

Volume 65, Issue 3, 2021

Journal of Scientific Research

Institute of Science,

Banaras Hindu University, Varanasi, India.

 117

DOI: 10.37398/JSR.2021.650314

Abstract: The 01 knapsack problem is a combinatorial

optimization problem where objective is to maximum profit. It can

be considered as a resource allocation problem where the decision is

to pick the most important items. Knapsack problem has a large

range of applications in many domains. This paper presents three

variations of FPA influenced by concept of crossover and mutation

operator in genetic algorithms. The three variations, named FPA

with crossover and mutation (Version 1), FPA with crossover

(Version 2), FPA with mutation (Version 3) for solving 01 knapsack

problem are presented. Comparison of variations is done with basic

FPA algorithms and other algorithms for three datasets of a single

dimension of 01 knapsack problem. The results show that improved

FPA has better results than basic FPA. The results are optimal for

smaller instances and with increase in number of objects results are

closer to optimal but not optimal.

Index Terms: 01 knapsack problem, flower pollination algorithm,
hybrid algorithms, optimization problems.

I. INTRODUCTION

Knapsack problem falls in the optimization category and it is

a dynamic programming problem. In the field of operation

research knapsack problem is considered as conventional non

polynomial problem (Bansal & Deep, 2012). In literature many

papers represented applications of 01 knapsack problem such as

optimal load shedding (Choi et al., 2011) and cryptosystem

(Boas & Barros, 2017). In a 01 knapsack problem, there is a set

of items with fixed weight and respective profit value. The main

objective is to increase the profit value by selecting best suitable

items with available fixed capacity. Each item can be selected

* Corresponding Author

only once. A set of ‘n’ items, each with weights Wi and profit Pi

and knapsack capacity as ‘M’ are given.

Maximize: ∑ Pi Xi for i from 1 to n

Subject to ∑ Wi Xi ≤ M and Xi is {0, 1}

Here Xi has value ‘1’ and ‘0’ which indicates selected and

discarded respectively. The objective of the problem is to

determine the maximum profit by selecting only those items

whose sum of weight is less than knapsack capacity.

The optimization problems of today are becoming largely

very complex. When we solve those by conventional methods,

either they fail to solve the problem or they become too time-

consuming. By time-consuming, it means probably even in

years. So basically we are trying to explore all the state spaces of

a problem, and when it matches the given state then we are

stopping the search. The problem here is that the given problem

solution grows exponentially. The results can be a huge number

which increases time complexity. Such problems are called NP

i.e. non-polynomial problems. We can reduce the time by using

the solution whose heuristic value is best. A very simple

meaning of a heuristic algorithm is to try to guess or find a quick

answer to a problem. When the exact solution of a problem is

costly and the approximate solution is sufficient then meta-

heuristic algorithms are used. Meta-heuristics do not guarantee

an optimal solution, it can give an optimal solution sometimes

and near-optimal the other times. Many heuristic/metaheuristics

algorithms are nature/bio inspired algorithms. Traveling

salesman problem, knapsack problem, searching and sorting

problem and virus scanning problem are some example

problems solved using meta-heuristic algorithms (Kenny et al.,

Solving 01 Knapsack Problem with variations of

Flower Pollination Algorithm

Aboli Sundarkar and Amol C. Adamuthe*

Dept. of CS&IT, RIT, Rajaramnagar, Sangli, MS, India.

abolisundarkar5@gmail.com, amol.admuthe@gmail.com*

Journal of Scientific Research, Volume 65, Issue 3, 2021

 118

Institute of Science, BHU Varanasi, India

2014). Meta-heuristics are found to be suitable and vigorous in

many different industrial applications from industrial design

optimization to robotics (Wong & Ming, 2019).

 Knapsack problem is solved by many different types of

algorithms. Some examples are given below.

• Shuffled frog leaping algorithm (Bhattacharjee &

Sarmah, 2014)

• Monkey algorithm (Zhou et al., 2015)

• Migrating birds optimization algorithm (Ulker et al.,

2017)

• Evolution algorithm (Ali et al., 2020)

• Swarm optimization-based search algorithm (Dahmani,
et al., 2020)

01 knapsack problem is NP-complete as it cannot give an

exact solution for a large number of inputs. A problem has many

perspectives by which it can be solved. A comparative study of

dynamic programming, greedy algorithm, brute force, memory

function, branch and bound, genetic algorithms is given by

(Hristakeva & Shrestha, 2005) and results are compared to find

the best one. Dynamic programming technique and genetic

algorithm are proved to be best among others. Gradually,

nowadays the problems that are to be optimized are becoming

complicated along with that the evolutionary algorithms are also

becoming complex. Thus we need to improvise the algorithms to

solve complex problems as for any optimization problem there is

no generic algorithm. Flower pollination algorithm is a

heuristic/metaheuristic algorithm that is inspired by the

pollination process. Nowadays, the FPA is more popular as by

the time it is better than many other algorithms in solving a

given problem (Basset & Shawky, 2018). This paper presents a

flower pollination algorithm to solve the 01 knapsack problem.

