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Abstract: For managing the soaring power demand, various types 

of Energy Harvesting Systems (EHS) have been developed. The 

energy harvesting from unutilized natural renewable sources using 

piezoelectric transducers is one of them. Day-by-day different 

analytical models are being reported with different piezoelectric 

transducers to improve the energy efficiency and output power of 

the energy harvesting systems. The goal of this paper is to review 

the PEH (Piezo-electric Energy Harvesting) systems developed in 

last decade to harness energy required for small electronics. The 

Piezo-electric energy harvesting system works on the phenomena of 

direct piezo-electric effect; i.e. the transducer generates electric 

energy when it is exposed to mechanical stress/pressure/vibration. 

The suitability of piezo-electric transducer for different 

applications depends upon the piezo-electric materials, their shapes 

and configurations. In this article the different piezoelectric 

materials and the transducer configurations have been discussed. 

The performance parameters of different piezo-electric energy 

harvesting systems have been analyzed and the scope of 

improvement in the existing systems has been discussed in this 

manuscript. 

Index Terms: Energy demand, Renewable, Vibration, Piezoelectric 

transducer, Energy harvesting. 

I. INTRODUCTION 

The global demand for usable power is jumping up day-by-

day. The developed countries are carrying on with consuming 

more and more energy, while developing countries’ demand is 

rising gradually. As per the “International Energy Agency’s 

2019 World Energy Outlook”, if the developed and developing 

countries continue to move in the present track without changing 

the policy, the demand of usable energy will rise by 1.3% per 

year till 2040 (Agency, 2019; Newel, 2020).  

   The solution for fulfilling the rising energy demand lies in 

harvesting more and more energy from the unutilized energy 

sources. The classification of unutilized energy sources is shown 
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in Fig.1. The scientists are focussing on the area of energy 

harvesting from natural energy sources for more than a decade. 

Many models/devices have been developed for clean energy 

harvesting from different environmental sources, vehicular 

sources, industrial sources, human motions etc.  These energy 

harvesting systems have been demonstrated using magneto-

electric (Bo & Gardonio, 2018; Dai et al., 2011; Li et al., 2010; 

Annapureddy et al., 2017), thermoelectric (Park et al., 2014; 

Park et al., 2019), piezoelectric transducers (Zhou et al., 2014; 

Accouri et al., 2017; Sarkar et al., 2019; Cui et al., 2019; Argula 

and Lakshmi, 2020) etc. This manuscript focuses on the 

utilization of renewable for energy harvesting using piezoelectric 

transducers. 

II. PIEZOELECTRIC TRANSDUCER 

Piezoelectric material generates the electrical energy when it 

is under mechanical stress, vibration, force, pressure etc. The 

energy conversion property of piezoelectric transducers makes it 

suitable for energy harvesting applications. Different types of 

piezo-electric materials used in energy harvesting process are; 

single crystal, lead-based piezoceramics, lead-free 

piezoceramics, piezopolymers etc. The classification of 

piezoelectric material with their characteristics and examples is 

explained in TABLE I.  

    Depending on the configuration, the piezoelectric 

transducers are classified as: a) Cantilever beam type, b) 

Diaphragm type, c) Cymbal type, d) Stack type. 
 

A. Cantilever beam type Piezo-electric transducer 

 

 As shown in Fig.2, the piezo-electric cantilever-beam type 

transducer consists of a fix-base, a cantilever beam, tip-mass and 

thin piezoelectric layers. The cantilever beam is fixed at one end, 

which helps to operate in its flexural mode (Xiong et al., 2020). 

Its simple geometry helps in generating high strain. The 

cantilever piezoelectric transducers are categorized into 
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unimorph and bimorph type depending upon the number of 

piezo-electric layers is bounded with the cantilever-beam. The 

bimorph piezoelectric transducers are well-liked in piezo-electric 

energy harvesting (PEH) systems, as it generates almost twice 

the electric energy generated by uni-morphs without changing 

the volume of the transducer (Mishra et al., 2018). 

