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Abstract: The 01 knapsack problem is a combinatorial 

optimization problem where objective is to maximum profit. It can 

be considered as a resource allocation problem where the decision is 

to pick the most important items. Knapsack problem has a large 

range of applications in many domains. This paper presents three 

variations of FPA influenced by concept of crossover and mutation 

operator in genetic algorithms. The three variations, named FPA 

with crossover and mutation (Version 1), FPA with crossover 

(Version 2), FPA with mutation (Version 3) for solving 01 knapsack 

problem are presented. Comparison of variations is done with basic 

FPA algorithms and other algorithms for three datasets of a single 

dimension of 01 knapsack problem. The results show that improved 

FPA has better results than basic FPA. The results are optimal for 

smaller instances and with increase in number of objects results are 

closer to optimal but not optimal. 

Index Terms: 01 knapsack problem, flower pollination algorithm, 
hybrid algorithms, optimization problems. 

 

I. INTRODUCTION 

Knapsack problem falls in the optimization category and it is 

a dynamic programming problem. In the field of operation 

research knapsack problem is considered as conventional non 

polynomial problem (Bansal & Deep, 2012). In literature many 

papers represented applications of 01 knapsack problem such as 

optimal load shedding (Choi et al., 2011) and cryptosystem 

(Boas & Barros, 2017). In a 01 knapsack problem, there is a set 

of items with fixed weight and respective profit value. The main 

objective is to increase the profit value by selecting best suitable 

items with available fixed capacity. Each item can be selected 
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only once. A set of ‘n’ items, each with weights Wi and profit Pi 

and knapsack capacity as ‘M’ are given. 

Maximize: ∑ Pi Xi for i from 1 to n 

Subject to   ∑ Wi Xi   ≤ M and Xi  is {0, 1}    

 

Here Xi has value ‘1’ and ‘0’ which indicates selected and 

discarded respectively. The objective of the problem is to 

determine the maximum profit by selecting only those items 

whose sum of weight is less than knapsack capacity. 

The optimization problems of today are becoming largely 

very complex. When we solve those by conventional methods, 

either they fail to solve the problem or they become too time-

consuming. By time-consuming, it means probably even in 

years. So basically we are trying to explore all the state spaces of 

a problem, and when it matches the given state then we are 

stopping the search. The problem here is that the given problem 

solution grows exponentially. The results can be a huge number 

which increases time complexity. Such problems are called NP 

i.e. non-polynomial problems. We can reduce the time by using 

the solution whose heuristic value is best. A very simple 

meaning of a heuristic algorithm is to try to guess or find a quick 

answer to a problem. When the exact solution of a problem is 

costly and the approximate solution is sufficient then meta-

heuristic algorithms are used. Meta-heuristics do not guarantee 

an optimal solution, it can give an optimal solution sometimes 

and near-optimal the other times. Many heuristic/metaheuristics 

algorithms are nature/bio inspired algorithms. Traveling 

salesman problem, knapsack problem, searching and sorting 

problem and virus scanning problem are some example 

problems solved using meta-heuristic algorithms (Kenny et al., 
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2014).  Meta-heuristics are found to be suitable and vigorous in 

many different industrial applications from industrial design 

optimization to robotics (Wong & Ming, 2019).   

 Knapsack problem is solved by many different types of 

algorithms. Some examples are given below. 

