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Abstract: The paper presents analytical and empirical posterior
analysis for the two parameter Hjorth distribution under
Generalised Type-l1 Progressive Hybrid Censoring. Its various
distributional properties are also derived. Maximum likelihood,
asymptotic confidence interval and Bayes estimates are developed
for the unknown parameters assuming squared error loss. E-
Bayesian and hierarchical Bayesian inferential analyses are also
conducted. A simulation study illustrates the theoretic findings in
context of the considered censoring, on one classical approach and
three Bayes methodologies developed in this paper. Two real data
sets are used to demonstrate the model applicability.

Index Terms: Generalised Progressive Hybrid Censoring, Hjorth
Distribution, Bayesian Parametric Estimation, E-Bayes, Hierarchical
Bayes Estimate.

. INTRODUCTION

A three parameter Hjorth distribution H(a,5/2) was
introduced by Hjorth (1980) as an alternative lifetime model to the
widely accepted Weibull, Rayleigh and exponential distributions . It
exhibited increasing, decreasing, constant and bathtub shaped
failure rates (IDB). The quest for a new reliability model was
motivated by a desire to represent mixture of a set of increasing
failure rate (IFR) distributions with a single model. H(a,5,2) has
a competing risk interpretation. It represents lifetime of a
mixture of mechanical units, where each unit follows linear
failure rate subject to wear out from the beginning of their
lifetimes. Its probability density function (pdf) is given by

B . :
f(x) = %e‘?xz;x >0, =0, > 0. Since then this

distribution has received very little attention in the context of
lifetime studies. Some of its inferential aspects have been
studied by Guess et al. (1998), such as derivation of conditional
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densities which characterize the relation between the failure rate
and the mean residual life. More recently, Bayes parametric and
survival estimation of the two parameter Hjorth distribution
H(a,f) under progressively type-ll censored data has been
studied by Yadav et al. (2019), by regarding the second shape
parameter as fixed (4=1). So far several of its mathematical and
statistical aspects have not been explored in detail. Owing to its
IDB nature Hjorth can be seen as a strong reliability-model
candidate. The present paper is an effort in this direction. We
focus on its mathematical properties and parametric estimators
under progressive censoring which is an ideal testing situation
for robust product desired in the current markets.

B
The pdf H(ap) is given by f(x)=‘ti’;7§x;11)e'?‘z;x>

0,a = 0,8 > 0, which is obtained by regarding the additional
shape parameter 1 as 1 in H(e,f4). The corresponding

B2

cumulative density function (cdf ) is givenas F(x) =1 — (elfx)a-
B2

The survival function is S(x) = (eler)a which appears as the

product of survival function of Rayleigh, e_zxz, and the survival
function of Lomax, (1+ x)~% distributions, thereby
highlighting the competing risk aspect of the distribution.

Hazard function h(x) = ﬁx+$, is seen as the sum of an

increasing and a decreasing term.

The present paper undertakes comparative study of the
classical and Bayesian estimators for the two parameter H(a.,f)
distribution. Section 2 presents some statistical and reliability
results for the H(a,f) distribution. Section 3 describes
Generalised Type-1 Progressive Hybrid Censoring (GT-IPH)
mechanism. Section 4 is devoted to the development of
Maximum Likelihood Estimates (MLEs) under GT-IPH. Section
5 describes construction of Asymptotic Confidence Interval
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(ACI) for the parameter and the reliability estimates. Section 6
traces development of the classical Bayes estimators. Section 7
details E-Bayes estimation for GT-IPH censored sample. Section
8 focuses on the development of Hierarchical Bayes estimates
for the model parameters. Simulation study is undertaken in
section 9. Model fit is illustrated on two real data sets from the
classical literature on reliability. Section 10 concludes the
findings of the present study.