M.Wisehke et al. developed a piezo-electric cantilever energy 

harvesting system (PCEHS) using cantilever piezoelectric 

transducer and mounted it on a rail track. More than 500 passing 

trains were detected and the system was monitored for 3 to 5 

minutes in every one-hour interval. It was reported that around 

395 µJ of energy could be generated from the vibration 

generated by one passing train (Wischke et al., 2011). PZT-5H 

stack cantilever type composite with MC nylon packaging was 

used to harvest roadway energy by X. Xu et al. (Xu et al., 2017). 

 

 
Fig 1. Classification of Energy Sources 
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Table I. Classification of Piezoelectric material 

Class of Piezo-electric 

material 

Descriptions & Characteristics Examples 

Single-crystal materials 

 
 

➢ Bridge-man/Flux methods are used as growing 

techniques in singe/mono crystals. 

➢ Excellent piezo-electric properties. 
➢ Mainly, it has applications in the field of 

sensor & actuators. 

 
Zinc Oxide (Zn O). 
Lead- Magnesium- Niobate (PMN)  

 

Lead based Piezo-ceramics ➢ It is Polycrystalline in nature. 
➢ It has perovskite-crystal structure. 
➢ It has high piezo-electric effect. 
➢ It has low dielectric loss. 
➢ Simple/easy fabrication. 
➢ Occurrence of lead makes it toxic. 

Modified/doped PZT, for example 
MgNb2O9Pb3-PZT (PMN - PZT); 
PZT - 5A;  
PZT -ZnO. 

Lead- free Piezo-ceramics ➢ It is not toxic as lead is not present. 

➢ Conversion efficiency is low. 
Barium Titanate; 

Bi0.5Na0.5TiO3; 
KNa (NbO3). 

Piezo-polymer 

 

➢ Electro-active Polymer. 

➢ It is Flexible. 

➢ It is non-toxic and it has comparatively low weight. 
➢ Low electro-mechanical Coupling.  

➢ It is cost effective. 
➢ Processing speed is high. 

➢ It is biocompatible, biodegradable. 
➢ It consumes less power as compared to other p iezo-

electric material. 

 

 

Polyvinylidene-Fluoride  

(PVDS)  

 

 

 
Fig 2. Cantilever beam piezoelectric transducer (Rhyme and Lajnef, 

2012) 

B. Diaphragm type piezoelectric transducer: 

      

     The diaphragm piezo-electric transducer consists of three 

layers. The core part or inner layer is electrode, middle layer is 

piezo-electric material & the outer layer is the metal shim 

(Fig.3). The tip mass is affixed to the core/electrode of 

diaphragm, to enhance the output power and its low frequency 

performance (Xiong et al., 2020). 

      

 E. Minazara et al. (2006) performed an experiment using 

piezoelectric diaphragm for vibration-energy-harvesting. They 

noted that a power of 0.65 milliwatt was produced at 1.71 

kilohertz resonance frequency across 5.6 KΩ resistances and 80 

N forces. They used a specially designed electronic circuit using 

“Synchronized Switch harvesting on Inductor” to improve the 

generated power to 1.7 milliwatt (Minazara et al., 2006). 

 

 
Fig. 3. Circular diaphragm piezoelectric transducer (Minazara et al., 

2006) 

C. Cymbal type Piezo-electric transducer: 

 

 The cymbal transducers comprise of a piezoelectric disc with 

metal capping on top and the bottom (Fig.4). The displacement 

of a cymbal is due to both flexure and rotational motion of the 

end caps. The cymbal is preferred for traffic energy harvesting 

systems because of its higher displacement, high stability, high 

contact surface and its lesser fabrication cost (Kim at al., 2004). 

 

       S. Gareh et al., from their simulation study, concluded 

that the piezoelectric traffic model using multiple piezoelectric 

cymbal transducer arrays can produce a total of 170 KW electric 
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power for a 1-kilometre stretch considering the traffic rate as 

600 vehicles/hour (Gareh at al., 2018). 

 

 
Fig 4. Half-view of Cymbal piezoelectric transducer (Yang et al., 

2017) 

D. Stack type Piezo-electric transducer:   
 

  Stacked piezoelectric transducers are the multi-layer 

piezoelectric transducers stacked over each-other (Fig.5). The 

poling direction of the layers is same as the direction of applied 

force. The stack type piezoelectric transducers are mostly used 

in high-pressure applications.   

