

Volume 65, Issue 2, 2021

Journal of Scientific Research

Institute of Science, Banaras Hindu University, Varanasi, India.

Phytochemical Screening of *Calendula Officinalis (Linn.)* Using Gas-Chromatography-Mass Spectroscopy with Potential Antibacterial Activity

Darekar D. P.*1, Hate M. S.²

^{*1}Ramnarain Ruia Autonomous College, Matunga, Mumbai 400 019, ddipika1992@gmail.com ²Ramnarain Ruia Autonomous College, Matunga, Mumbai 400 019, manishhate@ruiacollege.edu

Abstract: Calendula officinalis L. (Pot Marigold) which belongs Asteraceae family is a yellow to orange flowers and known medicinal plant used in folk medicine from the ancient times. It has been found to have lots of medicinal properties, particularly for its antibacterial and antioxidant activities. The primary goal of this study is to evaluate phytochemicals present in Calendula Officinalis (Linn.) using Gas-Chromatography-Mass Spectroscopy technique with potential antibacterial activity. A total 48 compounds were identified and analysed from chloroform extract of C.officinalis, using GC-MS. The major components of the C. officinalis extract were Caryophyllene (12.97%), Lupeol (9.45%), and Stigmasterol (9.38%), Gamma.-Sitosterol (5.07%). Antibacterial effects of different extracts of C.officinalis flowers against gram negative and gram positive bacteria were determined by disc diffusion method. Chloroform extracts showed excellent antibacterial effects against tested strains of gram positive (Staphylococcus aureus, Bacillus subtilis and Enterococcus faecalis) and one strains of gram negative (Klebsiella pneumonia) bacteria.

Index Terms:, Calendula officinalis L., Caryophyllene, Enterococcus faecalis, Gamma.-Sitosterol, Klebsiella pneumonia. Lupeol, Staphylococcus aureus, Stigmasterol Bacillus subtilis

I. INTRODUCTION

Analytical science in recent years has progressed spectacularly with the discovery of new separation methods, (Sahingil D. et al., 2019; Sivananthan M. et al., 2013). It is an important and integral components of analytical science because few instrumental methods can be directly used for quantitative analysis on account of the presence of interfering substances (Agrawal et al., 2006; James et al., 1952), Plant phytoconstituents as a source of medicinal actives have been reported in literature, since ancient times (Tewari D. et al., 2012; Tosun G. et al., 2012). Many plants are used as folk medicines to infectious diseases (Jan AK et al., 2019; Moghtader M. et al., 2016). The most important of these bioactive constituents of plants are alkaloids, tannins, flavanoids and phenolic compounds (Khalid KA et al., 2012; Markham KR et al., 1975). Calendula Officinalis (Linn.) family Asteraceae is a known medicinal plant and is used in folk medicine from the ancient times (Ourabia I et al., 2019; Wilken JN et al., 2016). It has been found to have lots of medicinal properties, particularly for its antimicrobial and antioxidant activities (Ali EM et al., 2017; Hamza LF et al., 2018). Therefore, investigation of the chemical compounds within medicinal plants has become desirable (Pandey A et al., 2014). Gas-Chromatography-Mass Spectroscopy (GC-MS) has been used widely for analysis of herbal medicinal extracts (Mohammed GJ et al., 2018). Due to its simplicity of operation, speed, versatility and reproducibility, as a number of samples can be analysed simultaneously on a single run using only a small amount of sample (Al Mussawi et al., 2019; Chalchat JC et al., 1991). The main aim is to separate and identify phytochemicals from C. Officinalis flowers with respect to caryophyllene, lupeol, stigmasterol and gamma.-sitosterol and to study its antibacterial activities (Bogdanova NS et al., 1970; Jalill A et al., 2014; Prasad S et al., 2008). (Refer Fig.1, Fig.2, Fig 3 and Fig.4).