II. SOME DISTRIBUTIONAL PROPERTIES
Some statistical properties of the H(a,f) are presented as
under,
. oo atfx(x+1) _By2
(i) Mean = fO XWQ 2" dx
.. ] —a+V(a?+2(B-a)log 2)
ii Median =
(i (B-a)
(iii) Mode is given by the root of the polynomial,

' =273 + B(1 = 2a— B)x* + 28(1—a)x + B

—a(l+a)=0
B
ooe_fx2 dx
A+
(iv)  Mean Residual Life= =50
_b,2
e 2
(1+x)* P
" _ [ ra+fx(x+1) _Ex2
(v) The rt raw moment fo Groat €’ dx
(vij  The r central moment = | Ooo(x -
B. 2
ra+ﬁx(x+1) -
) armart © dx
(vii) Moment generating function My (t) =
®© 4t a+ﬁx(x+1) __xZ
fo e (1+x)u+1 dx
(viii)  Characteristic function =
. B 2
®© jep @+Bx(x+1) Ly
fo e (1+x)a+1 2 dx

—a+x/(o:2 —Z(ﬁ—a)log(l—u))

(ix) Quantile function x4 =

(B-a)
(xX)  Uncertainty or randomness measured as Renyi entropy
_ log{[ %5, (0 8ax}

Iz (6) —T,(S >0,6#1

and as Shannon entropy S = E[—logf(x)]
respectively given as : Ir(6) =

oo {a+Bx(x+1)}8 __ﬁ 2
U e R L

S = (a+ 1E[log(1+ x)] + EE[xZ] — E[log{a +
Bx(x + 1)}]

Graphical representation of density function,

distribution function, survival function and hazard
function is respectively given ii Fig. 1- Fig. 4.
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Fig. 1: Plot of pdf f (x) of H(a, p) for different
combinations of parameter values
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Fig. 2: Plot of cdf F(x) of H(a, ) for different
combinations of parameter values
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Fig. 3: Plot of survival function S(x) of H(a, j) for
different combinations of parameter values
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Fig. 4: Plot of hazard function h(x) of H(a, j) for
different combinations of parameter values

I1l. GENERALISED TYPE I PROGRESSIVEHYBRID
CENSORING SCHEME

Censoring is conducted in life testing experiments to optimize
the cost and observe the time constraints. Let

(X1.mem»> -+ » Xm:m:n) denote a progressive Type-II censored
sample, with progressive removals fixed as (R, ..., R;). An

integer k(< m) and a time T € (0, o) are also pre-decided
for determining termination or end time of the life-test
experiment which is governed by
MaX{Xk:mm, Min{Xm:m:n,T}} . All remaining alive and
functioning units are removed at the life-test’s end point. This
procedure is given by Cho et al. (2015) and is referred to as GT-
IPH scheme. Let d denote the number of observed failures till
time T. Random sample observed under GT-IPH mechanism is
schematically represented as follows:

Case | : {X1.mn oo Xieemen} 1 T < Koo < Xmomem

Case Il : {Xl:m:nl "'le:m:nl "'JXd:m:n} , if Xk:m:n <
T < Xm:m:n

Case N : {X{.;memy -
T

:Xm:m:n}' if Xk:m:n < Xm:m:n <

This censoring scheme ensures at least k failures within a
moderate time frame thereby overcoming drawbacks of both
Type Il censoring (longer time frame) and hybrid censoring (too
few observed failures) while simultaneously allowing
intermittent live removals during the course of trial runs. Also,
sample under Case Ill above, is the conventional progressive
Type-1l censored sample. We, therefore, develop estimation
methods only for Cases | and II.
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V. MAXIMUM LIKELIHOOD ESTIMATION

Following the notations suggested by Seo and Kim (2017), we
write the corresponding likelihood functions:

k m
L@ =] [D.® + )| feremnlt

i=1 j=i
k-1

~ F GV | [ £ Gtimen)[1 = F Gt I
i=1

Ly(a,B) = ﬁi(R,-+1) [1

i=1 j=i
d

- F(xk:m:n)]R:;lJr1 Hf(xi:m:n) [1
- F(xi:m:n)]Ri -

where Ry, =n—k—Y* 1R, and Rj,,=n—-d-Y%, R;
.The above likelihood functions are expressed in the following
compact form,

L(a,B) = [lit1 X72(R; + 1)][1 —
F(Z)]R Hliv=1f(xi:m:n)[1 - F(xi:m:n)]Ri (1)

k for casel

d for case Il 'R*: . :
— or case
{Xk:m:n for case | and R ={ k k

T for case I’ for case I

such that N = {

*
Rd+1

Using (1), likelihood function of H(a,p) is given by

L(a, B)
2
_B

N

(R;

i=1

—.
o~

R
72 N

+) e 2 1_[ a + Bximn (Ximn + 1) e—gx?:m:n
(1+2)« 1+ xpmm) !
Ri
e_gxlg:m:n l
1+ ximn)®

The corresponding log-likelihood function is:

(@ B) = € = SIRZ? + T, (Ry + D] — @ log (1 +
Z) + Zﬁv=1 log{a + ﬁxi:m:n(xi:m:n + 1)} - Ziv=1 lOg(l +
xi:m:n) {a(Ri + 1) + 1} (2)

where C = log[[TL,Xjxi(R; + 1)] . Differentiating with
respect to « and S, we obtain
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(e, B) 1 Therefore, by using the concept of large sample theory, the
"~ = —Rlog(1+2) + Z 100(1-a)% ACIs for the unknown parameters a and £ are given
Jda ._1{a+.8xtmn(ximn+1)} PPN _ A \/’A 5 A _ A
1= by [Gr,Qy] = Q@ t z4/,VVpq and [.BLJ.BU] =at
= > Re+ DIog(L+ Xima) Zay2VVpp @
respectively, where Z is the critical value of the standard
p) 1] N , normal variate and
6,8 = _E RZ +Z(Rl+ 1)xi:m:n
i=1 7o = 4 p=- L Vﬁ =—_2
N aa az( B) a 2% p)| ' P 2Zl@p)]
_ xi:m:n(xi:m:n + 1) E[ aaaz E[ aag[ﬁ’ E[ ab’ga
= {a + Bximm (Ximn + 1} Vﬁﬁ = W
- e
The above equations do not appear in closed form, therefore, oF
we obtain MLE (&, fy) of the unknown parameters (a,. ) Additional Plap) _ L
through thq use of Newton Raphson (N-R) iterative numerical Y, 0> T T IV {a+ Bximm Cimm D)2 '
approximation method. ?uap) _ _ $N {ximm Gemn +D?} and
B2 =1 (ot Bximen iamn +1)P?
V. ASYMPTOTIC CONFIDENCE INTERVAL
621((1,/?) 9%(a, ﬁ) _ Z Ximn X imm+1)
9adp opoa =+ Bximin Ceimen+ DY

Fisher’s information matrix is used for constructing the

asymptotic variance-covariance matrix M (c?, [?) and 100(1-a) Vi

X BAYESIAN ESTIMATION
% ACI for the unknown parameters to be estimated.

Assuming that the prior distribution for shape parameter «

[ 0%l(a,p) 0%l(a,p) ]_1 follows Gamma(a, b) and for the scale parameter g follows
P da? dadf || Gamma(c,d), the joint prior distribution of the unknown
M(ap)=|E 0%l(a, ) 2%l(a, B) @@ 1ge—1,~(ba+dp)
9B 252 parameters « and B is given as n(a,pB) = —
Vaa Va[,» From the likelihood function L(a, 8) and the joint prior density
= % v function m(a, B), the joint posterior density function is given by
Ba BB
_E 2 R _E 2 R
aa—lﬁc—le—(ba+dﬁ) e 2’ N A+ BXimn (Ximn + 1) e“imen e~ 2%tmn
A+2% 7= (1 X)) (1 + Xigmn)*
p(a,BlX) = 7
B2 B. 2 t
—1pe—1n- 2 + BXimn Kimn + 1) e~ 2imin
[ aa-1pe-1¢-(ba+dp) e HN a i:m:n zmn1 e 2 E— dadp
1+ 2)* (1 + X)) (I + Xpmn)®
The marginal posterior density function for the unknown parameter o is given as,
R R;
a-1gc-1,—(ba+dp)|& B i v a+BXimn (Ximn +1) __xfmn e_gxﬁm:n l
( |B X) f ( ‘le)d‘g J_ @ B e (+Z)a =1 (1+x1mn) e (1+xi;m:n) d‘B
plalp,4) =) pla, = R R:
ﬁzz _Exg t
_ —(ba+dp)|e_2 N a+Bx; (x; +1) B2 e 2%immn
ffaa 1,85 1p—(ba+ RESAL: HL 1 (1:—;rllrnnl)mn e 2 lmnm dadf

Therefore, the Bayesian estimator of the unknown parameter o under the squared error loss function (SELF) which is the posterior
mean, is expressed as,