     

A.J. Lee et al. used a PZT-stack type piezoelectric transducer to 

simulate a traffic energy harvesting system on LabVIEW. They 

predicted that for an impulsive load of 20.8 mN the PZT-stack 

(SCMAP09-HI00) is capable of harvesting 0.2899 µJ energy 

(Lee et al., 2014). 

 

 
Fig 5. Stack piezoelectric transducer (Covaci and Gontean, 2020) 

 

 The merits and demerits of these four configurations of 

piezo-electric transducers are described in TABLE II.  

 

Table II. Merits & Demerits of Different Types of Piezoelectric Configuration 

Types of Configuration FEATURES/Merits Demerits 

Uni-morph / Bimorph 
 Cantilever-beam 

 

➢ Structurally it is very simple. 

➢ It has less fabrication cost. 

➢ The o/p power depends proportionally upon the tip 

mass. 

➢ It has a higher mechanical quality factor. 

 

 
Not able to tolerate large impact force 

 

 
 

Circular- diaphragm 
 

 
Compatible to pressure- mode operations. 

It is rigid as compared to a cantilever-
beam with same size. 

 

Cymbal  

 
➢ Higher o/p energy. 

➢ It can tolerate a large impact force. 

 

It is not suitable to the applications 
which demand high magnitude 
vibration source.    

Stacked- structures ➢ It can resist large mechanical load. 

➢ Compatible to pressure- mode operations. 

 

 
Highly rigid. 

 

 

III. ENERGY HARVESTING FROM ENVIRONMENTAL 

SOURCES 

As per the information provided by “Centre for Climate and 

Energy Solutions” (C2ES), in 2018, 26.2% of electric energy 

was generated globally and it is anticipated to increase to 45 % 

by 2040. The maximum portion of renewable energy sources are 

covered by solar, wind, ocean wave etc (Lee et al., 2014). 

Harvesting the useful energy from this unutilized renewable 

using piezoelectric transducer is in practice now-a-days. 

 

An energy harvesting device has been developed using 

cantilever beam type piezoelectric transducer with Shape 

Memory Alloy (SMA). This device is capable of generating a 

power of 12.1 microwatt from solar energy, when the working 

fluid temperature is 700C and flow rate is 24 ml/second. 2.36 

microwatt of power is generated at a flow rate of 4.8 ml/second 

with the same thermal condition. More electric energy can be 

generated by using more solar energy as it increases the 

temperature of the working fluid (Kang, 2012). 

 

S. Wen et al. fabricated a wind energy harvester using 

piezoelectric cantilever beam. When the rotational speed due to 

wind energy is 360 rotations per minute, the device generates 

power of 1.38 microwatt and a voltage of 1.9 V. (Reddy et al., 

2015). J. Sirohi and R. Mahadik demonstrated a wind energy 

harvesting device which generates a power of around 50 

milliwatt when the wind flows at the rate of 11.6 m/hr (Wen et 

al., 2017). S.A. Oy and A.E. Ozdemir developed a piezoelectric 
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based energy harvesting system which generates average o/p 

power of 519 microwatt for a wind speed range of 4.5 - 5 

metre/second (Fig. 6) (Sirohi and Mahadik, 2011). 

 

 
Fig 6. Wind Energy Harvester setup (Sirohi and Mahadik, 2011) 

Recently, several highly efficient self-excited windmill or 

wind generator has been fabricated and tested using PZT (Lead 

Zirconate Titanate) material (Oy and Ozdemir, 2018; Zhou et al., 

2019; Wanga et al., 2019; Yang et al., 2018; Wang et al., 2016; 

Laumanna et al., 2017; Hosseinabadi et al., 2013; Hosseinabadi 

et al., 2016; Zhou et al., 2016). 
 