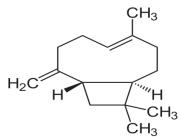


Fig. 1. Chemical structure of Caryophyllene

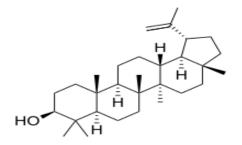


Fig. 3. Chemical structure of Luneol

II. EXPERIMENTAL

A. Materials and Methods

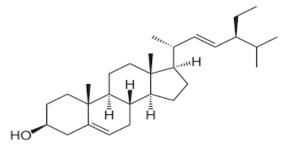
1) Collection of Plants

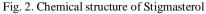
The fresh flowers of *Calendula Officinalis (Linn.)* were collected from Lonavala, Pune, in the month of February 2016. The plant was botanically authenticated. A Voucher specimen of the plant has been deposited at the herbarium of the Botanical Survey of India, Pune. No. BSI/WRC/IDEN.CER./2017/600.

2) Chemicals and Standards

HPLC grade chloroform were procured from E. Merck, Mumbai, India, Analytical grade ethyl acetate (purity 99.6%), Methanol (purity 99.9%), DMSO, n-Hexane and HPLC grade water were obtained from E.Merck, Mumbai, India

3) Equipments


Shimadzu System, AOC-20i auto injector, GC for mass spectrometer, GCMS-QP 2010 Ultra


4) Preparation of the Extracts

The dried flowers of *Calendula officinalis (Linn.)* powder was extracted using soxhlet extraction. Five grams of plant powder was weighed and packed in a whatman paper thimble. It was then extracted with 100 ml chloroform for 12 hours using soxhlet extractor. Extracts were filtered through a syringe filter of pore size 0.45 µm before further analysis.

B. Chromatographic Conditions

GC-MS analysis of the chloroform extract of *Calendula* officinalis (Linn.) was performed using Shimadzu GCMS-

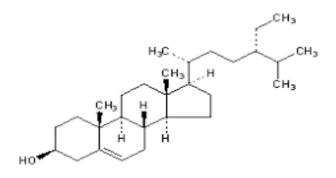


Fig. 4. Chemical structure of Gamma.-Sitosterol QP2010 system comprising a gas chromatograph interfaced to a mass spectrometer equipped with Rtx-5ms column (5% diphenyl/95% dimethyl polysiloxane) a capillary column having the length of 30 m, internal diameter of 0.25 mm and film thickness of 0.25 µm. For GC-MS detection, an electron ionization system was operated in electron impact mode with ionization energy of 70 eV. Helium gas (99.999%) was used as a carrier gas at a constant flow rate of 1.25 ml/min, and an injection volume of 1 μ l was employed (a split ratio of 5:1). The injector temperature was maintained at 250 °C, the ion-source temperature was 200 °C, the oven temperature was programmed from 200 °C (isothermal for 2 min), with an increase of 4 °C/min to 280°C with 10 min isothermal. Total program time was 36 minutes. Mass spectra were taken at 70 eV and recorded over the range of 35 to 600 m/z. Identification of components was based on comparison of their mass spectra with those of Wiley and NIST libraries and those described by Adams as well as on comparison of their retention indices with literature. (Refer Table I)

C. Antibacterial Activity Assay

The antibacterial assay of *Calendula officinalis (Linn.)* flowers extracts were carried out against *Staphylococcus aureus ,Bacillus subtilis* and *Enterococcus faecalis* and *Klebsiella pneumonia* by the disc diffusion method. All the bacteria were collected from the culture collection of Microbiology department of Ramnarain Ruia Autonomous College, Matunga, Mumbai. (Refer Fig.5 Fig.6, Fig.7 and Fig.8) In this assay, the positive control without extracts (solvent) and with flower extracts used .The extracts inhibitions were corrected based on positive