• Shuffled frog leaping algorithm (Bhattacharjee & 

Sarmah, 2014) 

• Monkey algorithm (Zhou et al., 2015)  

• Migrating birds optimization algorithm (Ulker et al., 

2017) 

• Evolution algorithm (Ali et al., 2020) 

• Swarm optimization-based search algorithm (Dahmani, 
et al., 2020) 

01 knapsack problem is NP-complete as it cannot give an 

exact solution for a large number of inputs. A problem has many 

perspectives by which it can be solved. A comparative study of 

dynamic programming, greedy algorithm, brute force, memory 

function, branch and bound, genetic algorithms is given by 

(Hristakeva & Shrestha, 2005) and results are compared to find 

the best one. Dynamic programming technique and genetic 

algorithm are proved to be best among others. Gradually, 

nowadays the problems that are to be optimized are becoming 

complicated along with that the evolutionary algorithms are also 

becoming complex. Thus we need to improvise the algorithms to 

solve complex problems as for any optimization problem there is 

no generic algorithm. Flower pollination algorithm is a 

heuristic/metaheuristic algorithm that is inspired by the 

pollination process. Nowadays, the FPA is more popular as by 

the time it is better than many other algorithms in solving a 

given problem (Basset & Shawky, 2018). This paper presents a 

flower pollination algorithm to solve the 01 knapsack problem. 

The objective of the paper is to design and develop a flower 

pollination algorithm for solving the 01 knapsack problem. The 

basic FPA algorithm has faced premature convergence for 

benchmarks datasets. We have tested the variations of FPA by 

incorporating the concepts of crossover operator and mutation 

operator from Genetic Algorithms. 

The next section describes the details of the flower pollination 

algorithm. Section III describes proposed flower pollination 

algorithm and variations. Section IV describes dataset, result and 

performance evaluation followed by section V which states the 

conclusion at the end.  

II. FLOWER POLLINATION ALGORITHM 

Like many bio-inspired algorithms, the flower pollination 

algorithm is also inspired by nature and is used for a large 

number of optimization problems. The algorithm is proposed by 

(Yang, 2012). It is a type of evolutionary algorithm in which the 

individuals that are best among first-generation are combined to 

create a new generation with better capabilities. There are 

millions of different types of flowering plants. Out of which 

80% are of flowering species. The main objective behind the 

pollination process is the natural selection of those pollens that 

are fit to survive. Pollination is performed by transporting the 

pollen from the male anther to the female stigma. Pollination is 

of two types biotic and abiotic. In biotic pollination, pollens are 

transferred by the means of living creatures while abiotic 

pollination is done by wind, water, or rain. 90% of pollination is 

done in a biotic way while only 10% follows abiotic in which 

there are no pollinators. Pollination in plants is also determined 

as self-pollination and cross-pollination. When the transfer of 

pollen happens from the same flower or different flower from 

the same plant it is called self-pollination. There are no 

dependable pollinators. In cross-pollination the transfer of pollen 

from one plant to the flower of another plant. Ali (2014)  has 

explained the history of the flower pollination algorithm briefly 

in his paper. Yang (2012) came up with four rules stating the 

pollination behavior and flower consistency. It is given by 

(Salgora & Singh, 2017) in their paper. 

1. Global pollination: biotic and cross-pollination. Done 

via Levy distribution. 
2. Local pollination: abiotic and self-pollination. 
3. Flower consistency which can also be considered as 

reproduction probability is proportional to the similarity 

of two flowers involved. 
4. Switch probability: Controls local and global 

pollination. 
The main steps involved in the flower pollination algorithm 

are given below: 

Step 1: Initialize the parameters of FPA. 
Step 2: Initialize switch probability. 
Step 3: Find the initial best solution. 
Step 4: For each iteration 

If rand < Pswitch then perform global 

pollination, else local pollination. 
Step 5: Evaluate the new best solution. 
Step 6: If the new best solution > initial best solution then 

updates the solution. 
Step 7: Else repeat 4, 5, and 6 till termination condition is 

released. 
  