As per the report of United States Geological Survey released 

in 2020, the water covers around 71 % of the earth’s surface and 

96.5% of it is ocean water. Ocean wave is a great source of 

renewable energy. A piezo-electric coupled buoy energy 

harvester was developed by (Hosseinabadi et al., 2013), which 

generates the usable electric energy from the ocean wave. It was 

reported, an electrical power of 24 watt was generated using that 

particular system with piezoelectric cantilever of length 1 meter 

and the buoy length of 20 meter. The piezo-electric based ocean 

energy harvesting system has been studied by many researchers 

(Wu et al., 2015; Navabi et al., 2018; Kim et al., 2018; Viet et 

al., 2017; Gong et al., 2019). 
 

The rainfalls lead to dissipation of a high amount of kinetic 

energy. This kinetic energy can be utilized to generate usable 

electric energy. Piezoelectric rain drops energy harvester setup 

with a spoon-full of water was demonstrated (Fig.7) (Doria et 

al., 2019). The performance of rain impact energy harvesters has 

been studied by many researchers (Ilyas and Swinger, 2017; 

Wong et al., 2017; Wong et al., 2014; Motter et al., 2012; Shu, 

2009; Miceli et al., 2014). The efficiency of the rain drop impact 

energy harvesting system is very low, i.e. 0.12 % of total kinetic 

energy (K.E.) of the rain drops in free fall condition (Ilyas and 

Swinger, 2015). 

 
Fig 7. Raindrop Energy Harvester setup (Doria et al., 2019) 

IV. ENERGY HARVESTING FROM VEHICULAR 

VIBRATION SOURCES 

The vehicular vibration energy eventually destroys the 

pavement structures and it is not easy to collect that energy. The 

mechanical to electrical conversion property of piezoelectric 

transducer are used to convert the vehicular vibration energy into 

electrical energy. This electrical energy can be used to feed 

power to the road side electric appliances, such as traffic signal 

lights, advertising boards etc.  
 

  In 2010, Prof. H. Aramovich (CEO of Innowattech) and 

Associate Prof. of Technion Institute of Technology headed a 

project on piezoelectric energy harvesting (PEH) in roads of 

Israel. They observed that when the piezoelectric energy 

generators are installed 6 c.m. beneath the road level maintaining 

30 c.m. distances from each other, the system is able to produce 

power of 400 kilowatt in one hour for a 1-kilometre stretch 

assuming the traffic of 600 vehicles/ hr (Zhang et al., 2015). 

Now-a-days PEH systems have been implanted in many office 

corridors, mostly in Japan, to lighten up LEDs when it senses the 

footsteps.  
 

H. Najini and S.A. Muthukumarswamy presented a 

simulation-based model to advocate the idea of harvesting 

energy from road traffic using piezo-electric material. From this 

simulation work, they observed that energy of 137, 255 & 469 

kwh can be yielded from a single lane road with vehicle speed of 

80,100 and 120 km/hr respectively assuming the traffic of 500 

vehicles per hour (Najini and Muthukumaraswamy, 2017). A. 

Jasim et al. have also reported numerical simulation model of 

PEH system for roadways applications (Jasim et al., 2018). X. 

Xu et al. conducted an experimental study on piezoelectric 

roadways energy harvesting systems. They concluded that out of 

PZT - 4, PZT - 8 and PZT - 5H (all at the same size), the PZT-

5H posses a high voltage, high relative dielectric constant and 
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high capacitance when load frequency is more than 5hertz. It is 

able to produce comparatively more power under same load. 

Hence, it is more suitable to be used in piezo-electric boxes for 

pavement energy harvesting (Xu et al., 2017). The dielectric 

properties of PZT-4/8/5H are listed in TABLE III (Data taken 

from (Xu et al., 2017)). H. Yang et al. designed a piezo-electric 

power generation unit using stacked array piezo-electric 

transducer with MC nylon as packaging material for road 

vibration energy harvesting. They proved the practical 

significance of the system by performing on-site test (Fig. 8) 

(Yang et al., 2017). M.V. Rodriguez et al. used PZT and lead-

free PIC-700 for deigning traffic-energy-harvesting system. 

They concluded that the relative error in practical 

implementation of the theoretical model is around 3% in both 

the ways, by using PZT and PIC-700 (Rodriguez et al., 2019).   
 

A number of research works have been reported on roadways 

energy harvesting using piezo-electric material (Li et al., 2018; 

Qabur and Alshammari, 2018; Wang et al., 2017; Izadgoshab et 

al., 2019; Jung et al., 2017; Roshani et al., 2016). 