Parameters	Description	
Instrument	GC-MS QP 2010 Ultra Shimadzu	
Stationary phase	Rtx-5ms (5% Diphenylpolysiloxane 95% dimethylpolysiloxane)	
Carrier Gas	Helium	
Injector Mode	Split	
Split Ratio	5:1	
Sample Volume	1 µL	
Flow Rate	1.25ml/min	
Flow control Mode	Linear Velocity	
Purg Flow	3ml/min	
Interface temperature	320°C	
Ion Source Temperature	200 °C	
Run Time	36 minutes	
Start m/z	35	
End m/z	600	

Table I Optimized Chromatographic Conditions

Fig. 5. Bacillus subtilis

Fig. 6. Enterococcus faecalis)

(Gram-positive)

(Gram-positive)

control values and compared to those of reference control values given in references. The experiments were run in triplicate. (Refer Table II)

Fig. 8. Klebsiella pneumonia

Fig. 7. Staphylococcus aureus

(Gram-positive)

(Gram-negative)

D. Inoculums Preparation

Each bacterial strain was subcultured overnight at 35 °C in Mueller-Hilton agar slants. The bacterial growth was harvested using 5 ml of sterile saline water, its absorbance was adjusted at

		Bacterial Stain inhibition zone (mm)				
Plant used	Solvent extract	Bacillus subtilis	Enterococcus faecalis	Klebsiella pneumonia	Staphylococcus aureus	
	Chloroform	18.5 ± 0.13	18.7 ± 0.61	15.2 ± 0.57	18.8 ± 0.14	
	Methanol	16.8 ± 0.37	15.7 ± 0.17	14.9 ± 0.0	13.7 ± 0.12	
Calendula	Ethanol	15.6 ± 0.53	11.9 ± 0.34	14.1 ±	15.6 ± 0.72	
Officinalis (Linn.)				0.36		
	Water	13.4 ± 0.11	13.1 ± 0.35	6.2 ± 0.10	15.2 ± 0.62	
	n-Hexane	14.7 ± 0.25	14.2 ± 0.20	12.1 ±	13.8 ± 0.22	
				0.13		
	Ethyl Acetate	9.5 ± 0.74	8.3 ± 0.46	0.0 ± 0.0	9.1 ± 0.35	
-	Toluene	12.3 ± 0.51	11.8 ± 0.25	13.2 ± 0.25	11.3 ± 0.17	
	DMSO	11.4 ± 0.15	13.2 ± 0.15	14.6 ± 0.37	14.3 ± 0.26	

Table II. Antimicrobial screening test of Calendula officinalis (Linn.) Flowers with different solvents extracts (10 mg/ml) against some bacterial Strains

 $580\ \mu m$ and diluted to attain viable cell count of 107 CFU/ml using spectrophotometer.

and showed a strong antibacterial activity. (Refer Fig.11, Fig.12, Fig.13, and Fig.14)

III. RESULT AND DISCUSSION

In the present research work, a Gas Chromatography-Mass spectroscopy (GC-MS) method for the simultaneous identification of caryophyllene ,lupeol ,stigmasterol and gamma.-sitosterol from flowers powder of Calendula Officinalis (Linn.) has been developed. Simultaneous identification of caryophyllene ,lupeol ,stigmasterol and gamma.-sitosterol is not reported so far in literature. Initial trial experiments were conducted to select a suitable temperature program for accurate analysis of the standards of the various stationary phases i. e. various columns (Rtx-1ms, Rtx-5ms, Famewax) Rtx-5ms gave best results in terms of resolution between analytes of interest. Isothermal analysis, temperature programmed analysis and different flow rates of carrier gas were also tried. Out of which temperature programmed run gave the best resolution between the caryophyllene ,lupeol ,stigmasterol and gamma.sitosterol.(Refer Fig. 9 and Fig. 10).