Flower pollination algorithm applies to numerous real-world 

implementation in various fields of research. There are many 

domains where FPA is been used such as wireless sensor 

networking, image processing, gaming, classifications and 

clustering problems, engineering problems (Alyasseri et al., 

2018) such as mechanical, electrical and power, chemical, civil, 

computer science, and many more. A huge amount of research is 

done in the electrical and power domain which solve problems 
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of automatic generation control (Madasu et al., 2018), voltage 

stability (Pravalika et al., 2016) and load frequency 

(Jagatheensan et al., 2017). In wireless sensor networking, FPA 

is used for problems of layouts of nodes (Nguyen et al., 2019) 

and antenna design problems (Salgotra et al., 2020). FPA shows 

supremacy in the domain of image processing and a sensor for 

problems such as coloring (Lei et al., 2020), medical image 

segmentation (Wang et al., 2015), person identification based on 

EEG (Alyasseri et al., 2018) and many more. FPA is used to find 

solutions for hard levels of games such as Sudoku (Raouf et al., 

2014). In the clustering and classification domain, FPA 

investigated for different problems like image segmentation 

(Dhal et al., 2019) and data clustering (Senthilnath et al., 2019). 

Dubey et al., (2015) proposed a modified flower pollination 

algorithm (MFPA) to solve economic dispatch problems in 

power systems in two phases. In the first phase, the local 

pollination of FPA is controlled by using the scaling factor and 

in the second phase, an intensified exploitation step is added for 

tuning up the best FPA solution. MFPA was tested on many 

mathematical benchmarks along with test cases of four huge 

power systems and it outperforms compared to other methods. 

Dahi et al., (2016) in their paper have proposed four binary 

variants of FPA (BFPA) by conducting a study about common 

mapping techniques and effectiveness of FPA. The algorithm 

was compared with two other algorithms named, differential 

evolution algorithm (DF) and population-based incremental 

learning (PBIL). The results show that BFPA outperforms 4 out 

of 13 instances of PBIL and 6 out of 13 instances of DF with 

zero statistical difference among other instances. 

FPA is hybridized with other algorithms like PSO, GA, etc. 

To get optimal solutions in a short stretch of time hybridization 

method is used for FPA. Raouf et al., (2014) proposed a hybrid 

of SFPA and Chaotic Harmony Search (FPCHS) to increase the 

searching accuracy of SFPA. SFPA was also hybridized with 

PSO to improve the performance of SFPA which was used to 

solve the global optimization problem. Salgotra & Singh, (2017) 

in their paper reported that FPA as a standard algorithm has 

many drawbacks so they propose new variations of FPA 

containing the mutation, dynamic switching, and improving 

local search. The best found among them was the adaptive-levy 

flower pollination algorithm. The algorithm when compared to 

other algorithms gives better performance. Many other 

variations of FPA are developed by modification in local and 

global search, parameter-tuning, and hybridization to cope up 

with difficult optimization problems (Alyasseri et al., 2018).  

Sayed et al., (2016) introduced a hybrid algorithm BCFA 

combination of clonal selection algorithm (CSA) with a flower 

pollination algorithm (FPA) for the problem of feature selection. 

For optimal function, the author used an optimum path forest 

classifier. The algorithm was compared with another hybrid 

meta-heuristic algorithm on three datasets and found that BCFA 

gave better results in comparison. Alweshah et al., (2020) has 

hybridized FPA with PNN for tuning the neural network weights 

in-order to expand the accuracy of the classification and speed 

convergence. PNN randomly produced the initial solution and 

then FPA is used for adjusting the weights. The hybridized 

algorithm was tested on 11 benchmarks and it is observed that it 

outperforms the basic PNN algorithm for all instances. Al-

qaness et al., (2020) has proposed modified FPA by using a salp-

swarm algorithm (SSA) and named it as FPASSA. The modified 

version is applied to an adaptive neuro-fuzzy inference system 

(ANFIS) to improve its performance by identifying the 

parameters of ANFIS. The improved model FPASSA-ANFIS is 

used as a forecasting technique to check the count of total 

confirmed cases of novel coronavirus that outbreak in Wuhan 

china in December 2019. The proposed algorithm has a high 

capacity to predict the number of confirmed cases within the 

time-span of 10 days. Also to evaluate the model two datasets of 

weekly confirmed cases of the USA and China were taken and 

the performance was quite good.  