 

 
Fig 8. Piezoelectric pavement energy harvesting box (Yang et al., 

2017) 

Table III. Properties of PZT - 4, 8 & 5H (Xu et al., 2017) 

PZT 
Material 

ε 33 d33 (10-12 

coulomb/newton) 
K Curie’s 

Temp. 

(0C) 

PZT - 4 1300.00 250.00 0.54 300.00 

PZT - 8 1020.00 220.00 0.50 310.00 

PZT - 5H 2000.00 410.00 0.60 260.00 

 

 

 

V. ENERGY HARVESTING FROM HUMAN ACTIVITIES 

 

In a piezoelectric transducer, the usable electric-energy is 

generated when it is exposed to any type of 

stress/pressure/vibration. Vibration is found almost everywhere. 

Even certain human activities such as body heat, breathing, lub-

dub of the heart beat and movement of various body parts while 

walking, jaw-movement etc. also cause vibration to certain 

extent. The energy harvesting from human activity is a very 

encouraging clean substitution to electric-energy supplied by the 

battery to the small transportable electric appliances.            
        

A multi-functional shoe was designed by (Xu et al., 2017) 

inserting a piezoelectric transducer inside the shoe-heel and 

embedding the required electronic circuit on the shoe-sole for 

storing the electric energy. A wearable-energy-harvesting 

technique was developed to produce electric energy from the 

limb-movement by Li et al. (2018).  It was reported that for one 

stretch-rebound limb movement cycle, the device generates a 

power ranging from 0.56 to 0.69 µJ for a frequency range of 0.5 

to 5.0 Hz (Li et al., 2018). S.Y. Jeong et al. fabricated a tiny 

biomechanical energy harvesting system having dimension 4mm 

X 6mm X 3mm (weight=14g.) with PZT-ceramics and Light 

Emitting Diode switching circuit. This device is reported to 

produce 800 microwatts at a resistance of 400 KΩ (Jeong et al., 

2019). A piezoelectric cantilever embedded shoe was designed, 

which provides energy of 5.6 mJ, avg. o/p power of 75 

microwatt in 75 seconds of running (Fig. 9) (Al-Nabulsi et al., 

2019). The podiatric sensing technique for energy harvesting has 

been proved to be very promising (Riemer and Shapiro, 2011; 

Yang et al., 2018; Khaliah et al., 2010; Howells, 2009; Cha and 

Seo, 2017; Rocha et al., 2010; Suripto et al., 2018; Ishida et al., 

2013; Palossari et al., 2012; Meier et al., 2014; Meier et al., 

2014). 

 

 
Fig 9. Shoe-sole Piezoelectric Energy Harvester (Al-Nabulsi et al., 

2019) 
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VI. ENERGY HARVESTING FROM INDUSTRIAL 

VIBRATION SOURCES 

The industrial vibration or machinery vibration contributes a 

large part of total vibration energy. The mechanical parts such as 

motor, compressor, chillers, pump, fan, conveyor etc. causes 

vibration in a machine. The recent developments of PEHS 

generating electric energy from the vibration energy have been 

proved very promising.  
 

 A PEH system was developed and attached to an AC 

Induction motor (2 hp, two-pole, 3-phase). The horizontal-

vibration was 80mG at 60 hertz. It was reported that the device 

was able to produce an output power of 726.2 microwatt at a 

target resistance of 100 KΩ in optimized condition (Fig.8) 

(Pathongsy et al., 2015). M. Khazaee et al. designed a self-

powered / autonomous condition-monitoring-system and used 

that device to monitor conditions of a water pump (Fig. 10) 

(Khazaee et al., 2019). B. Ando et al. developed an STB (snap-

through-buckling) harvester, which generates a power up to 155 

µW at 5 Hz. This power is enough for running a low power 

electronic device or a standard WSN (Wireless Sensor Node). 

The avg. conversion efficiency of the system is around 15 % 

(Ando et al., 2017). 