The objective of the paper is to design and develop a flower

pollination algorithm for solving the 01 knapsack problem. The

basic FPA algorithm has faced premature convergence for

benchmarks datasets. We have tested the variations of FPA by

incorporating the concepts of crossover operator and mutation

operator from Genetic Algorithms.

The next section describes the details of the flower pollination

algorithm. Section III describes proposed flower pollination

algorithm and variations. Section IV describes dataset, result and

performance evaluation followed by section V which states the

conclusion at the end.

II. FLOWER POLLINATION ALGORITHM

Like many bio-inspired algorithms, the flower pollination

algorithm is also inspired by nature and is used for a large

number of optimization problems. The algorithm is proposed by

(Yang, 2012). It is a type of evolutionary algorithm in which the

individuals that are best among first-generation are combined to

create a new generation with better capabilities. There are

millions of different types of flowering plants. Out of which

80% are of flowering species. The main objective behind the

pollination process is the natural selection of those pollens that

are fit to survive. Pollination is performed by transporting the

pollen from the male anther to the female stigma. Pollination is

of two types biotic and abiotic. In biotic pollination, pollens are

transferred by the means of living creatures while abiotic

pollination is done by wind, water, or rain. 90% of pollination is

done in a biotic way while only 10% follows abiotic in which

there are no pollinators. Pollination in plants is also determined

as self-pollination and cross-pollination. When the transfer of

pollen happens from the same flower or different flower from

the same plant it is called self-pollination. There are no

dependable pollinators. In cross-pollination the transfer of pollen

from one plant to the flower of another plant. Ali (2014) has

explained the history of the flower pollination algorithm briefly

in his paper. Yang (2012) came up with four rules stating the

pollination behavior and flower consistency. It is given by

(Salgora & Singh, 2017) in their paper.

1. Global pollination: biotic and cross-pollination. Done

via Levy distribution.
2. Local pollination: abiotic and self-pollination.
3. Flower consistency which can also be considered as

reproduction probability is proportional to the similarity

of two flowers involved.
4. Switch probability: Controls local and global

pollination.
The main steps involved in the flower pollination algorithm

are given below:

Step 1: Initialize the parameters of FPA.
Step 2: Initialize switch probability.
Step 3: Find the initial best solution.
Step 4: For each iteration

If rand < Pswitch then perform global

pollination, else local pollination.
Step 5: Evaluate the new best solution.
Step 6: If the new best solution > initial best solution then

updates the solution.
Step 7: Else repeat 4, 5, and 6 till termination condition is

released.

Flower pollination algorithm applies to numerous real-world

implementation in various fields of research. There are many

domains where FPA is been used such as wireless sensor

networking, image processing, gaming, classifications and

clustering problems, engineering problems (Alyasseri et al.,

2018) such as mechanical, electrical and power, chemical, civil,

computer science, and many more. A huge amount of research is

done in the electrical and power domain which solve problems

Journal of Scientific Research, Volume 65, Issue 3, 2021

 119

Institute of Science, BHU Varanasi, India

of automatic generation control (Madasu et al., 2018), voltage

stability (Pravalika et al., 2016) and load frequency

(Jagatheensan et al., 2017). In wireless sensor networking, FPA

is used for problems of layouts of nodes (Nguyen et al., 2019)

and antenna design problems (Salgotra et al., 2020). FPA shows

supremacy in the domain of image processing and a sensor for

problems such as coloring (Lei et al., 2020), medical image

segmentation (Wang et al., 2015), person identification based on

EEG (Alyasseri et al., 2018) and many more. FPA is used to find

solutions for hard levels of games such as Sudoku (Raouf et al.,

2014). In the clustering and classification domain, FPA

investigated for different problems like image segmentation

(Dhal et al., 2019) and data clustering (Senthilnath et al., 2019).

Dubey et al., (2015) proposed a modified flower pollination

algorithm (MFPA) to solve economic dispatch problems in

power systems in two phases. In the first phase, the local

pollination of FPA is controlled by using the scaling factor and

in the second phase, an intensified exploitation step is added for

tuning up the best FPA solution. MFPA was tested on many

mathematical benchmarks along with test cases of four huge

power systems and it outperforms compared to other methods.

Dahi et al., (2016) in their paper have proposed four binary

variants of FPA (BFPA) by conducting a study about common

mapping techniques and effectiveness of FPA. The algorithm

was compared with two other algorithms named, differential

evolution algorithm (DF) and population-based incremental

learning (PBIL). The results show that BFPA outperforms 4 out

of 13 instances of PBIL and 6 out of 13 instances of DF with

zero statistical difference among other instances.

FPA is hybridized with other algorithms like PSO, GA, etc.

To get optimal solutions in a short stretch of time hybridization

method is used for FPA. Raouf et al., (2014) proposed a hybrid

of SFPA and Chaotic Harmony Search (FPCHS) to increase the

searching accuracy of SFPA. SFPA was also hybridized with

PSO to improve the performance of SFPA which was used to

solve the global optimization problem. Salgotra & Singh, (2017)

in their paper reported that FPA as a standard algorithm has

many drawbacks so they propose new variations of FPA

containing the mutation, dynamic switching, and improving

local search. The best found among them was the adaptive-levy

flower pollination algorithm. The algorithm when compared to

other algorithms gives better performance. Many other

variations of FPA are developed by modification in local and

global search, parameter-tuning, and hybridization to cope up

with difficult optimization problems (Alyasseri et al., 2018).