III. PROPOSED FPA VARIATIONS FOR 01 KNAPSACK PROBLEM 

In this section variations of FPA are presented to solve the 01 

knapsack problem. The FPA variations are proposed using the 

concepts of crossover and mutation.  

Solution representation: 01 knapsack problem is solved by 

using 1D representation as shown in figure. The size of the array 

is indicated by the total number of objects. The value ‘1’ 

indicates that the object is selected and ‘0’ indicates that it is 

rejected. Figure 1 shows a sample solution for 10 objects, in 

which 3, 4, 7, 8, 10 are selected.  

 

Fig. 1. Memory representation (Adamuthe et al., 2020) 

 The paper presents three variations of FPA.  
1.  Version 1: FPA with crossover and mutation 
2.   Version 2: FPA with crossover 
3.   Version 3: FPA with mutation 

In the crossover, we combine parts of the parent's solution to 

produce new ones. Two solutions are selected from the 

population. The crossover operator is taken to generate new 

solutions from the existing. There are many different kinds of 

crossover operators presented in literature, we have used a single 

point crossover. For a single point crossover, there is a need to 

select a crossover point from 1 to l in which l is the length of 

crossover. In mutation, we are randomly change one or more 
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genes in solution. It creates one offspring from each parent. 

There are various methods to perform a mutation, here we have 

used swap mutation.  

In version 1, the crossover and mutation is performed after 

global and local pollination. The pseudocode of this is given 

below.  

 

Algorithm:  Pseudocode for proposed FAP algorithm 

Initialize parameters such as population size (n), switch probability 

(p). 

Initialize the population of flowers randomly. 

Find the best solution g* from the initial solution. 

N_iter ← number of iterations. 

Initialize weight (w), profit (p), number of objects (d), knapsack 

capacity (m) from excel sheet. 

Initialize answer in excel sheet. 

for t in 1 to N_iter do 

 for i in 1 to n do 

  if rand < p then 

      Draw a d-dimensional step vector L which obeys a levy 

distribution 

                Do global pollination 

        else 

                Draw epsilon from uniform distribution in [0,1] 

                Randomly choose JK1 and JK2 from population 

       Do local pollination 

       end if 

       Initialize crossoverIndex← randi(d to 1) 

       Initialize parent1, parent2 with two random solutions 

       Apply crossover operator on current population 

        Evaluate newly generated solution   xit+1 

        If new solution is better then replace xit  by xit+1  
         Update the current global best solution g*. 

      end for 

       answer(t,1) ←N_iter; 

       answer(t,2) ←current global best;  

end for 

Initialize two random solution for mutation 

Apply mutation operator on population 

Again update the current global best g* if the solution obtained is 

better than the previous one. 

In version 2, the only crossover is done after global and local 

pollination. Version 2 works more like a basic FPA. In version 

3, the only mutation is performed after global and local 

pollination.  

IV. DATASET, RESULTS AND DISCUSSION 

This section presents dataset details, results obtained and 

discussion. The proposed flower pollination algorithm for 

solving the 01 knapsack problem is implemented by using 

‘Matlab’ programming language on the Matlab tool 2015a. The 

programs are executed on a machine with Intel Core i3-6006U 

CPU 2GHz and 4GB RAM.  The overall performance of the 

proposed variations are examined by using a benchmark 

instances of the 01 knapsack problem. The instances of knapsack 

problems are taken from various sources. The paper presents the 

optimal solution for proposed variations of flower pollination 

algorithms using profit, convergence graph and success rate. The 

success rate is calculated by the number of times best obtained 

divided by the number of times the program is executed. For 

every dataset, FPA was executed 5 times.   

Dataset 1: The dataset consists of eight instances. These 

instances are taken from (Knapsack_01 Data for the 01 knapsack 

problem) which are shown in table I. Knapsack capacity, the 

weight of objects, respective profits and dimensions are given in 

the table.  