_B21" ) B2 1R
aa-1pgc-1g—(ba+dp) (9+Zz)a . 1“+thmn(xtmn+1)e L %
~ (1+xtmn) (1+%i:men)
dp = fap(alﬁ'x)da = faf BZZ ﬁ ]Ri dﬁ
a—1pc-1,—(ba+dp) e 2 N a+Bximn(Ximn+1) __xfmn e 2¥itmn
Jatmpe [(14_2)0! iz (1+2im:m) i ’ (A+2imm) J daap
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3
The marginal posterior density function for the unknown parameter f is given as,
pBla,X) = [ p(aplN)da
—EZ2 K x? ki
aa—lﬂC—le—(b“+dﬁ) e 2 N &+ BXimn Kimn + 1) 2 - e 27tmn
J (1+Z)a =t (1+x n)a+1 ( +xi:mn)a d
= a
By B R
ﬁ 2 in:m:n
a-1Rc—1p—(ba+dp) e 2 N 44 +ﬁx1mn(xlmn+ 1) —5Xj e—
[facpemre (AL R v 5 e [ 1 B
Therefore, the Bayesian estimator of the unknown parameter § under SELF which is the posterior mean, is expressed as,
B = [ Bo(Bla,x)dp
B 1" B2 R;
aa—lﬁc—le—(bcﬁdﬁ) e 2’ N+ BXimn(Kimn + 1) —7xlmn e 2¥tmn
fﬁf 1+ Z)“ EU (1 Xmn)* (I + Ximn)® dardp
= a
B.2 Ri
_ e 2’ a + BXimn Ximm + 1) —Ex2 e~ 2%imn
a—1gc-1p—(ba+dp) N imn \Ximin Ximmn
[fatpee e I e 2 e [ o B
(4)

In the above equations the integrals are not obtained in closed form therefore, we obtain Bayes estimators (&5, ) of the unknown
parameters (a, B) using Markov Chain Monte Carlo (MCMC) iterative approximation technique.

VII. E-BAYESIAN ESTIMATION
E-Bayesian paradigm proposed by Han (2009) for failure rate
estimation of small samples arising from test trials on robust
items which are obtained under censoring or truncation, is
regarded as an efficient alternative to the classical and the
conventional Bayesian perspective in recent times. E-Bayes
estimate is popularly referred to as Expected Bayes or Extended
Bayes estimate. Assuming that a ~ Gamma(a, b) and g ~
Gamma(c, d), we restrict the hyper parametersasO<a<1,b >
0Oand 0 <c<1,d>0 in order to ensure the defining condition
that the prior distribution should be decreasing function of the
random variable for which it is specified. This is ensured as, the
first derivative of the respective prior distribution with respect to
o and f respectively are given as dm;“'a‘b) = ba“arle e [(a —
dcgc—le—dﬁ * .

1) — ba] and dnzggad) =————I[(c—1)—dp]. Also, the

larger the hyper parameters b and d are, the thinner is the tail of
gamma (decreasing) function. Berger (1985) has argued that the
thinner tailed prior distributions often reduce the robustness of
Bayesian estimates. Accordingly, b and d should be bounded
above by some s and t respectively, where s > 0 and t > 0 are
fixed scalars to be determined for individual trial run. The
rescaled boundaries are givenas0 <a<1,0<b<sand0<c<
1, 0 < d < t respectively. Thus, defining the (continuous) finite
E-Bayes parameters @zg(a, b) and Bgp(c,d), we write

Institute of Science, BHU Varanasi, India

@gp = E[@g(a,b)] = [[ @z(a,b) Gamma(a, b) da db

®)

and

= [f Bs(c,d)Gamma(c, d) dc dd
(6)

ﬁEB = E[BAB(C: d)]

Postulating three different prior specifications for the
underlying hyper parameters, such that they are increasing,
constant and decreasing functions of the hyper parameter
respectively,

2(5 b)

m11(a,b) = ; 1<b<s

nlz(a,b)=§ i 1<b<s

b

nl_,,(a,b):j—z i 1<b<s 7) - (9)
and

ﬂ21(cd)—2(t D 1<d<t

nzz(c,d)z% pl<d<t

mpa(cd) =23 ; 1<d <t (10) -(12)

195



Journal of Scientific Research, Volume 65, Issue 3, 2021

Let X1.m:n -+ » XN:men represent the sample observations from the distribution H(a,8). Then E-Bayes estimate of the unknown
parameters « and g under SELF,

0] under 1714 and 1T, are respectively given as (13) and (14) as under,

@pp1 = ff ag(a,b)m1(a,b) dadb

R R;

B
a-1pc-1,—(ba+df) N a+ Bxim: Tl(xl. mn T D __xlmn ez X
atf e - A+ X)) 1 e’ (1+xlmnj 2(s—b)

