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Abstract: The paper presents analytical and empirical posterior 

analysis for the two parameter Hjorth distribution under 

Generalised Type-I Progressive Hybrid Censoring. Its various 

distributional properties are also derived. Maximum likelihood, 

asymptotic confidence interval and Bayes estimates are developed 

for the unknown parameters assuming squared error loss. E-

Bayesian and hierarchical Bayesian inferential analyses are also 

conducted. A simulation study illustrates the theoretic findings in 

context of the considered censoring, on one classical approach and 

three Bayes methodologies developed in this paper. Two real data 

sets are used to demonstrate the model applicability.  

Index Terms: Generalised Progressive Hybrid Censoring, Hjorth 

Distribution, Bayesian Parametric Estimation, E-Bayes, Hierarchical 

Bayes Estimate.  

I. INTRODUCTION 

A three parameter Hjorth distribution H(α,β,λ) was 

introduced by Hjorth (1980) as an alternative lifetime model to the 

widely accepted Weibull, Rayleigh and exponential distributions . It 

exhibited increasing, decreasing, constant and bathtub shaped 

failure rates (IDB). The quest for a new reliability model was 

motivated by a desire to represent mixture of a set of increasing 

failure rate (IFR) distributions with a single model. H(α,β,λ)  has 

a competing risk interpretation. It represents lifetime of a 

mixture of mechanical units, where each unit follows linear 

failure rate subject to wear out from the beginning of their 

lifetimes. Its probability density function (pdf) is given by 

𝑓(𝑥) =
𝛼+𝛽𝑥(𝜆𝑥+1)

(1+𝜆𝑥)(𝛼/𝜆)+1 𝑒−
𝛽

2
𝑥2

;𝑥 > 0, 𝛼 ≥ 0, 𝛽 > 0. Since then this 

distribution has received very little attention in the context of 

lifetime studies. Some of its inferential aspects have been 

studied by Guess et al. (1998), such as derivation of conditional 
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densities which characterize the relation between the failure rate 

and the mean residual life. More recently, Bayes parametric and 

survival estimation of the two parameter Hjorth distribution 

H(α,β) under progressively type-II censored data has been 

studied by Yadav et al. (2019), by regarding the second shape 

parameter as fixed (λ=1). So far several of its mathematical and 

statistical aspects have not been explored in detail. Owing to its 

IDB nature Hjorth can be seen as a strong reliability-model 

candidate. The present paper is an effort in this direction. We 

focus on its mathematical properties and parametric estimators 

under progressive censoring which is an ideal testing situation 

for robust product desired in the current markets. 

The pdf H(α,β) is given by 𝑓(𝑥) =
𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1 𝑒−
𝛽

2
𝑥2

;𝑥 >

0,𝛼 ≥ 0,𝛽 > 0, which is obtained by regarding the additional 

shape parameter λ as 1 in H(α,β,λ). The corresponding 

cumulative density function (cdf ) is given as 𝐹(𝑥) = 1 −
𝑒
−

𝛽
2
𝑥2

(1+𝑥)𝛼. 

The survival function is 𝑆(𝑥) =
𝑒
−

𝛽
2
𝑥2

(1+𝑥)𝛼
 which appears as the 

product of survival function of Rayleigh, 𝑒−
𝛽

2
𝑥2

, and the survival 

function of Lomax, (1+ 𝑥)−𝛼,  distributions, thereby 

highlighting the competing risk aspect of the distribution. 

Hazard function ℎ(𝑥) = 𝛽𝑥 +
𝛼

(1+𝑥)
,  is seen as the sum of an 

increasing and a decreasing term. 

 The present paper undertakes comparative study of the 

classical and Bayesian estimators for the two parameter H(α,β) 

distribution. Section 2 presents some statistical and reliability 

results for the H(α,β) distribution. Section 3 describes 

Generalised Type-I Progressive Hybrid Censoring (GT-IPH) 

mechanism. Section 4 is devoted to the development of 

Maximum Likelihood Estimates (MLEs) under GT-IPH. Section 

5 describes construction of Asymptotic Confidence Interval 
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(ACI) for the parameter and the reliability estimates. Section 6 

traces development of the classical Bayes estimators. Section 7 

details E-Bayes estimation for GT-IPH censored sample. Section 

8 focuses on the development of Hierarchical Bayes estimates 

for the model parameters. Simulation study is undertaken in 

section 9. Model fit is illustrated on two real data sets from the 

classical literature on reliability. Section 10 concludes the 

findings of the present study.  