The obtained solutions are compared with the harmony search 

algorithm (Adamuthe et al., 2020) and the optimal solution. 

Table II shows the optimal profit, profit obtained by the 

harmony search algorithm, profit obtained by the flower 

pollination algorithm and its variations which include FPA with  

crossover and mutation (Version 1), FPA with crossover 

(Version 2) & FPA with mutation (Version 3). Table III shows 

the success rate of all the variations. 
 

Table I. Weight, profit, capacity and dimensions of dataset 1 

Dataset Dimension Parameter (capacity, weight, profit) 

P1 10 Capacity: 165 

Weights:   23 31 29 44 53 38 69 85 89 8 
Profits:    92 57 49 68 60 43 67 84 87 72 

P2 5 Capacity: 26    
Weights:  12 7 11 8 9 

Profits:  24 13 23 15 16 

P3 6 Capacity:  190 
Weights:  56 59 80 64 75 17 

Profits:   50 50 64 46 50 5 

P4 7 Capacity: 50  

Weights:  31 10 20 19 4 3 6  
Profits: 70 20 39 37 7 5 10 

P5 8 Capacity:  104 

Weights:   25 35 45 5 25 3 2 2 
Profits:  350 400 450 20 70 8 5 5 

P6 7 Capacity: 170 
Weights:  41 50 49 59 55 57 60 

Profits: 442 525 511 593 546 564 617 

P7 15 Capacity: 750 

Weights: 70 73 77 80 82 87 90 94 98 106 110 

113 115 118 120 
Profits: 135 139 149 150 156 163 173 184 192 

201 210 214 221 229 240 

P8 24 Capacity: 6404180 

Weights: 382745 799601 909247 729069 
467902 44328 34610 698150 823460 903959 

853665 551830 610856 670702 488960 
951111 323046 446298 931161  31385  

496951 264724 224916 169684 

Profits: 825594 1677009 1676628 1523970 
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943972 97426 69666 1296457 1679693 
1902996 1844992 1049289 1252836 1319836 

953277  2067538  675367 853655  1826027 

65731 901489  577243  466257 369261 

Table II. Comparison of all variations of FPA for dataset 1 

Datase

t 

Optim

al 

HS    

(Adamu
the et 

al., 
2020) 

FPA Versio

n 1 

Versio

n 2 

Versio

n 3 

P1 309 309 309 309 309 309 

P2 51 51 51 51 51 51 

P3 150 150 150 150 150 150 

P4 107 107 107 107 107 107 

P5 900 900 900 900 900 900 

P6 1735 1735 1735 1735 1735 1735 

P7 1458 1458 1458 1458 1450 1451 

P8 13549

094 

135490

94 

133697

167 

134531

54 

133899

08 

133693

36 

 
Table III. Comparison of success rate for dataset 1 

Dataset Success rate in % 

 FPA Version 1 Version 2 Version 3 

P1 20 60 20 20 

P2 80 100 40 20 

P3 60 60 40 20 

P4 60 100 40 20 

P5 20 40 20 20 

P6 40 40 20 20 

P7 20 40 0 0 

P8 0 0 0 0 

Figure 2 shows the performance of variations of FPA in the 

form of a convergence graph. The Y-axis is best obtained profit 

and X-axis is number of iteration. The results show that Version 

1 gives optimal solutions in less iterations compared to other 

variations. 

FPA gives optimal results for first seven instances. For 

instance P8 the optimal value is not obtained. The result 

obtained is close to the optimal solution. FPA works well for a 

smaller number of objects but as the objects increase the 

performance of the algorithm is reduced. Version 1 gives better 

solutions compared to FPA. Performance of Version 2 and 

version 3 is similar to FPA. Among all the variations of 

modified FPA, version 1 works best. Harmony search algorithm 

given 100% results for all the instances of dataset 1. The 

performance of basic FPA and version 1 of modified FPA have 

given best results for 87.5%. The Version 2 and Version 3 of 

modified FPA have given similar results for 75% instances. 