-]

|

. dp da| =5 dadb

2

R
b ‘
a-1pRc-1,—(ba+dp) e 2 N a’+ﬁxlmn(xlmn+1) Lmn e 2timmn
[ at=2pe e (1+2)« M= (T + X)) @HT 2 TFxm)® dadp

(13)

and

Bes1 = f f Bs(c, d)y1(c, d) dedd

R R;
B.» !
i B —2%Ximm
a-1pc—1,—(ba+dp) N+ BXimn Kignn + 1) —SXEmin |__©
a B e H 1+x;. )+l €z (1 + xi:m:nja

20t —d
( . ) dedd
t

il

ﬂ'aa 1Bc lp— (ba+dp)

R
E
2“ HN a + BXim. n(xt mn T 9] e—§X?:m:n
( Z) (1 + X)) *H1

(14)
(i) under 1T, and T, are respectively given as (15) and (16) as under,
Appy = ff @p(a,b)myz(a,b) dadb
R B R;
1pe-1.— + Bx;. imn T 1 fmin
et toesan) | 2 e St Gy £ 1D i | ilmnj 1
=ﬂ faf T . A——df da| dadb
- Z2 x4
- + um:n umn + 1 27hmin
[[ a@-1pe-1g-(ba+dp) 1 .~ e, & éx_'_x (x; i ) Bt 1e+ xi;m;nTa] dadp
(15)
and
Bene = [[ Bote.domea(e, ) dedd
196
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R;

B, B
al 1ﬁc 1e (ba+dp) ZZ HN a+ﬁxlmn(xtmn+1)e—fxlzmn ez Fimn
@1 +Z) =1 (1 + X)L A+ % )® L
=ﬂ fgf T p A——dadf |- dedd
Z2 —LEx2
1 pc—1 ,—(batdp) N A+ BXimn K+ 1) By | e72Mimn
[ aa-tpe-te-tbatal (W ML — f,_";cfm_LS”a’ll e T +x,e| dedb
(16)
(iif) under T13 and w3, are respectively given as (17) and (18) as under,
Qppz = ﬂ ag(a,b)m3(a,b) dadb
R b R;
a® lﬁc 1 —(ba+dﬁ) ez H a+ﬁxlmn(xlmn+1)e—7xlmn ez Himn
(1 Z) =1 (1+x, mmn )a+1 (1+xlmnj 2b
=ﬂ faf e ; A——df da| dadb
ffaa 1/;0 1e—(ba+dﬁ) ZZ HN a+ﬁxlmn(xtmn+1) 2 - e_zx?:mm d(ldﬁ
(H—ZF =1 (1 + xp )9t A+ X))
an
ens = [[ Bo(e.domss(e, ) dedd
R 5, R;
a® 1ﬁc 1o— (ba+dp) HN a+ﬂxlmn(xtmn+1)e—§xlzmn e 2%imn
(1 Z) 1+ xp ) ® T A+ X)) 2d
ﬂ j J ST 5 o dadf t_dedd
_ 2% a+ Bximn(Xpm + 1) e~ 2¥tmn
[ e pestembarap) | o S| I 51 F X )@ © K T+ xomme| 1@9F
(18)
We  obtain  solution to the above  egs. (13)-(18)  through  the iterative MCMC  technique
VIII. HIERARCHICAL BAYESIAN ESTIMATION UNDER SELF gz1(a) = sizfos p2eba gp (19)-(21)

Assuming exponential  conditional priors g(a|b) =
be~P® b > 0 under the hyper parameter specifications given by
(7)-(9), the unconditional hierarchical priors for the unknown
parameter « are elicited as,

S
2
g11(a) = S—Zf b(s — b)e ?*db
0

1 S
ga1(a) = Ef be P2 dp
0

Now, Hierarchical Bayes estimator of o under SELF
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Similarly, assuming exponential conditional priors g(8|d) =
de=%F ,d > 0 under the hyper parameter specifications given
by (10)-(12), the unconditional hierarchical priors for the
unknown parameter  are elicited as,

912(B) =5 J; d(t — d)e* dd
1t ,—dp
922(B) = ; [, de™# dd

(22)-(24)