Sayed et al., (2016) introduced a hybrid algorithm BCFA

combination of clonal selection algorithm (CSA) with a flower

pollination algorithm (FPA) for the problem of feature selection.

For optimal function, the author used an optimum path forest

classifier. The algorithm was compared with another hybrid

meta-heuristic algorithm on three datasets and found that BCFA

gave better results in comparison. Alweshah et al., (2020) has

hybridized FPA with PNN for tuning the neural network weights

in-order to expand the accuracy of the classification and speed

convergence. PNN randomly produced the initial solution and

then FPA is used for adjusting the weights. The hybridized

algorithm was tested on 11 benchmarks and it is observed that it

outperforms the basic PNN algorithm for all instances. Al-

qaness et al., (2020) has proposed modified FPA by using a salp-

swarm algorithm (SSA) and named it as FPASSA. The modified

version is applied to an adaptive neuro-fuzzy inference system

(ANFIS) to improve its performance by identifying the

parameters of ANFIS. The improved model FPASSA-ANFIS is

used as a forecasting technique to check the count of total

confirmed cases of novel coronavirus that outbreak in Wuhan

china in December 2019. The proposed algorithm has a high

capacity to predict the number of confirmed cases within the

time-span of 10 days. Also to evaluate the model two datasets of

weekly confirmed cases of the USA and China were taken and

the performance was quite good.

III. PROPOSED FPA VARIATIONS FOR 01 KNAPSACK PROBLEM

In this section variations of FPA are presented to solve the 01

knapsack problem. The FPA variations are proposed using the

concepts of crossover and mutation.

Solution representation: 01 knapsack problem is solved by

using 1D representation as shown in figure. The size of the array

is indicated by the total number of objects. The value ‘1’

indicates that the object is selected and ‘0’ indicates that it is

rejected. Figure 1 shows a sample solution for 10 objects, in

which 3, 4, 7, 8, 10 are selected.

Fig. 1. Memory representation (Adamuthe et al., 2020)

 The paper presents three variations of FPA.
1. Version 1: FPA with crossover and mutation
2. Version 2: FPA with crossover
3. Version 3: FPA with mutation

In the crossover, we combine parts of the parent's solution to

produce new ones. Two solutions are selected from the

population. The crossover operator is taken to generate new

solutions from the existing. There are many different kinds of

crossover operators presented in literature, we have used a single

point crossover. For a single point crossover, there is a need to

select a crossover point from 1 to l in which l is the length of

crossover. In mutation, we are randomly change one or more

Journal of Scientific Research, Volume 65, Issue 3, 2021

 120

Institute of Science, BHU Varanasi, India

genes in solution. It creates one offspring from each parent.

There are various methods to perform a mutation, here we have

used swap mutation.

In version 1, the crossover and mutation is performed after

global and local pollination. The pseudocode of this is given

below.

Algorithm: Pseudocode for proposed FAP algorithm

Initialize parameters such as population size (n), switch probability

(p).

Initialize the population of flowers randomly.

Find the best solution g* from the initial solution.

N_iter ← number of iterations.

Initialize weight (w), profit (p), number of objects (d), knapsack

capacity (m) from excel sheet.

Initialize answer in excel sheet.

for t in 1 to N_iter do

 for i in 1 to n do

 if rand < p then

 Draw a d-dimensional step vector L which obeys a levy

distribution

 Do global pollination

 else

 Draw epsilon from uniform distribution in [0,1]

 Randomly choose JK1 and JK2 from population

 Do local pollination

 end if

 Initialize crossoverIndex← randi(d to 1)

 Initialize parent1, parent2 with two random solutions

 Apply crossover operator on current population

 Evaluate newly generated solution xit+1

 If new solution is better then replace xit by xit+1
 Update the current global best solution g*.

 end for

 answer(t,1) ←N_iter;

 answer(t,2) ←current global best;

end for

Initialize two random solution for mutation

Apply mutation operator on population

Again update the current global best g* if the solution obtained is

better than the previous one.

In version 2, the only crossover is done after global and local

pollination. Version 2 works more like a basic FPA. In version

3, the only mutation is performed after global and local

pollination.

IV. DATASET, RESULTS AND DISCUSSION

This section presents dataset details, results obtained and

discussion. The proposed flower pollination algorithm for

solving the 01 knapsack problem is implemented by using

‘Matlab’ programming language on the Matlab tool 2015a. The

programs are executed on a machine with Intel Core i3-6006U

CPU 2GHz and 4GB RAM. The overall performance of the

proposed variations are examined by using a benchmark

instances of the 01 knapsack problem. The instances of knapsack

problems are taken from various sources. The paper presents the

optimal solution for proposed variations of flower pollination

algorithms using profit, convergence graph and success rate. The

success rate is calculated by the number of times best obtained

divided by the number of times the program is executed. For

every dataset, FPA was executed 5 times.