The antibacterial activity of *Calendula officinalis (Linn.)* flowers extract were tested using the disc diffusion method at concentration of 10mg/ml. The results, shown in Table II indicate significant difference (p < 0.05) in inhibitory activity between Calendula officinalis (Linn.) flowers. These extracts exhibited moderate to appreciable antibacterial activities against three Gram-positive and one Gram-negative bacteria. In all, chloroform extracts and followed by methanol flowers extract of *Calendula officinalis (Linn.)* had higher activity compared to other extracts. Therefore this extracts were the most effective

CONCLUSION

A. The method was found to be suitable for qualitative and simultaneous identification of caryophyllene ,lupeol ,stigmasterol and gamma.-sitosterol markers from flower powder of Calendula Officinalis (Linn.) using Gas Chromatography-Mass Spectroscopy (GC-MS). The proposed method is simple, rapid, precise and accurate and can be further use for routine quality control analysis. Evaluation of potential antibacterial activity showed interesting results of Calendula officinalis (Linn.) against Bacillus subtilis (Gram-positive), Enterococcus faecalis (Gram-positive), Staphylococcus aureus (Grampositive), Klebsiella pneumonia (Gram-negative). The purified components may have even more potency with respect to inhibition of microbes. The proposed method can be further use for purification of individual groups of bioactive components which may further reveal the exact potential of the plant to inhibit several pathogenic microbes encourage the development.