II.  SOME DISTRIBUTIONAL PROPERTIES 

Some statistical properties of the H(α,β) are presented as 

under, 

(i) Mean  =   ∫ 𝑥
𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1
𝑒−

𝛽

2
𝑥2∞

0
𝑑𝑥  

(ii) Median =   
−𝛼+√(𝛼2+2(𝛽−𝛼)log  2)

(𝛽−𝛼)
 

(iii) Mode is given by the root of the polynomial,  

 𝛽2𝑥4 − 2𝛽2𝑥3 + 𝛽(1 − 2𝛼 − 𝛽)𝑥2 +  2𝛽(1 − 𝛼)𝑥 + 𝛽

− 𝛼(1 + 𝛼) = 0 

(iv) Mean Residual Life = 
∫

𝑒
−

𝛽
2
𝑥2

(1+𝑥)𝛼
∞
𝑥 𝑑𝑥

𝑒
−

𝛽
2
𝑥2

(1+𝑥)𝛼

 

(v) The rth raw moment = ∫ 𝑥𝑟 𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1
𝑒−

𝛽

2
𝑥2∞

0
𝑑𝑥 

(vi) The rth central moment = ∫ (𝑥 −
∞

0

𝜇1
′)𝑟 𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1
𝑒−

𝛽

2
𝑥2

𝑑𝑥 

(vii) Moment generating function  MX(t) =

∫ 𝑒𝑥𝑡 𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1 𝑒−
𝛽

2
𝑥2∞

0
𝑑𝑥 

(viii) Characteristic function =

∫ 𝑒𝑖𝑥𝑡 𝛼+𝛽𝑥(𝑥+1)

(1+𝑥)𝛼+1
𝑒−

𝛽

2
𝑥2∞

0
𝑑𝑥 

(ix) Quantile function 𝑥𝑞 =
−𝛼+√(𝛼2−2(𝛽−𝛼)𝑙𝑜𝑔(1−𝑢))

(𝛽−𝛼)
 

(x) Uncertainty or randomness measured as Renyi entropy 

𝐼𝑅(𝛿) =
log{∫ 𝑓(𝑥)𝛿∞

−∞ 𝑑𝑥}

1−𝛿
, 𝛿 > 0,𝛿 ≠ 1  

and as Shannon entropy  S = E[−log𝑓(𝑥)] is 

respectively given as , 𝐼𝑅(𝛿) =
1

1−𝛿
log [∫

{𝛼+𝛽𝑥(𝑥+1)}𝛿

(1+𝑥)𝛿(𝛼+1)

∞

0
𝑒−

𝛿𝛽

2
𝑥2

] and 

 S = (𝛼 + 1)E[log(1 + 𝑥)]+
𝛽

2
E[𝑥2] − E[log{𝛼 +

𝛽𝑥(𝑥 + 1)}] 
 

Graphical representation of density function, 

distribution function, survival function and hazard 

function is respectively given ii Fig. 1- Fig. 4. 

 

 
 

 

 

 

          Fig. 1: Plot of  pdf  f (x) of H(α, β) for different  
combinations of parameter values  

 

           Fig. 2: Plot of  cdf  F(x) of H(α, β) for different  
combinations of parameter values  

 

           Fig. 3: Plot of survival function S(x) of H(α, β) for  

different combinations of parameter values  
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Fig. 4: Plot of  hazard function h(x) of H(α, β) for  

different combinations of parameter values  

  

III. GENERALISED TYPE I PROGRESSIVEHYBRID 

CENSORING SCHEME 

 

Censoring is conducted in life testing experiments to optimize 

the cost and observe the time constraints. Let 

(𝑋1:𝑚:𝑛,… , 𝑋𝑚:𝑚:𝑛)  denote a progressive Type-II censored 

sample, with progressive removals fixed as (𝑅1 , … , 𝑅𝑚). An 

integer 𝑘(< 𝑚) and a time 𝑇 ∈ (0,∞)  are also pre-decided 

for determining termination or end time of the life-test 

experiment which is governed by 

Max{𝑋𝑘:𝑚:𝑛, Min{𝑋𝑚:𝑚:𝑛,𝑇}} . All remaining alive and 

functioning units are removed at the life-test’s end point. This 

procedure is given by Cho et al. (2015) and is  referred to as GT-

IPH scheme. Let d denote the number of observed failures till 

time T. Random sample observed under GT-IPH mechanism is 

schematically represented as follows: 