 

(a) 

 

 
(b) 

 

Fig. 2. Graph of convergence for dataset 1 (a) 15 objects (b) 24 

objects 

The success rate of Version 1 is more than that of basic FPA, 

Version 2 and Version 3. It is observed that version 3 of 

modified FPA which consists of only mutation fails to show any 

improvement. 

Dataset 2: Table IV shows the dataset which is taken 

from Bhattacharjee & Samrah (2014). It is tested for flower 

pollination algorithm and its variations. The dataset contains ten 

instances. 

Table IV.  Dataset 2 (from Bhattacharjee & Samrah, 2014) 

Dataset Dimension Parameter(w, p, b) 

P2_1 10 w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46}; 

p = {55, 10, 47, 5, 4, 50, 8, 61, 85, 87}; b = 

1250
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269. 

P2_2 20 w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 
18, 56, 83, 25, 96, 70, 48, 14, 58}; 

p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78, 
40, 77, 15, 61, 17, 75, 29, 75, 63}; b = 878. 

P2_3 4 w = {6, 5, 9, 7}; p = {9, 11, 13, 15}; b = 20. 

P2_4 4 w = {2, 4, 6, 7}; p = {6, 10, 12, 13}; b = 11. 

P2_5 15 w={56.358531,  80.87405,  47.987304,  89.5
9624, 74.660482,  85.894345,  51.353496,  1.

498459,  36.445204,  16.589862,  44.569231,
  0.466933,  37.788018,  57.118442,  60.7165

75}; 

p={0.125126,  19.330424,  58.500931,  35.02
9145,  82.284005,  17.41081,  71.050142,  30

.399487,  9.140294,  14.731285,  98.852504, 
11.908322,  0.89114,  53.166295,  60.176397

}; b = 375. 

P2_6 10 w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p = 

{20, 18, 17, 15, 15, 10, 5, 3, 1, 1}; b = 60. 

P2_7 7 w = {31, 10, 20, 19, 4, 3, 6}; p = {70, 20, 39, 

37, 7, 5, 10}; b = 50. 

P2_8 23 w = {983, 982, 981, 980, 979, 978, 488, 976, 

972, 486, 486, 972, 972, 485, 485, 969, 966, 
483, 964, 963, 961, 958, 959} ; p = {81, 980, 

979, 978, 977, 976, 487, 974, 970, 485, 485, 
970, 970, 484, 484, 976, 974, 482, 962, 961, 

959, 958, 857} ; b = 10000. 

P2_9 5 w = {15, 20, 17, 8, 31}; p = {33, 24, 36, 37, 

12}; b =80. 

P2_10  20 w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 

18, 58, 14, 48, 70, 96, 32, 68, 92}; p = {91, 

72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63, 
75, 29, 75, 17, 78, 40, 44}; 

b = 879. 

Table V. Comparison of results for dataset 2 

Data
set 

Optimal 
(Bhattac

harjee & 
Sarmah,

2015) 

HS 
(A. C. 

Adam
uthe et 

al., 
202

0) 

Shuffled 
frog 

(Bhattac
harjee & 

Sarmah, 
2014) 

FP
A 

Vers
ion 1 

Vers
ion 2 

Vers
ion 3 

p2_1 295 295 295      295 295 295 295 

p2_2 1024 945  955 102

4 

1024 1024 987 

p2_3 35 35 35 35 35 35 35 

p2_4 23 23 23                                      23 23 23 23 

p2_5 481.06 481.0

6 

481.07 481.

06 

481.

06 

481.

06 

481.