 
Fig 10. PEHS attached to an AC Induction motor (Khazaee et al., 

2019) 

VII. PEH SYSTEM FULFILLING ENERGY DEMAND 
 

The low power electronic devices require power from nW to 

mW range for their operation. The power required to operate 

different devices is shown in Table IV. From the literature 

review, it is observed that the PEH systems developed so far 

generates an output power of range µW to mW (Table V & VI), 

which is sufficient to operate the WSNs (Wireless Sensor 

Nodes) and low power electronic-devices. 

 

Table IV. Power Demand for Small Electronic Systems 

Small Electronic Systems Power Demand Reference 

32 khertz quartz oscillator. 100.0 nW (Harrop and Das, 2011) 

Electronics watch/calculating device. 1.0 µW (Harrop and Das, 2011) 

Radio frequency identification device for medicals. 10.0 µW (Gaynor and Waterman, 2016) 

Hearing aids. 100.0 µW (Harrop and Das, 2011) 

Short range (nearly 30 mm) proximity sensors 270.0 µW (Semiconductors) 

Hearing aids. 1.0 mW (Raju and Grazier, 2015) 

Auto-motive light sensors (model SFH 5711 

(OSRAM)). 

1.03 mW (Semiconductors) 

Sun-flower mini computation system. 1.75 mW (Marbell and Marculesu, 2007) 

Ultrawide band (UWB) transmitter. 
2.0 mW 

(Ryckaert et al., 2005) 

Accelerometer (model ADXL 103 supplied from 5V). 3.35 mW (Analog Devices) 

Transmitter (model RFM HX 1003). 7.5 mW (Paradiso and Feldmeier, 2001) 

Potential requirement of Wireless Sensor Node 
working Zig-bee circuits. 

10.0 mW (Grady, 2016) 

A custom designed radio (operation frequency 1.90 
giga hertz)   

12.0 mW (Roundy and Wright, 2004) 

Self-governing sensor modules. 20.0 mW (Ferrari et al., 2009) 

Berkeley Telos Mote. 36.0 mW (Jiang et al., 2005) 

PALM, MP3. 100.0 mW (Harrop and Das, 2011) 
 

 

Table V. Review on Performance of Piezoelectric Transducer 

Piezo-electric 

material Used 

Thickness 

(mm) 

Application Maximum 

Power generated 
(µW) 

Frequency 

(Hz) 

Reference 

PVDF 0.41 Wind Generator 610.0 3.0 (Xianzhi, 2009) 

PVDF 0.15 Self-governed Wireless 2.0 2.0 (Miso Kim, 2010) 



Journal of Scientific Research, Volume 65, Issue 3, 2021 

   170 
Institute of Science, BHU Varanasi, India 

Sensor system 

PMN - PT 0.00084 Self-governed Cardiac 
Pacemaker 

6.70 0.30 (Liang and Wao, 
2010) 

0.71Pb (Mg0.33Nb0.67) 
O3 

-0.29PbTiO3 

1.0 Piezoelectric generator 3700.0 102.0 (LeiGu, 2011) 

PZT 0.8 Human limb motion- based 
Piezoelectric generator 

47.0 1.0 (Arrieta, 2013) 

PZT 20.0 Self-powered Total Knee 
Replacement (TKR) system 

265.0 1.0 (Qiu et al., 2014) 

PZT 0.30 Piezoelectric generator 2000.0 20.0 (Ming et al., 2014) 

PZT & MFC (Micro 
Fibre Composite) 

0.27 Piezoelectric generator 30000.0 50.0 (Kulkarni et al., 
2014) 

PMN - PZT 0.50 Piezoelectric generator 14.70 1744.0 (Sriramdas et al., 
2015) 

0.4Pb (Mg0.33Nb0.67) 
O3 

-0.6Pb (Zr0.38Ti0.62) O3 

0.20 Propeller based under water 
PEH System 

17000.0 24.50 (Zhiran et al., 2017) 

PZT – 5H 5 Shoe-integrated Piezoelectric 
generator 

1430.0 (walk of 
person weighing 

90 kg.) 