Dataset 1: The dataset consists of eight instances. These

instances are taken from (Knapsack_01 Data for the 01 knapsack

problem) which are shown in table I. Knapsack capacity, the

weight of objects, respective profits and dimensions are given in

the table.

The obtained solutions are compared with the harmony search

algorithm (Adamuthe et al., 2020) and the optimal solution.

Table II shows the optimal profit, profit obtained by the

harmony search algorithm, profit obtained by the flower

pollination algorithm and its variations which include FPA with

crossover and mutation (Version 1), FPA with crossover

(Version 2) & FPA with mutation (Version 3). Table III shows

the success rate of all the variations.

Table I. Weight, profit, capacity and dimensions of dataset 1

Dataset Dimension Parameter (capacity, weight, profit)

P1 10 Capacity: 165

Weights: 23 31 29 44 53 38 69 85 89 8
Profits: 92 57 49 68 60 43 67 84 87 72

P2 5 Capacity: 26
Weights: 12 7 11 8 9

Profits: 24 13 23 15 16

P3 6 Capacity: 190
Weights: 56 59 80 64 75 17

Profits: 50 50 64 46 50 5

P4 7 Capacity: 50

Weights: 31 10 20 19 4 3 6
Profits: 70 20 39 37 7 5 10

P5 8 Capacity: 104

Weights: 25 35 45 5 25 3 2 2
Profits: 350 400 450 20 70 8 5 5

P6 7 Capacity: 170
Weights: 41 50 49 59 55 57 60

Profits: 442 525 511 593 546 564 617

P7 15 Capacity: 750

Weights: 70 73 77 80 82 87 90 94 98 106 110

113 115 118 120
Profits: 135 139 149 150 156 163 173 184 192

201 210 214 221 229 240

P8 24 Capacity: 6404180

Weights: 382745 799601 909247 729069
467902 44328 34610 698150 823460 903959

853665 551830 610856 670702 488960
951111 323046 446298 931161 31385

496951 264724 224916 169684

Profits: 825594 1677009 1676628 1523970

Journal of Scientific Research, Volume 65, Issue 3, 2021

 121

Institute of Science, BHU Varanasi, India

943972 97426 69666 1296457 1679693
1902996 1844992 1049289 1252836 1319836

953277 2067538 675367 853655 1826027

65731 901489 577243 466257 369261

Table II. Comparison of all variations of FPA for dataset 1

Datase

t

Optim

al

HS

(Adamu
the et

al.,
2020)

FPA Versio

n 1

Versio

n 2

Versio

n 3

P1 309 309 309 309 309 309

P2 51 51 51 51 51 51

P3 150 150 150 150 150 150

P4 107 107 107 107 107 107

P5 900 900 900 900 900 900

P6 1735 1735 1735 1735 1735 1735

P7 1458 1458 1458 1458 1450 1451

P8 13549

094

135490

94

133697

167

134531

54

133899

08

133693

36

Table III. Comparison of success rate for dataset 1

Dataset Success rate in %

 FPA Version 1 Version 2 Version 3

P1 20 60 20 20

P2 80 100 40 20

P3 60 60 40 20

P4 60 100 40 20

P5 20 40 20 20

P6 40 40 20 20

P7 20 40 0 0

P8 0 0 0 0

Figure 2 shows the performance of variations of FPA in the

form of a convergence graph. The Y-axis is best obtained profit

and X-axis is number of iteration. The results show that Version

1 gives optimal solutions in less iterations compared to other

variations.

FPA gives optimal results for first seven instances. For

instance P8 the optimal value is not obtained. The result

obtained is close to the optimal solution. FPA works well for a

smaller number of objects but as the objects increase the

performance of the algorithm is reduced. Version 1 gives better

solutions compared to FPA. Performance of Version 2 and

version 3 is similar to FPA. Among all the variations of

modified FPA, version 1 works best. Harmony search algorithm

given 100% results for all the instances of dataset 1. The

performance of basic FPA and version 1 of modified FPA have

given best results for 87.5%. The Version 2 and Version 3 of

modified FPA have given similar results for 75% instances.

(a)

(b)

Fig. 2. Graph of convergence for dataset 1 (a) 15 objects (b) 24

objects

The success rate of Version 1 is more than that of basic FPA,

Version 2 and Version 3. It is observed that version 3 of

modified FPA which consists of only mutation fails to show any

improvement.

Dataset 2: Table IV shows the dataset which is taken

from Bhattacharjee & Samrah (2014). It is tested for flower

pollination algorithm and its variations. The dataset contains ten

instances.