06 

p2_6 52 52  52 52 52 52 52 

p2_7 107 107 107 107 107 107 107 

p2_8 9767 9731 9759 971

2 

9767 9752 9747 

p2_9 130 130 130 130 130 130 130 

p2_1

0 

 

1025 889 1010 102

5 

950 1025 1014 

Table VI. Success rate of all the variations of FPA for dataset 2 

Dataset Success rate in % 

FPA Version 1 Version 2 Version 3 

p2_1 40 60 40 20 

p2_2 20 60 20 0 

p2_3 100 100 100 40 

p2_4 100 100 100 40 

p2_5 20 60 20 20 

p2_6 80 80 60 20 

p2_7 60 60 40 20 

p2_8 20 20 0 0 

p2_9 60 60 40 20 

p2_10 40 0 20 0 

  
The results obtained are shown in table V and the success 

rate in table VI. It is observed that the harmony search algorithm 

gives the optimal solutions for seven instances whereas FPA 

gives the optimal solutions for nine instances. The result shows 

that for the dataset 2, version 2 works better than version 1. 

Harmony search algorithm given optimal results for 70% 

instances. The basic FPA and version 2 of the modified FPA 

have given results for 90% instances. Version 1 and Version 3 

have given results for 80% and 70% instances respectively. 

Version 2 gave best for optimal solution, but the success rate of 

Version 1 is more than FPA followed by Version 2 and then 

version 3. For dataset 2, Version 3 shows the marginal 

improvement among all. 

Figure 3 shows the convergence graph of obtained best profit 

per iterations for dataset 2. For dataset 2, Version 2 works better 

for optimal solutions. But Version 1 shows faster convergence 

compared to version 2 and version 3. 

 Dataset 3: The third dataset is taken from 

(http://www.math.mtu.edu/~kreher/cages/Data.html). It contains 

25 instances varying from 8 objects to 24 objects shown in table 

VII below. The results obtained are shown in table VIII. 
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(a) 

 

 

(b) 
 

Fig. 3. Graph of convergence for dataset 2 (a) 10 objects (b) 20 

objects 

Harmony search gives optimal solutions for all the instances. 

Harmony search algorithms have given best solutions for 100% 

instances. Performance of FPA reduced with increase in number 

of objects. Basic FPA and all variations gives optimal solutions 

to instances upto 12 objects. But, FPA and variations fails to 

give optimal solutions when object size becomes 16 and above. 

The results obtained are close to best but not optimal. Basic FPA 

and Version 1 gives results for 48% and 44% instances 

respectively. Version 2 and Version 3 gives results for 40% 

instances. The optimal results and success rate of Version 1 are 

better than FPA. Version 2 and Version 3 shows similar 

performance to FPA. For dataset 3, performance of Version 3 is 

not satisfactory.  

Table VII. Comparison of all variations of FPA for dataset 3 
Dataset Optimal HS 

(Adamut

he et al., 

2020) 