Case I  : {𝑋1:𝑚:𝑛, … , 𝑋𝑘:𝑚:𝑛} , if  𝑇 < 𝑋𝑘:𝑚:𝑛 < 𝑋𝑚:𝑚:𝑛 

Case II : {𝑋1:𝑚:𝑛, … , 𝑋𝑘:𝑚:𝑛,… , 𝑋𝑑:𝑚:𝑛} , if  𝑋𝑘:𝑚:𝑛 <
                    𝑇 < 𝑋𝑚:𝑚:𝑛 

Case III : {𝑋1:𝑚:𝑛,… , 𝑋𝑚:𝑚:𝑛} , if  𝑋𝑘:𝑚:𝑛 < 𝑋𝑚:𝑚:𝑛 <
                     𝑇                

This censoring scheme ensures at least k failures within a 

moderate time frame thereby overcoming drawbacks of both 

Type II censoring (longer time frame) and hybrid censoring (too 

few observed failures) while simultaneously allowing 

intermittent live removals during the course of trial runs. Also, 

sample under Case III above, is the conventional progressive 

Type-II censored sample. We, therefore, develop estimation 

methods only for Cases I and II.   

IV. MAXIMUM LIKELIHOOD ESTIMATION 

Following the notations suggested by Seo and Kim (2017), we 

write the corresponding likelihood functions: 

  

𝐿𝐼(𝛼, 𝛽) = [∏∑(𝑅𝑗 + 1)

𝑚

𝑗=𝑖

𝑘

𝑖=1

] 𝑓(𝑥𝑘:𝑚:𝑛)[1

− 𝐹(𝑥𝑘:𝑚:𝑛)]𝑅𝑘
∗
∏𝑓(𝑥𝑖:𝑚:𝑛)[1− 𝐹(𝑥𝑖:𝑚:𝑛)]𝑅𝑖

𝑘−1

𝑖=1

 

𝐿𝐼𝐼(𝛼,𝛽) = [∏∑(𝑅𝑗 + 1)

𝑚

𝑗=𝑖

𝑑

𝑖=1

] [1

− 𝐹(𝑥𝑘:𝑚:𝑛)]𝑅𝑑+1
∗

∏𝑓(𝑥𝑖:𝑚:𝑛)[1

𝑑

𝑖=1

− 𝐹(𝑥𝑖:𝑚:𝑛)]𝑅𝑖 

where 𝑅𝑘
∗ = 𝑛 − 𝑘 − ∑ 𝑅𝑖

𝑘−1
𝑖=1   and  𝑅𝑑+1

∗ = 𝑛 − 𝑑 − ∑ 𝑅𝑖
𝑑
𝑖=1  

.The above likelihood functions are expressed in the following 

compact form, 

𝐿(𝛼,𝛽) = [∏ ∑ (𝑅𝑗 + 1)𝑚
𝑗=𝑖

𝑁
𝑖=1 ][1 −

𝐹(𝑍)]𝑅∏ 𝑓(𝑥𝑖:𝑚:𝑛)[1 − 𝐹(𝑥𝑖:𝑚:𝑛)]𝑅𝑖𝑁
𝑖=1   (1) 

such that 𝑁 = {
𝑘  for case I
 𝑑  for case II

 , 𝑍 =

{
𝑋𝑘:𝑚:𝑛  for case I
𝑇           for case II

 , and  𝑅 = {
𝑅𝑘

∗ − 𝑅𝑘  for case I

𝑅𝑑+1
∗        for case II

  

Using (1), likelihood function of H(α,β) is given by 

L(α, β)

= [∏∑(𝑅𝑗

𝑚

𝑗=𝑖

𝑁

𝑖=1

+)] [
𝑒−

𝛽
2
𝑍2

(1+ 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1

𝑁

𝑖=1

𝑒−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

 

[
𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+ 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

 

The corresponding log-likelihood function is: 

 l(𝛼,𝛽) = 𝐶 −
𝛽

2
[𝑅𝑍2 + ∑ (𝑅𝑖 + 1)𝑥𝑖:𝑚:𝑛

2𝑁
𝑖=1 ] − 𝛼 𝑙𝑜𝑔(1+

𝑍) + ∑ 𝑙𝑜𝑔{𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)}𝑁
𝑖=1 − ∑ 𝑙𝑜𝑔(1 +𝑁

𝑖=1

𝑥𝑖:𝑚:𝑛) {𝛼(𝑅𝑖 + 1) + 1}     (2) 

where  C = log [∏ ∑ (𝑅𝑗 + 1)𝑚
𝑗=𝑖

𝑁
𝑖=1 ] . Differentiating with 

respect to α and β, we obtain 
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𝜕𝑙(𝛼,𝛽)