Table IV. Dataset 2 (from Bhattacharjee & Samrah, 2014)

Dataset Dimension Parameter(w, p, b)

P2_1 10 w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46};

p = {55, 10, 47, 5, 4, 50, 8, 61, 85, 87}; b =

1250

1300

1350

1400

1450

1500

1
2
4

4
7

7
0

9
3

1
1

6
1
3

9
1
6

2
1
8

5
2
0

8
2
3

1
2
5

4
2
7

7
3
0

0
3
2

3
3
4

6
3
6

9
3
9

2
4
1

5
4
3

8
4
6

1
4
8

4

P
ro

fi
t

Iterations

FPA

Version 1

Version 2

Version 3

125

126

127

128

129

130

131

132

133

134

135

1
4
2

8
3

1
2

4
1
6

5
2
0

6
2
4

7
2
8

8
3
2

9
3
7

0
4
1

1
4
5

2
4
9

3
5
3

4
5
7

5
6
1

6
6
5

7
6
9

8
7
3

9
7
8

0
8
2

1
8
6

2

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

Journal of Scientific Research, Volume 65, Issue 3, 2021

 122

Institute of Science, BHU Varanasi, India

269.

P2_2 20 w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32,
18, 56, 83, 25, 96, 70, 48, 14, 58};

p = {44, 46, 90, 72, 91, 40, 75, 35, 8, 54, 78,
40, 77, 15, 61, 17, 75, 29, 75, 63}; b = 878.

P2_3 4 w = {6, 5, 9, 7}; p = {9, 11, 13, 15}; b = 20.

P2_4 4 w = {2, 4, 6, 7}; p = {6, 10, 12, 13}; b = 11.

P2_5 15 w={56.358531, 80.87405, 47.987304, 89.5
9624, 74.660482, 85.894345, 51.353496, 1.

498459, 36.445204, 16.589862, 44.569231,
 0.466933, 37.788018, 57.118442, 60.7165

75};

p={0.125126, 19.330424, 58.500931, 35.02
9145, 82.284005, 17.41081, 71.050142, 30

.399487, 9.140294, 14.731285, 98.852504,
11.908322, 0.89114, 53.166295, 60.176397

}; b = 375.

P2_6 10 w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1}; p =

{20, 18, 17, 15, 15, 10, 5, 3, 1, 1}; b = 60.

P2_7 7 w = {31, 10, 20, 19, 4, 3, 6}; p = {70, 20, 39,

37, 7, 5, 10}; b = 50.

P2_8 23 w = {983, 982, 981, 980, 979, 978, 488, 976,

972, 486, 486, 972, 972, 485, 485, 969, 966,
483, 964, 963, 961, 958, 959} ; p = {81, 980,

979, 978, 977, 976, 487, 974, 970, 485, 485,
970, 970, 484, 484, 976, 974, 482, 962, 961,

959, 958, 857} ; b = 10000.

P2_9 5 w = {15, 20, 17, 8, 31}; p = {33, 24, 36, 37,

12}; b =80.

P2_10 20 w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56,

18, 58, 14, 48, 70, 96, 32, 68, 92}; p = {91,

72, 90, 46, 55, 8, 35, 75, 61, 15, 77, 40, 63,
75, 29, 75, 17, 78, 40, 44};

b = 879.

Table V. Comparison of results for dataset 2

Data
set

Optimal
(Bhattac

harjee &
Sarmah,

2015)

HS
(A. C.

Adam
uthe et

al.,
202

0)

Shuffled
frog

(Bhattac
harjee &

Sarmah,
2014)

FP
A

Vers
ion 1

Vers
ion 2

Vers
ion 3

p2_1 295 295 295 295 295 295 295

p2_2 1024 945 955 102

4

1024 1024 987

p2_3 35 35 35 35 35 35 35

p2_4 23 23 23 23 23 23 23

p2_5 481.06 481.0

6

481.07 481.

06

481.

06

481.

06

481.

06

p2_6 52 52 52 52 52 52 52

p2_7 107 107 107 107 107 107 107

p2_8 9767 9731 9759 971

2

9767 9752 9747

p2_9 130 130 130 130 130 130 130

p2_1

0

1025 889 1010 102

5

950 1025 1014

Table VI. Success rate of all the variations of FPA for dataset 2

Dataset Success rate in %

FPA Version 1 Version 2 Version 3

p2_1 40 60 40 20

p2_2 20 60 20 0

p2_3 100 100 100 40

p2_4 100 100 100 40

p2_5 20 60 20 20

p2_6 80 80 60 20

p2_7 60 60 40 20

p2_8 20 20 0 0

p2_9 60 60 40 20

p2_10 40 0 20 0

The results obtained are shown in table V and the success

rate in table VI. It is observed that the harmony search algorithm

gives the optimal solutions for seven instances whereas FPA

gives the optimal solutions for nine instances. The result shows

that for the dataset 2, version 2 works better than version 1.

Harmony search algorithm given optimal results for 70%

instances. The basic FPA and version 2 of the modified FPA

have given results for 90% instances. Version 1 and Version 3

have given results for 80% and 70% instances respectively.

Version 2 gave best for optimal solution, but the success rate of

Version 1 is more than FPA followed by Version 2 and then

version 3. For dataset 2, Version 3 shows the marginal

improvement among all.

Figure 3 shows the convergence graph of obtained best profit

per iterations for dataset 2. For dataset 2, Version 2 works better

for optimal solutions. But Version 1 shows faster convergence

compared to version 2 and version 3.