932(B) = % [y d*e™* dd
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fo aLl(a,f)g11(a)da
T
Jo L@Bgii(@da
R B2 Ri
+BXimn (i +1) B2 e~ 2%imin 2 S -
f NV &*+FXimm kmn 2¥imm| == | (5[ b(s—b)e~b%db)da
~ o (1+Z)“ = xpman)” (1+xgmn)” (S ° )
dyp1 = B, R B > R
e 2 N a+5xlmn(xtmn+1) _By2 e_ix_i:m:n
fo a+2)@ M=y Zrtmn “
(1+xlmn) (1+ximm)

(i with respect to the hierarchical prior g;1(@) IS @yp1 = . Thus,

Bzz

(ZJo b(s-be~b%db)da

. Jo. aL(@B)gz1(@)da
(i) with respect to the hierarchical prior g, () is @&yp, = Tl gn@da Thus,

R R:
B. 2 i
o ez N a+ ,Bxl-:m:n(xi:m:n + 1) _EX_Z: : e~ 2%immn 1 ST —ba
N Z)“ i i e | el (G be™ db) da
Aup2 = .
By e L
| e 2 N a+.8xlmn(xlmn+1) ——x ezx# 1 S -ba
fO (1 + Z) l_[ (1 + xl.m.n)a+1 e (1 + xi;m:n)a (S fO be db) da

. . . . R fo aL(a,B)m31 (@)da
(iii) with respect to the hierarchical prior g,;(a) is @ypz = Tl @da .Thus,

gzz ! + ﬁ ( + 1) _gx%-m-n h 2
oo e N @ Xizmn Xiimn e T 4 (Sp2,-ba
R 5 L e L 7(1+xi;m;n)al (Gl orerrean) de
a =
HB3 _gZZ R +ﬁ ( +1) _gxz R )
o) € N @ Xizm:n (Xiim:n ——xlmn e s £ (S12,-ba
fo 1+ 2)® [Ti=1 (1 + X)) T 2 AFr)? +xi:m:n)al (SZIO b%e db) da
(25-27)
Now, Hierarchical Bayes estimator of ff under SELF
(i with respect to the hierarchical prior g;,(8) is Bup1 = f"—oow
fy L@B)m12(B)dB
Bz 1% B2 Ri
0 e 2 N A+ BXiman(Ximn + 1) e~ 2"imn 1 t — —-dp
~ bPa P2 G ) @ | (020~ D dd) s
HB1 = R;
Iy = M, &t BXimn Cimn + 1) ~gckynn | ol (& [¢ d(t— dye-add) dp
o |1+2)" (1 + X)) (1 + xpmn)®| \£270
.. fo BL(a,B)m22(B)dp
(i) with respect to the hierarchical prior g,, (B) is Bupz = T i@ Bap
ﬁ’zz f +B ( +1) 2 gxlzmn A t
a Xi Xi —-=X e 1 —
B fo [(1+Z)a H{V1 (1:Z;nl)mn i Lmn[(1+xlm:n) (Efo de dﬁdd)dﬁ
ne f e gzz KHN a+ﬂx1mn(x1mn+1) le-z.m.n e_gx%m:n L lftd -dBdd)d
° [a+D)® =1 (1+xl.m.n) ¢ o (1+Xgmm) (Z 0 e )B
fo BL(a,p)T32(B)dp
(iii) with respect to the hierarchical prior gz, () is ﬁHB3 T Lah 3 P
198
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Rj

_EZZ B2
wal| €27 N a + BXimen (Ximn + 1) —Ex-z: . g~ 2¥tmn 2 ot 3 —ap
BA fo ‘8 (1 * Z)a = (1 + xi:m:n)a-'-1 ez (1 + xi:m:n)a (tz fo de dd) d'B
HB3 —— R p
*© e_gzz N A+ BXimanXimn + 1) —Exiz.m.n €_§xﬁm:n 2t o, —dp
W | aw | T e 2 (@ | (h @e?dd)dp

(28)-(30)

It is observed that the above integrals (25)-(30) are not obtained in closed forms, therefore for obtaining hierarchical Bayes
estimates of the unknown parameters for the H(a,) density, we use MCMC method.

IX. SIMULATION

In this section, we compare simulated performance of the ML,
Bayes, E-Bayes and hierarchical Bayes estimates of the
unknown parameters developed in the earlier sections. MLEs
@y and B,, are computed with the help of N-R method based on
1000 replications. For obtaining Bayes estimators @z and fj
under SELF the hyper-parameters are assumed as (a, b) = (2, 2)
and (c, d) = (2, 3). Sensitivity of E-Bayes and Hierarchical
Bayes estimators of parameters « and £ is monitored by
assigning the following upper bounds to s = 10, s = 50, s = 100;
and to t = 20, t = 100, t = 200. MCMC is iterated 10000 times.
All simulation is implemented using R codes.