Peak# R. Time Area% Height Name 1 2.079 399496 2.55 107312 Dimethylsulfoxonium formylmethylide 2 2.799 236681 1.51 123668 Butane, 1,1-diethoxy-3-methyl- 3 3.387 42297 0.27 28350 Cyclohexanol, 4-methyl-1-(1-methylethyl)- 4 4.324 32715 0.21 24336 laphaMethyl-alpha.[4-methyl-3-pentenyl]oxiran 5 4.540 29947 0.19 22203 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-vl)prop 6 4.706 477005 3.04 321704 (Methoxymethyl)trimethylsilane 7 5.950 541536 3.46 178062 Naphthalene 8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, hexadecamethyl- 11 11.427 111918 0.71 69871		Peak Report TIC				
2 2.799 236681 1.51 123668 Butane, 1,1-diethoxy-3-methyl- 3 3.387 42297 0.27 28350 Cyclohexanol, 4-methyl-1-(1-methylethyl)- 4 4.324 32715 0.21 24336 alpha -Methyl-alpha[4-methyl-3-pentenyl]oxiran 5 4.540 29947 0.19 22203 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)prop 6 4.706 477005 3.04 321704 (Methoxymethyl)trimethylsilane 7 5.950 541536 3.46 178062 Naphthalene 8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cyclooctasiloxane, hexadecamethyl- 13 13.611 28766 0.18	Peak#	R.Time	Area	Area%	Height	Name
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2.079	399496	2.55	107312	Dimethylsulfoxonium formylmethylide
4 4.324 32715 0.21 24336 alphaMethylalpha[4-methyl-3-pentenyl]oxiran 5 4.540 29947 0.19 22203 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)prop 6 4.706 477005 3.04 321704 (Methoxymethyl)trimethylsilane 7 5.950 541536 3.46 178062 Naphthalene 8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cyclocotasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate<	2	2.799	236681	1.51	123668	Butane, 1,1-diethoxy-3-methyl-
5 4.540 29947 0.19 22203 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)prop 6 4.706 477005 3.04 321704 (Methoxymethyl)trimethylsilane 7 5.950 541536 3.46 178062 Naphthalene 8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cyclooctasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*	3	3.387	42297	0.27	28350	Cyclohexanol, 4-methyl-1-(1-methylethyl)-
6 4.706 477005 3.04 321704 (Methoxymethyl)trimethylsilane 7 5.950 541536 3.46 178062 Naphthalene 8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cyclooctasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate	4	4.324	32715	0.21	24336	.alphaMethylalpha[4-methyl-3-pentenyl]oxirane
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	4.540	29947	0.19	22203	Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propa
8 6.055 108278 0.69 54955 Dodecane 9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cycloheptasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine	6	4.706	477005	3.04	321704	(Methoxymethyl)trimethylsilane
9 8.855 123563 0.79 74806 Tetradecane 10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cycloheptasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol <	7		541536	3.46	178062	Naphthalene
10 9.455 68691 0.44 31192 Cycloheptasiloxane, tetradecamethyl- 11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cycloheptasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid,	8	6.055	108278	0.69	54955	Dodecane
11 11.427 111918 0.71 69871 Hexadecane 12 12.048 25454 0.16 14171 Cyclooctasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol	9	8.855	123563	0.79	74806	Tetradecane
12 12.048 25454 0.16 14171 Cyclooctasiloxane, hexadecamethyl- 13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-o	10	9.455	68691			
13 13.611 28766 0.18 13445 Methoprene 14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid <t< td=""><td>11</td><td>11.427</td><td>111918</td><td>0.71</td><td>69871</td><td>Hexadecane</td></t<>	11	11.427	111918	0.71	69871	Hexadecane
14 13.752 73816 0.47 39133 Heneicosane 15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 2,3-dihydroxypropy 26 18.201 24719 0.16 11092	12	12.048	25454	0.16	14171	Cyclooctasiloxane, hexadecamethyl-
15 14.195 707892 4.52 410669 Phytol, acetate 16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30	13		28766	0.18	13445	Methoprene
16 14.270 158905 1.01 50376 2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(17 17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30	14	13.752	73816	0.47	39133	Heneicosane
17 14.463 137168 0.88 76858 Phytol, acetate 18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	15			4.52		
18 14.658 200548 1.28 123896 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	16	14.270		1.01	50376	2-Hexadecene, 3,7,11,15-tetramethyl-, [R-[R*,R*-(H
19 15.027 243801 1.56 100737 Lidocaine 20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	17	14.463	137168	0.88	76858	Phytol, acetate
20 15.515 1470035 9.38 447593 Stigmasterol 21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	18	14.658	200548	1.28	123896	3,7,11,15-Tetramethyl-2-hexadecen-1-ol
21 15.821 287675 1.84 137711 Hexadecanoic acid, ethyl ester 22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	19	15.027	243801	1.56	100737	Lidocaine
22 17.164 322748 2.06 100441 Phytol 23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-o1 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	20	15.515	1470035	9.38	447593	Stigmasterol
23 17.523 279202 1.78 45596 (Z)6,(Z)9-Pentadecadien-1-ol 24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	21	15.821	287675	1.84	137711	Hexadecanoic acid, ethyl ester
24 17.782 18866 0.12 16690 Octadecanoic acid 25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	22	17.164	322748	2.06	100441	Phytol
25 17.855 77783 0.50 25473 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropy 26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	23	17.523	279202	1.78	45596	(Z)6,(Z)9-Pentadecadien-1-ol
26 18.201 24719 0.16 11092 Octadecanoic acid, ethyl ester 27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	24	17.782	18866	0.12		
27 21.210 47386 0.30 19709 Hexadecane, 2,6,10,14-tetramethyl-	25	17.855	77783	0.50	25473	9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl
	26	18.201	24719	0.16	11092	Octadecanoic acid, ethyl ester
28 21 728 33791 0.22 15406 Phenol 2.4-bis(1-phenylethyl)	27	21.210	47386	0.30	19709	Hexadecane, 2,6,10,14-tetramethyl-
20 21.720 35751 0.22 15400 Filenoi, 2,4-0is(1-pilenyietiiyi)-	28	21.728	33791	0.22	15406	Phenol, 2,4-bis(1-phenylethyl)-