FPA Version 

1 

Version 

2 

Version 

3 

8a 3924400 3924400 3924400 3924400 3924400 3924400 

b 3813669 3813669 3813669 3813669 3813669 3813669 

8c 3347452 3347452 3347452 3347452 3347452 3347452 

8d 4187707 4187707 4187707 4187707 4187707 4187707 

8e 4955555 4955555 4955555 4955555 4955555 4955555 

12a 5688887 5688887 5688887 5688887 5688887 5688887 

12b 6498597 6498597 6498597 6498597 6498597 6498597 

12c 5170626 5170626 5170626 5170626 5170626 5170626 

12d 6992404 6992404 6992404 6992404 6992404 6992404 

12e 5337472 5337472 5337472 5337472 5337472 5337472 

16a 7850983 7850983 7850983 7821255 7823318 7823318 

16b 9352998 9352998 9132010 9352982 9200221 9138620 

16c 9151147 9151147 9111941 9141408 9126949 9051752 

16d 9348889 9348889 9348889 9336691 9288795 9266369 

16e 7769117 7769117 7769114 7769117 7754276 7725775 

20a 1072704

9 

1072704

9 

1056740

7 

1072700

3 

1067431

4 

1058190

1 

20b 9818261 9818261 9638584 9818160 9652251 9673100 

20c 1071402

3 

1071402

3 

1053137

5 

1071302

1 

1059817

6 

1050361

9 

20d 8929156 8929156 8837509 8929024 8893733 8839607 

20e 9357969 9357969 9300514 9332165 8893733 9218972 

24a 1354909

4 

1354909

4 

1328474

1 

1344357

4 9253870 9218972 

B 1223371

3 

1223371

3 

1212143

6 

1214153

6 

1172954

2 

1212143

6 

24c 1244878

0 

1244878

0 

1228579

8 

1239381

8 

1221186

2 

1221677

8 

24d 1181531

5 

1181531

5 

1166011

5 

1174016

5 

1161065

9 

1152238

1 

24e 1394009

9 

1394009

9 

1373382

6 

1384381

2 

1368212

2 

1338160

0 

 

Table VIII. Success rate of all the variations of FPA for dataset 3 
Dataset Success rate in % 

 FPA Version 1 Version 

2 

Version 

3 

8a 20 40 20 20 

8b 20 40 20 20 

8c 20 40 20 20 

8d 20 40 20 20 

8e 20 40 20 20 

190

210

230

250

270

290
1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

P
ro

fi
t

Iterations

FPA

Version 1

Version 2

Version 3

8000

8200

8400

8600

8800

9000

9200

9400

9600

9800

1
4
7

9
3

1
3

9
1
8

5
2
3

1
2
7

7
3
2

3
3
6

9
4
1

5
4
6

1
5
0

7
5
5

3
5
9

9
6
4

5
6
9

1
7
3

7
7
8

3
8
2

9
8
7

5
9
2

1
9
6

7

P
ro

fi
t

Iterations

FPA

Version 1

Version 2

Version 3
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12a 20 40 20 20 

12b 20 40 20 20 

12c 20 40 20 20 

12d 20 40 20 20 

12e 20 40 20 20 

16a 20 0 0 0 

16b to 24e 0 0 0 0 
 

Figure 4 shows the convergence graphs. The convergence graphs 

shows that Version 1 takes less iteration than all other variations 

of FPA.  

 

(a) 

 

(b) 

 

(c) 

 

                   (d) 

 

(e) 

Fig. 4. Graph of convergence for dataset 3 for instance (a) 8 

objects (b) 12 objects (c) 16 objects (d) 20 objects (e) 24 objects 
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CONCLUSIONS 

01 knapsack problem comes under NP category and finding 

optimal solution becomes difficult when problem size increases. 

In literature, large number of applications of 01 knapsack 

problem are presented. Different heuristic algorithms are 

investigated to optimize the solutions. This paper presents a 

flower pollination algorithm to solve the 01 knapsack problem. 

It is an optimization algorithm encouraged by the pollination 

behavior of flowering plants. Methodologies of crossover and 

mutation is applied to basic FPA with the purpose of improving 

the performance of basic FPA algorithm. Three variations of 

FPA are done using crossover and mutation operators. First 

variation (Version 1) consists of both crossover and mutation 

with FPA. Version 1 found the most optimal compared to other 

two variations. The second variation (Version 2) includes 

crossover with FPA which gives results similar to basic FPA. 

The third variation (Version 3) includes mutation with FPA. All 

three proposed variations of FPA are shows a slight 

improvement in the results. For dataset 1, Version 1 found best 

than basic FPA, Version 2 and Version 3. The success rate of 

Version 1 is better than others. For dataset 2, basic FPA given 

better solutions. But, the success rate of version 1 is better than 

remaining variations. For dataset 3, success rate of version 1 is 

better but decreased for large instances.  

Future work: Performance of FPA decreased with increase in 

problem size which leads to increase in search space and number 

of combinations. There is a scope of improvement in the 

variations that would provide optimal results even for large 

instances. 
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