The obtained estimates and their corresponding Mean Square
Errors (MSEs) are presented in Tables I-Il Comparative
performance is assessed on the basis of their MSEs. It is
observed that for fixed n, k, and T, the MSEs are found to take
smaller values as m is increased. For fixed n, m, and T, the MSEs
decrease as k increases. For fixed n, m, and k, the MSEs decrease
as T rises. Thus, more observed failures and longer trial period
leads to improved parameter estimation. In addition, the
estimates are not sensitive to the upper bound on the hyper
parameter either in case of E-Bayes or in case of Hierarchical
Bayes method. Efficiencies (E) of various competitive
estimators studied in this paper are presented as under:

EMLE < ECIassicaI Bayes < EE-Bayes< EHierarchicaI Bayes

Table 1. Computation of ML @, classical Bayes @g , E-Bayes Ggpy, Gppy, Qpp3 and Hierarchical
Bayes @yp1, @ypa, @yps estimators along with their MSEs in brackets.

s* s*

10 50 100 10 50 100

n m N T Case @y ap @epy @gp2 @epa @ypy @npo @yp3
20 18 4 05 1 2.4073 2.4551 2.4502 2.5448 2.4723 2.5514 2.5548 2.5479
(0.0820) (0.0537) (0.0382) (0.0336) (0.0290) (0.0292) (0.0297) (0.0287)

I 2.4460 2.5096 2.5070 2.5068 2.5007 2.5240 2.5337 2.5259
(0.0743) (0.0452) (0.0204) (0.0202) (0.0204) (0.0205) (0.0245) (0.0237)

15 1 2.3859 2.4586 2.4693 2.5308 2.4878 2.5499 2.5400 2.5352
(0.0906) (0.0523) (0.0334) (0.0322) (0.0301) (0.0280) (0.0261) (0.0248)

I 2.4475 2.4979 2.5066 2.5041 2.5109 2.5189 2.5271 2.5240
(0.0872) (0.0401) (0.0211) (0.0271) (0.0243) (0.0210) (0.0222) (0.0212)

30 26 6 05 1 23917 2.4660 2.4875 2.5290 2.4709 2.5336 2.5297 2.5202
(0.0754) (0.0501) (0.0305) (0.0311) (0.0289) (0.0302) (0.0300) (0.0264)

I 2.4503 2.4978 2.4966 2.4937 2.4922 2.5179 2.5159 25142
(0.0662) (0.0424) (0.0200) (0.0260) (0.0203) (0.0205) (0.0280) (0.0200)

15 1 2.4309 2.4767 2.4811 2.5112 2.4852 2.5233 2.5374 2.5187
(0.0701) (0.0467) (0.0288) (0.0302) (0.0265) (0.0298) (0.0352) (0.0239)

I 2.4822 2.4825 2.5090 2.5083 2.5077 2.5198 2.5111 2.5109
(0.0623) (0.0421) (0.0176) (0.0150) (0.0188) (0.0189) (0.0262) (0.0104)

3* represents upper bound of the scale hyperparameter
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Table IL - Computatwn of ML BM, classical Bayes ﬂB , E-Bayes ﬂ EB1, ﬁEBZ' ﬂ ep3 and Hierarchical
Bayes B HB1, ﬂ HB2) ﬁ uB3 estimators along with their MSEs in brackets.