Peak#	R.Time	Area	Area%	Height	Name
29	22.410	509340	3.25	215918	Pentacosane
30	22.801	37394	0.24	16826	Tetradecanal
31	22.887	66173	0.42	24452	Benzyldiethyl-(2,6-xylylcarbamoylmethyl)-ammoniu
32	23.017	27257	0.17	16659	Diisooctyl phthalate
33	23.474	67504	0.43	33946	Eicosane
34	24.439	1506046	9.61	722960	Hexatriacontane
35	25.319	159452	1.02	66323	Tetratetracontane
36	25.629	83550	0.53	30831	Cyclononasiloxane, octadecamethyl-
37	26.142	2032372	12.97	954826	Caryophyllene
38	26.736	58103	0.37	24453	Cyclononasiloxane, octadecamethyl-
39	26.996	87257	0.56	29891	Disulfide, di-tert-dodecyl
40	27.554	178718	1.14	41489	Silane, diethyl(2-phenylethoxy)tetradecyloxy-
41	27.742	215421	1.37	44512	5,5',8,8'-Tetrahydroxy-3,3'-dimethyl-2,2'-binaphthal
42	27.984	252244	1.61	67499	Tetratriacontane
43	28.092	345793	2.21	74030	1-Heptacosanol
44	28.245	634968	4.05	106052	Stigmast-5-en-3-ol, oleate
45	28.583	509342	3.25	144387	Vitamin E
46	30.677	1480211	9.45	265912	Lupeol
47	31.229	793596	5.07	149075	.gammaSitosterol
48	31.514	312462	1.99	60938	Fucosterol
		15667885	100.00	5776434	

Fig. 9. Phytochemicals identified by GC-MS in flower extract of Calendula Officinalis (Linn)

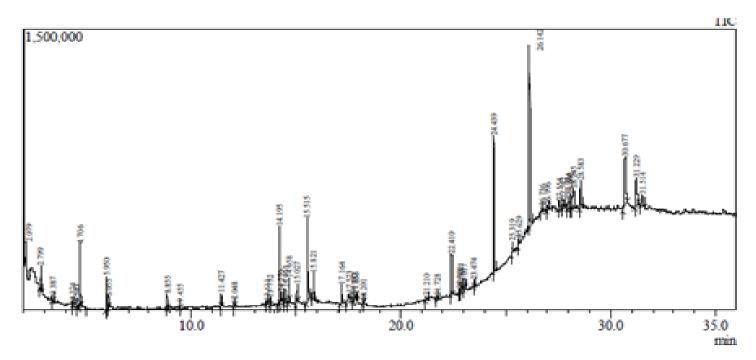



Fig. 10. Chromatogram of Phytochemicals identified by GC-MS in flower extract of Calendula Officinalis (Linn).

Fig. 11.

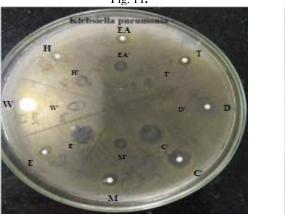


Fig. 13.

Fig. 14.