1.0 (He and Jiang, 2017) 

PZT-5H 1 Vibration Energy Harvester 1055 51 (Hua et al., 2018) 

 
 

PZT-5A 0.275 Vibration Energy Harvester 530 109.5 (Kaur et al., 2019) 

PZT-5A 0.5 Piezoelectric generator 2500 42 (Li et al., 2011) 

PZT-5A 0.5 (2 piezo 

plates used) 

MEMS Harvester 1080 20.1 (Bischur and 

Schwesinger, 2013) 

PZT 0.25 (2 piezo 

plates used) 

Broadband vibration Energy 

Harvester 

7070 20 (Hwang et al., 2014) 

PZT 1 Powering WSN 390 38 (Xu et al., 2012) 

PZT-5H 3 Piezoelectric generator 3.18 93 (Renaud et al., 2009) 

PZT-5A 0.5 (4 piezo 
plates used) 

Shear mode energy harvester 570 620 (Platt et al., 2005) 

PVDF - Multistep PEH System 8.59 30.8 (Yuan et al., 2008) 

PZT 3 MEMS Harvester 979 77.2 (Henry and Sodano, 
2003) 

PZT-4 0.2 Multimode Energy Harvester 2350 66.7 (Erturk et al., 2008) 

PZT - Footstep PEH System 6130 2.3 (6.2 km/hr) (Kim et al., 2020) 

PZT 0.3 Wind Generator 43.12 12 (Turkmen and Celik, 
2018) 

 

 

Table VI. Review on Performance of PEH System 

PEH System Maximum Power 

generated/ Power 
density 

Frequency (Hz) Load Resistance Reference 

Self-governed temperature 

monitoring system. 

43.0 W/m2 15.0 0.50 kΩ (Hwang et al., 2019) 

PEH System for bi-cycle. 3.40 mW 2 - 30 200.0 kΩ (Vasic et al., 2014) 

Self-governed WSN. 3560.0 µW/cm3 1368.0 - (Marzencki et al., 2007) 

MEMS(Micro-

electromechanical-system) 

based Piezo-electric generator. 

10846.0 µW/cm3 608.0 21.40 kΩ (Fang et al., 2006) 

Multidirectional Wind 

generator. 

1.73 mW 15.70 15.0 kΩ (Zhao et al., 2015) 

Wind energy harvester. 10.0 µW 11.0 1.0 MΩ (Hobbs and Hu, 2012) 

Piezo-electric generator 40.0 W/m2 2.0 6.0 kΩ (Barrero-Gil et al., 

2010) 

Piezo-electric generator 300 - 400 µW 200 - 250 - (Wright, 2006) 

Piezo-electric Cantilever 

Vibration Energy Harvester 

416.0 µW/cm3 183.80 16.0 kΩ (Shen et al., 2009) 
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Piezo-electric Vibration Energy 

Harvester in water vortex 

1.10 Mw/ m2 - - (Shan et al., 2015) 

 

CONCLUSIONS 

The transition of small electronic devices from battery-

powered to self-powered or self-governed systems has been 

achieved by using the energy harvesting systems.   The piezo-

electric transducers are extensively used in energy harvesting 

applications due to its simple fabrication process and cost 

effectiveness. It possesses a high energy/power density, still 

there are certain disadvantages which limit the broader 

application range of these devices. These systems generate low 

output energy and need utmost power extraction, rectification, 

high voltage regulation and optimization of the integrated 

system. These drawbacks must be overcome to enhance the 

efficiency of   PEH systems. 

 

Out of all vibration sources, the traffic generated vibration 

has been proved to be very promising for the PEH applications. 

The roadway energy harvesting needs to be given more 

attention, especially in the highly populated countries, to fulfil 

the post pandemic energy demand. 
 

FUTURE SCOPE 

In the current scenario the focus should be given to the 

microminiaturization and the power-conversion efficiency of the 

system. The conventional half bridge and full bridge rectification 

techniques are not applicable for micro-mini   systems. 

Therefore, different active rectification techniques need to be 

explored for co-integration with the system to fulfil both the 

requirements. To improve the performance of the system more 

focus should be given to optimization of parameters; such as 

mass-ratio, damping-constant, frequency, load-resistance, 

electro-mechanical coupling factor etc. 

This work is relevant for the researchers to choose the best 

method of energy harvesting and invest more time and effort for 

enhancing the efficiency and performance of that particular 

method.  
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