bk t
20 100 200 20 100 200
m N T Case B Bs Bes1 Bes:2 Besa Bus1 Bus2 Bupa
20 18 4 05 1 2.8054 2.9531 2.9592 2.9515 2.9755 3.2560 3.3818 3.3455
(0.0960) (0.0522) (0.0438) (0.0404) (0.0341) (0.0421) (0.0496) (0.0488)
II 29210 29734 29778 2.9729 2.9877 3.1745 3.2159 3.2237
(0.0899) (0.0488) (0.0351) (0.0329) (0.0290) (0.0379) (0.0339) (0.0376)
15 1 2.8844 2.9511 2.9637 2.9645 29817 3.2346 3.2544 3.2620
(0.0881) (0.0545) (0.0421) (0.0430) (0.0313) (0.0414) (0.0482) (0.0441)
II 29459 29834 2.9816 2.9759 2.9967 3.1537 3.1978 3.1782
(0.0742) (0.0429) (0.0355) (0.0310) (0.0256) (0.0372) (0.0321) (0.0307)
30 26 6 05 1 2.8917 2.9688 2.9488 29621 2.9756 3.3001 3.2341 3.2418
(0.0768) (0.0490) (0.0426) (0.0423) (0.0332) (0.0411) (0.0453) (0.0436)
II 29518 2.9755 2.9719 29981 2.9948 3.2103 3.1848 3.1574
(0.0657) (0.0466) (0.0329) (0.0389) (0.0288) (0.0349) (0.0310) (0.0301)
15 1 2.9309 29744 29728 2.9562 29861 3.2091 3.2232 3.1912
(0.0762) (0.0431) (0.0401) (0.0378) (0.0322) (0.0401) (0.0414) (0.0429)
II 2.9877 2.9897 2.5090 29817 2.9933 3.1284 3.1276 3.1082
(0.0600) (0.0361) (0.0320) (0.0299) (0.0283) (0.0357) (0.0300) (0.0293)
t* represents upper bound of the scale hyperparameter
X. REALDATA Table 1V: Model fit metrics to data set 2.
We consider two real data sets from Lawless (2003) for Data— 2
illustrating fappligation to regl_ life phys_ical §itu_ation and portray Model —logi AIC BIC
the model fit to five competitive statistical lifetime models. Data )
set 1 (pp. 98) represents number of million revolutions before FJ%rlth 13-382 422-222 422.771
failure for each of 23 ball-bearings. These observations arise Indley 37.06 854.43 858.589
from test on endurance of deep-groove ball bearings. Lawless Normal 59.329 1368.559 1370.840
(2003) has proposed Log logistic distribution as a suitable model Gamma. 24.330 563.597 567.752
candidate for this data in preference to other lifetime models . Log-logistic 33617 777.182 781317

On empirical assessment this data set is found to be a positively
skew data which makes it a possible candidate for H(a,pf)
distribution.

Data set 2 (pp. 112) represents the number of cycles to failure
for a group of 60 electrical appliances in a life test. There are a
substantial number of small failure times which suggests that the
hazard function may be high for small failure times. This fact
has motivated us to use the data as a possible candidate for being
represented by the H(a,f) distribution and in competition with
some more popular lifetime models.

Table 111: Model fit metrics for data set 1.

Data-1
Model —logi AlC BIC
Hjorth 35.547 821.578 823.849
Lindley 40.315 929.239 931.510
Normal 55.148 1272410 1274.680
Gamma 73.341 1690.845 1693.116
Log- 82.545 1902524 1904.795
logistic

Institute of Science, BHU Varanasi, India

To test the goodness of fit of the above distributions, we have
used estimated negative log likelihood function

(~In L), the Akaike information criterion as AIC =-2In L+2k
and Bayesian information criterion as BIC= -2In L+ kIn n ,
where Kk is the number of parameters in the distribution, n is the
number of observations in the given data set, and L is the
maximized value of likelihood function of the estimated model.
Best distribution is indicated by the lowest values of the
respective -InL, AIC and BIC statistics. The corresponding
values are reported in Table Ill and Table IV. The two parameter
Hjorth model is found to fit most suitably to the chosen data sets.

Thus, we propose H(a,8) model as a reliability model in
context of robust equipment showing some early failures.

Xl. CONCLUSION

The present work is an effort in the direction of continuous
exploration for new and better fitted lifetime distributions for
machine components and physical equipment. We present
mathematical properties and develop expressions for the
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classical and the Bayes estimators for H(a,f) reliability model
under GT-IPH. GT-IPH ensures a certain minimum failure
observations while simultaneously limiting the experimental
time. Such preconceived group-removal along with an observed
failure provides a good test-trial strategy especially in case of
robust items. We undertake Bayesian analysis using three non-
overlapping methodologies- classical, E-Bayes and hierarchical
Bayes. Bayes methodologies are found superior in terms of
providing more efficient estimates with respect to the MSE of
the estimates as compared to the conventional MLE strategy.
Among them hierarchical Bayes estimates appear to be closest to
the true parameters closely followed by E— Bayes estimators.
We also analyse two real data by several models to get an
impression of the sensitivity to model assumptions. Illustrations
undertaken in this paper through simulated and real data sets
support the candidature of Hjorth distribution as a reliability and
life-testing model.
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