Antibacterial Activity Assay Using Disc Diffusion Method

REFERENCES

- Agrawal, O.P., Raju, P.S., Abdin, M.Z., & Abroi, Y.P. (2006). Global market of herbal products: Opportunities for Indian Traditional System of Medicine. Narosa Publishing House, New Delhi, India, 5-10.
- Ali, E.M., & Abd El-Moaty, H. (2017). Antifungal activity of Achillea santolina L. and Calendula officinalis L. Essential oils and their constituents against fungal infection of liver as complication of cyclophosphamide therapy. *Journal of Essential Oil Bearing Plants*, 20(4), 1030-1043.
- Al-Mussawi, Z.K., & Al-Hussani, I.M. (2019). Phytochemical Study of Calendula officinalis Plant by Used Gc-Ms and FTIR Techniques. *Plant Archives*, 19(1), 845-851.
- Bogdanova, N.S., Nikolaeva, I.S., Shcherbakova, L.I., Tolstova, T.I., NIu, M., & Pershin, G.N. (1970). Study of antiviral properties of Calendula officinalis. *Farmakologiia i* toksikologiia, 33(3), 349-355.
- Chalchat, J.C., Garry, R.P., & Michet, A. (1991). Chemical composition of essential oil of Calendula officinalis L.(Pot Marigold). *Flavour and Fragrance Journal*, 6(3), 189-192.
- Hamza, L.F., Sahi, N.M., & Hameed, I.H. (2018). Analysis of Methanolic extract of Secondary Metabolites Released by Candida glabratus using GC-MS and Evaluation of Its Antimicrobial Activity. *Indian Journal of Public Health*, 9(3).
- Jalill, A., Dh, R., & Jalill, A. (2014). GC-MS analysis of Calendula officinalis and cytotoxic effects of its flower crude extract on human epidermoid larynx carcinoma (HEP-2). World Journal of Pharmacy & Pharmaceutical Science, 3(4), 237-275.
- James, A.T., & Martin, A.J. (1952). Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. *Biochemical Journal*, 50(5), 679.
- Jan, A.K., Hazrat, A., Ahmad, S., Jan, T., & Jan, G. (2019). In vitro antifungal, antibacterial, phytotoxic, brine shrimp, insecticidal activities and composition of essential oil of tagetes minuta from dir-kohistan, pakistan. *Pakistan Journal* of Botany, 51(1), 201-204.
- Khalid, K.A., & Da Silva, J.T. (2012). Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. *Medicinal and Aromatic Plant Science and Biotechnology*, 6(1), 12-27.
- Markham, K.R., & Mabry, T.J. (1975). The flavonoids. Harborne, JB, Mabry, T, J and Mabry, H. editions Chapman and Hall, London, 45.
- Moghtader, M., Salari, H., Mozafari, H., & Farahmand, A. (2016). Evaluation the qualitative and quantitative essential oil of Calendula officinalis and its antibacterial effects. *Journal of Cellular and Molecular Research (Iranian Journal of Biology*), 29(3), 331-339.
- Mohammed, G.J., Al-Rubaye, A.F., & Hameed, I.H. (2018). Using GC-MS Technique for Analysis of Bioactive Chemical

Compounds of Penicillium Italicum and Determination of its Anti-Microbial Activity. *Indian Journal of Public Health*, 9(3), 353.

- Ourabia, I., Djebbar, R., Tata, S., Sabaou, N., & Fouial-Djebbar, D. (2019). determination of essential oil composition, phenolic content, and antioxidant, antibacterial and antifungal activities of marigold (calendula officinalis 1.) cultivated in algeria. *Carpathian Journal of Food Science & Technology*, 11(2).
- Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. *Journal of Pharmacognosy and Phytochemistry*, 2(5).
- Prasad, S., Kalra, N., Singh, M., & Shukla, Y. (2008). Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice. *Asian Journal of Andrology*, 10(2), 313-318.
- Sahingil, D. (2019). GC/MS-olfactometric characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of calendula (Calendula officinalis L.). *Journal of Essential Oil Bearing Plants*, 22(6), 1571-1580.
- Sivananthan, M. (2013). Antibacterial activity of 50 medicinal plants used in folk medicine. *International Journal of Biosciences*, 3(4), 104-21.
- Tewari, D., Sah, A.N., Pandey, H.K., Meena, H.S., Meena, R., Ramaswamy, R.S & Murthy, P.H. (2012). A review on phytoconstituents of Ocimum (Tulsi). *International Journal of Ayurvedic Medicine*, 3(1), 1-9.
- Tosun, G., Yayli, B., Arslan, T., Yasar, A., Karaoglu, S.A., & Yayli, N. (2012). Comparative essential oil analysis of Calendula arvensis L. Extracted by hydrodistillation and microwave distillation and antimicrobial activities. *Asian Journal of Chemistry*, 24(5), 1955.
- Wilken, J.N. (2016). The effect of environmental conditions on the antibacterial properties of Calendula officinalis (Doctoral dissertation, University of Johannesburg).