 Dataset 3: The third dataset is taken from

(http://www.math.mtu.edu/~kreher/cages/Data.html). It contains

25 instances varying from 8 objects to 24 objects shown in table

VII below. The results obtained are shown in table VIII.

Journal of Scientific Research, Volume 65, Issue 3, 2021

 123

Institute of Science, BHU Varanasi, India

(a)

(b)

Fig. 3. Graph of convergence for dataset 2 (a) 10 objects (b) 20

objects

Harmony search gives optimal solutions for all the instances.

Harmony search algorithms have given best solutions for 100%

instances. Performance of FPA reduced with increase in number

of objects. Basic FPA and all variations gives optimal solutions

to instances upto 12 objects. But, FPA and variations fails to

give optimal solutions when object size becomes 16 and above.

The results obtained are close to best but not optimal. Basic FPA

and Version 1 gives results for 48% and 44% instances

respectively. Version 2 and Version 3 gives results for 40%

instances. The optimal results and success rate of Version 1 are

better than FPA. Version 2 and Version 3 shows similar

performance to FPA. For dataset 3, performance of Version 3 is

not satisfactory.

Table VII. Comparison of all variations of FPA for dataset 3
Dataset Optimal HS

(Adamut

he et al.,

2020)

FPA Version

1

Version

2

Version

3

8a 3924400 3924400 3924400 3924400 3924400 3924400

b 3813669 3813669 3813669 3813669 3813669 3813669

8c 3347452 3347452 3347452 3347452 3347452 3347452

8d 4187707 4187707 4187707 4187707 4187707 4187707

8e 4955555 4955555 4955555 4955555 4955555 4955555

12a 5688887 5688887 5688887 5688887 5688887 5688887

12b 6498597 6498597 6498597 6498597 6498597 6498597

12c 5170626 5170626 5170626 5170626 5170626 5170626

12d 6992404 6992404 6992404 6992404 6992404 6992404

12e 5337472 5337472 5337472 5337472 5337472 5337472

16a 7850983 7850983 7850983 7821255 7823318 7823318

16b 9352998 9352998 9132010 9352982 9200221 9138620

16c 9151147 9151147 9111941 9141408 9126949 9051752

16d 9348889 9348889 9348889 9336691 9288795 9266369

16e 7769117 7769117 7769114 7769117 7754276 7725775

20a 1072704

9

1072704

9

1056740

7

1072700

3

1067431

4

1058190

1

20b 9818261 9818261 9638584 9818160 9652251 9673100

20c 1071402

3

1071402

3

1053137

5

1071302

1

1059817

6

1050361

9

20d 8929156 8929156 8837509 8929024 8893733 8839607

20e 9357969 9357969 9300514 9332165 8893733 9218972

24a 1354909

4

1354909

4

1328474

1

1344357

4 9253870 9218972

B 1223371

3

1223371

3

1212143

6

1214153

6

1172954

2

1212143

6

24c 1244878

0

1244878

0

1228579

8

1239381

8

1221186

2

1221677

8

24d 1181531

5

1181531

5

1166011

5

1174016

5

1161065

9

1152238

1

24e 1394009

9

1394009

9

1373382

6

1384381

2

1368212

2

1338160

0

Table VIII. Success rate of all the variations of FPA for dataset 3
Dataset Success rate in %

 FPA Version 1 Version

2

Version

3

8a 20 40 20 20

8b 20 40 20 20

8c 20 40 20 20

8d 20 40 20 20

8e 20 40 20 20

190

210

230

250

270

290
1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

P
ro

fi
t

Iterations

FPA

Version 1

Version 2

Version 3

8000

8200

8400

8600

8800

9000

9200

9400

9600

9800

1
4
7

9
3

1
3

9
1
8

5
2
3

1
2
7

7
3
2

3
3
6

9
4
1

5
4
6

1
5
0

7
5
5

3
5
9

9
6
4

5
6
9

1
7
3

7
7
8

3
8
2

9
8
7

5
9
2

1
9
6

7

P
ro

fi
t

Iterations

FPA

Version 1

Version 2

Version 3

Journal of Scientific Research, Volume 65, Issue 3, 2021

 124

Institute of Science, BHU Varanasi, India

12a 20 40 20 20

12b 20 40 20 20

12c 20 40 20 20

12d 20 40 20 20

12e 20 40 20 20

16a 20 0 0 0

16b to 24e 0 0 0 0

Figure 4 shows the convergence graphs. The convergence graphs

shows that Version 1 takes less iteration than all other variations

of FPA.

