 0.3879 0.1561
0.7 0.0331 0.0128 0.4743 0.1531
0.8 0.0917 0.0096 0.5712 0.1500
0.9 0.1541 0.0064 0.6786 0.1469
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TABLE III
COMPARISON OF AE OF BPM, AND BPMW FOR k = 1 AND M = 0 FOR

TEST PROBLEM 5.1.

Methods Maximum
absolute error(Emax)

Bernoulli polynomials method
y1(x) 0.4560
y2(x) 0.6786

Berstein polynomials multiwavelet method
y1(x) 0.0418
y2(x) 0.3495
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Fig. 1. Graphs of exact, Berstein polynomial multiwavelets solution and
Bernoulli polynomials solution of test problem 5.1 for k = 1 and M = 0.

Test problem 5.2: Consider the SLSVIE [Mirzaee, F.,
Samadyar, N. (2017)]

{
y1(x) =

∫ x
0

1
t+1

y1(t)dt+
∫ x
0

t2

2
y2(t)dt−

∫ x
0 y2(t) o dW (t),

y2(x) = 1 +
∫ x
0

t2

2
y1(t)dt+

∫ x
0

1
t+1

y2(t)dt−
∫ x
0 y1(t) o dW (t),

(26)
where, x ∈ [0, 1). The exact solution of (26) is

y(x) = (y1(x), y2(x))

=

(
(x + 1) sinh

(
x3

6
−W (x)

)
, (x + 1) cosh

(
x3

6
−W (x)

))
,

where, y(x) = (y1(x), y2(x)) is the unknown stochastic
process and W (x) is the Brownian motion. Table IV shows the
numerical results obtained by the method described in section
III (BPWM), and Bernoulli polynomials method (BPM) for
k = 1 and M = 0. Comparison of absolute errors (AE)
of BPWM, and BPM for k = 1 and M = 0 are shown
in table V. Table VI shows the maximum absolute errors of
BPWM, and BPM of test problem 5.2 for k = 1 and M = 0.
Figure 2 shows the graphs of exact, BPMW solution, and
Bernoulli polynomials solution of test problem 5.2 for k = 1
and M = 0.

TABLE IV
COMPARISON OF EXACT, BPWM, AND BPM FOR TEST PROBLEM 5.2 FOR

k = 1 AND M = 0.

y1(x) y2(x)

x Exact BPM BPMW Exact BPM BPMW

0 1.0000 -0.2510 1.0000 0 1.0590 0.0000
0.1 0.6223 -0.3343 0.6371 1.2612 1.1955 1.4506
0.2 0.6400 -0.4059 0.6572 1.3593 1.3267 1.4647
0.3 0.6576 -0.4659 0.6772 1.4575 1.4526 1.4789
0.4 0.6753 -0.5143 0.6972 1.5556 1.5731 1.4930
0.5 0.6930 -0.5511 0.7173 1.6537 1.6882 1.5072
0.6 0.7107 -0.5763 0.7373 1.7518 1.7980 1.5214
0.7 0.7284 -0.5898 0.7573 1.8499 1.9025 1.5355
0.8 0.7460 -0.5918 0.7774 1.9481 2.0017 1.5497
0.9 0.7637 -0.5821 0.7974 2.0462 2.0954 1.5638

TABLE V
COMPARISON OF AE OF BPM, AND BPMW FOR k = 1 AND M = 0 FOR

TEST PROBLEM 5.2.

y1(x) y2(x)

x BPM BPMW BPM BPMW

0 1.2510 0.0000 1.0590 0.0000
0.1 0.9565 0.0148 0.0657 0.1893
0.2 1.0459 0.0172 0.0326 0.1054
0.3 1.1236 0.0196 0.0049 0.0214
0.4 1.1897 0.0219 0.0175 0.0625
0.5 1.2441 0.0243 0.0345 0.1465
0.6 1.2870 0.0266 0.0462 0.2305
0.7 1.3182 0.0290 0.0526 0.3144
0.8 1.3378 0.0313 0.0536 0.3984
0.9 1.3458 0.0337 0.0493 0.4823

TABLE VI
COMPARISON OF AE OF BPM, AND BPMW FOR k = 1 AND M = 0 FOR

TEST PROBLEM 5.2.

Methods Maximum
absolute error(Emax)

Bernoulli polynomials method
y1(x) 1.3458
y2(x) 1.0590

Berstein polynomials multiwavelet method
y1(x) 0.0337
y2(x) 0.4823

VI. CONCLUSION

An effective strategy to solve system of linear Stratonovich
Volterra integral equations using Bernstein polynomial multi-
wavelets is given in this article. These equations are reduced
to a system of linear algebraic equations with unknown
coefficients, using Bernstein polynomial multiwavelets oper-
ational matrices, their operational matrix of integration and
stochastic operational matrix of integration which are solved
numerically. Error analysis of the proposed method is given.
Numerical examples show that the numerical results are in
good agreement with that of exact ones and hence the method
described is accurate and precise.
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Fig. 2. Graphs of exact, Berstein polynomial multiwavelets solution and
Bernoulli polynomials solution of test problem 5.2 for k = 1 and M = 0.
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