(a)

(b)

(c)

 (d)

(e)

Fig. 4. Graph of convergence for dataset 3 for instance (a) 8

objects (b) 12 objects (c) 16 objects (d) 20 objects (e) 24 objects

37

38

39

40

41

42

43

1
2
9

5
7

8
5

1
1

3
1
4

1
1
6

9
1
9

7
2
2

5
2
5

3
2
8

1
3
0

9
3
3

7
3
6

5
3
9

3
4
2

1
4
4

9
4
7

7

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

52

53

54

55

56

57

58

1
2
6

5
1

7
6

1
0

1
1
2

6
1
5

1
1
7

6
2
0

1
2
2

6
2
5

1
2
7

6
3
0

1
3
2

6
3
5

1
3
7

6
4
0

1
4
2

6
4
5

1
4
7

6

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

66

71

76

81

86

91

96

1

4
0

7
9

1
1

8

1
5

7

1
9

6

2
3

5

2
7

4

3
1

3

3
5

2

3
9

1

4
3

0

4
6

9

5
0

8

5
4

7

5
8

6

6
2

5

6
6

4

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

85

87

89

91

93

95

97

99

1
6
1

1
2

1
1
8

1
2
4

1
3
0

1
3
6

1
4
2

1
4
8

1
5
4

1
6
0

1
6
6

1
7
2

1
7
8

1
8
4

1
9
0

1
9
6

1
1
0

2
1

1
0

8
1

1
1

4
1

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

110

115

120

125

130

135

140

1
4
9

9
7

1
4

5
1
9

3
2
4

1
2
8

9
3
3

7
3
8

5
4
3

3
4
8

1
5
2

9
5
7

7
6
2

5
6
7

3
7
2

1
7
6

9
8
1

7
8
6

5

P
ro

fi
t
(i

n
 l
ak

h
s)

Iterations

FPA

Version 1

Version 2

Version 3

Journal of Scientific Research, Volume 65, Issue 3, 2021

 125

Institute of Science, BHU Varanasi, India

CONCLUSIONS

01 knapsack problem comes under NP category and finding

optimal solution becomes difficult when problem size increases.

In literature, large number of applications of 01 knapsack

problem are presented. Different heuristic algorithms are

investigated to optimize the solutions. This paper presents a

flower pollination algorithm to solve the 01 knapsack problem.

It is an optimization algorithm encouraged by the pollination

behavior of flowering plants. Methodologies of crossover and

mutation is applied to basic FPA with the purpose of improving

the performance of basic FPA algorithm. Three variations of

FPA are done using crossover and mutation operators. First

variation (Version 1) consists of both crossover and mutation

with FPA. Version 1 found the most optimal compared to other

two variations. The second variation (Version 2) includes

crossover with FPA which gives results similar to basic FPA.

The third variation (Version 3) includes mutation with FPA. All

three proposed variations of FPA are shows a slight

improvement in the results. For dataset 1, Version 1 found best

than basic FPA, Version 2 and Version 3. The success rate of

Version 1 is better than others. For dataset 2, basic FPA given

better solutions. But, the success rate of version 1 is better than

remaining variations. For dataset 3, success rate of version 1 is

better but decreased for large instances.

Future work: Performance of FPA decreased with increase in

problem size which leads to increase in search space and number

of combinations. There is a scope of improvement in the

variations that would provide optimal results even for large

instances.

REFERENCES

Abdel-Basset, M., & Shawky, L. A. (2019). Flower pollination

algorithm: a comprehensive review. Artificial Intelligence

Review, 52(4), 2533-2557.

Abdel-Raouf, O., & Abdel-Baset, M. (2014). A new hybrid

flower pollination algorithm for solving constrained global

optimization problems. International journal of applied

operational research, 4(2), 1-13.

Abdel-Raouf, O., El-Henawy, I., & Abdel-Baset, M. (2014). A

novel hybrid flower pollination algorithm with chaotic

harmony search for solving sudoku puzzles. International

Journal of Modern Education and Computer Science, 6(3), 38.

Adamuthe, A. C., Sale, V. N., & Mane, S. U. (2020). Solving

single and multi-objective 01 Knapsack Problem using

Harmony Search Algorithm. Journal of Scientific

Research, 64(1).

Ahmed fouad Ali (2014). Flower pollination algorithm.

Scientific research group in Egypt.

Ali, I. M., Essam, D., & Kasmarik, K. Novel binary differential

evolution algorithm for knapsack problems. Information

Sciences, 542, 177-194.

Al-Qaness, M. A., Ewees, A. A., Fan, H., & Abd El Aziz, M.

(2020). Optimization method for forecasting confirmed cases

of COVID-19 in China. Journal of Clinical Medicine, 9(3),

674.

Alweshah, M., Qadoura, M. A., Hammouri, A. I., Azmi, M. S.,

& AlKhalaileh, S. (2020). Flower Pollination Algorithm for

Solving Classification Problems. Int. J. Advance Soft Compu.

Appl, 12(1).

Alyasseri, Z. A. A., Khader, A. T., Al-Betar, M. A., Awadallah,

M. A., & Yang, X. S. (2018). Variants of the flower

pollination algorithm: a review. In Nature-Inspired Algorithms

and Applied Optimization (pp. 91-118). Springer, Cham.

Alyasseri, Z. A. A., Khader, A. T., Al-Betar, M. A., Papa, J. P.,

& ahmad Alomari, O. (2018, July). Eeg-based person

authentication using multi-objective flower pollination

algorithm. In 2018 IEEE Congress on Evolutionary

Computation (CEC) (pp. 1-8). Ieee.

Bansal, J. C., & Deep, K. (2012). A modified binary particle

swarm optimization for knapsack problems. Applied

Mathematics and Computation, 218(22), 11042-11061.

Bhattacharjee, K. K., & Sarmah, S. P. (2014). Shuffled frog

leaping algorithm and its application to 0/1 knapsack

problem. Applied soft computing, 19, 252-263.

Bhattacharjee, K. K., & Sarmah, S. P. (2015, December). A

binary firefly algorithm for knapsack problems. In 2015 IEEE

International Conference on Industrial Engineering and

Engineering Management (IEEM) (pp. 73-77). IEEE.

Boas, Y. S. V., & de Barros, C. F. SRVB Cryptosystems four

approaches for Knapsack-based cryptosystems.

Choi, S., Park, S., & Kim, H. M. (2011). The Application of the

0-1 Knapsack problem to the load-shedding problem in

microgrid operation. In Control and automation, and energy

system engineering (pp. 227-234). Springer, Berlin,

Heidelberg.

Dahi, Z. A. E. M., Mezioud, C., & Draa, A. (2016). On the

efficiency of the binary flower pollination algorithm:

application on the antenna positioning problem. Applied Soft

Computing, 47, 395-414.

Dahmani, I., Hifi, M., Saadi, T., & Yousef, L. (2020). A swarm

optimization-based search algorithm for the quadratic

knapsack problem with conflict Graphs. Expert Systems with

Applications, 148, 113224.

Dhal, K. G., Gálvez, J., & Das, S. (2019). Toward the

modification of flower pollination algorithm in clustering-

based image segmentation. Neural Computing and

Applications, 1-19.

Journal of Scientific Research, Volume 65, Issue 3, 2021

 126

Institute of Science, BHU Varanasi, India

Donald L. Kreher. Retrieved from

http://www.math.mtu.edu/~kreher/cages/Data.html

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2015). A

biologically inspired modified flower pollination algorithm for

solving economic dispatch problems in modern power

systems. Cognitive Computation, 7(5), 594-608.

Hristakeva, M., & Shrestha, D. (2005, April). Different

approaches to solve the 0/1 knapsack problem. In The Midwest

Instruction and Computing Symposium.

Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V.,

Ashour, A. S., & Balas, V. E. (2017). Application of flower

pollination algorithm in load frequency control of multi-area

interconnected power system with nonlinearity. Neural

Computing and Applications, 28(1), 475-488.

Kenny V., Nathal M., and Saldana S. (2014). Heuristic

algorithms. ChE 345 spring.

Lei, M., Zhou, Y. & Luo, Q. Color image quantization using

flower pollination algorithm. Multimed Tools Appl 79, 32151–

32168 (2020).

Madasu, S. D., Kumar, M. S., & Singh, A. K. (2018). A flower

pollination algorithm based automatic generation control of

interconnected power system. Ain Shams Engineering

Journal, 9(4), 1215-1224.

Nguyen, T. T., Pan, J. S., & Dao, T. K. (2019). An improved

flower pollination algorithm for optimizing layouts of nodes in

wireless sensor network. Ieee Access, 7, 75985-75998.

Pravallika, D. L., & Rao, B. V. (2016). Flower pollination

algorithm based optimal setting of TCSC to minimize the

transmission line losses in the power system. Procedia

Computer Science, 92, 30-35.

Salgotra, R., & Singh, U. (2017). Application of mutation

operators to flower pollination algorithm. Expert Systems with

Applications, 79, 112-129.

Salgotra, R., Singh, U., Saha, S., & Nagar, A. K. (2020).

Improved flower pollination algorithm for linear antenna

design problems. In Soft Computing for Problem Solving (pp.

79-89). Springer, Singapore.

Sayed, S. A. F., Nabil, E., & Badr, A. (2016). A binary clonal

flower pollination algorithm for feature selection. Pattern

Recognition Letters, 77, 21-27.

Senthilnath, J., Kulkarni, S., Suresh, S., Yang, X. S., &

Benediktsson, J. A. (2019). FPA clust: evaluation of the

flower pollination algorithm for data clustering. Evolutionary

Intelligence, 1-11.

Ulker, E., & Tongur, V. (2017). Migrating birds optimization

(MBO) algorithm to solve knapsack problem. Procedia

computer science, 111, 71-76.

Wang, R., Zhou, Y., Zhao, C., & Wu, H. (2015). A hybrid

flower pollination algorithm based modified randomized

location for multi-threshold medical image segmentation. Bio-

medical materials and engineering, 26(s1), S1345-S1351.

Wong, W. K., & Ming, C. I. (2019, June). A Review on

Metaheuristic Algorithms: Recent Trends, Benchmarking and

Applications. In 2019 7th International Conference on Smart

Computing & Communications (ICSCC) (pp. 1-5). IEEE.

Yang, X. S. (2012, September). Flower pollination algorithm for

global optimization. In International conference on

unconventional computing and natural computation (pp. 240-

249). Springer, Berlin, Heidelberg.

Zhou, Y., Chen, X., & Zhou, G. (2016). An improved monkey

algorithm for a 0-1 knapsack problem. Applied Soft

Computing, 38, 817-830.

http://www.math.mtu.edu/~kreher/cages/Data.html
http://www.math.mtu.edu/~kreher/cages/Data.html