𝜕𝛼
= −𝑅𝑙𝑜𝑔(1 + 𝑍) + ∑

1

{𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)}

𝑁

𝑖=1

− ∑(𝑅𝑖 + 1)𝑙𝑜𝑔(1+ 𝑥𝑖:𝑚:𝑛)

𝑁

𝑖=1

              

𝜕𝑙(𝛼,𝛽)

𝜕𝛽
= −

1

2
[𝑅𝑍2 + ∑(𝑅𝑖 + 1)

𝑁

𝑖=1

𝑥𝑖:𝑚:𝑛
2 ]

− ∑
𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

{𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)}

𝑁

𝑖=1

 

The above equations do not appear in closed form, therefore, 

we obtain MLE (𝛼̂𝑀, 𝛽̂𝑀) of the unknown parameters (α, β) 

through the use of Newton Raphson (N-R) iterative numerical 

approximation method.   

V. ASYMPTOTIC CONFIDENCE INTERVAL 

Fisher’s information matrix is used for constructing the 

asymptotic variance-covariance matrix 𝑀(𝛼̂, 𝛽̂) and 100(1-α) 

% ACI for the unknown parameters to be estimated.  

𝑀(𝛼̂, 𝛽̂) =

[
 
 
 
𝐸 (

𝜕2𝑙(𝛼,𝛽)
𝜕𝛼2     

𝜕2𝑙(𝛼,𝛽)
𝜕𝛼𝜕𝛽

𝜕2𝑙(𝛼,𝛽)
𝜕𝛽𝜕𝛼

        
𝜕2𝑙(𝛼, 𝛽)

𝜕𝛽2

)

]
 
 
 
−1

= (
𝑉̂𝛼𝛼       𝑉̂𝛼𝛽  

𝑉̂𝛽𝛼       𝑉̂𝛽𝛽
)                                                         

Therefore, by using the concept of large sample theory, the 

100(1-α)% ACIs for the unknown parameters α and β are given 

by  [𝛼̂𝐿, 𝛼̂𝑈] = 𝛼̂ ± 𝑧𝛼/2√𝑉̂𝛼𝛼  and [𝛽̂𝐿 , 𝛽̂𝑈] = 𝛼̂ ±

𝑧𝛼/2√𝑉̂𝛽𝛽 (2) 

respectively, where Zα/2 is the critical value of the standard 

normal variate and  

𝑉̂𝛼𝛼 = −
1

𝐸[
𝜕2𝑙(𝛼,𝛽)

𝜕𝛼2 ]
, 𝑉̂𝛼𝛽 = −

1

𝐸[
𝜕2𝑙(𝛼,𝛽)

𝜕𝛼𝜕𝛽
]

, 𝑉̂𝛽𝛼 = −
1

𝐸[
𝜕2𝑙(𝛼,𝛽)

𝜕𝛽𝜕𝛼
]

, 

𝑉̂𝛽𝛽 = −
1

𝐸[
𝜕2𝑙(𝛼,𝛽)

𝜕𝛽2 ]
 .   

Additionally, 
 𝜕2𝑙(𝛼,𝛽)

𝜕𝛼2    = −
1

∑ {𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)}2𝑁
𝑖=1

 , 

𝜕2𝑙(𝛼,𝛽)

𝜕𝛽2 = −∑
{𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)2}

{𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)}2
𝑁
𝑖=1   and 

  
𝜕2𝑙(𝛼,𝛽)

𝜕𝛼𝜕𝛽
=

𝜕2𝑙(𝛼,𝛽)

𝜕𝛽𝜕𝛼
= −∑

𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

{𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)}2
𝑁
𝑖=1 . 

VI. BAYESIAN ESTIMATION 

Assuming that the prior distribution for shape parameter α 

follows Gamma(a, b) and for the scale parameter β follows 

Gamma(c,d), the joint prior distribution of the unknown 

parameters α and β is given as  𝜋(𝛼, 𝛽) =
𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)

𝛤𝛼𝛤𝑐
 . 

From the likelihood function 𝐿(𝛼,𝛽) and the joint prior density 

function 𝜋(𝛼, 𝛽), the joint posterior density function is given by  

 

𝑝(𝛼,𝛽|𝑋) =

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1+ 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1+ 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

 

The marginal posterior density function for the unknown parameter α is given as, 

𝑝(𝛼|𝛽,𝑋) = ∫ 𝑝(𝛼,𝛽|𝑋)𝑑𝛽 = ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒
−
𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛽  

Therefore, the Bayesian estimator of the unknown parameter α under the squared error loss function (SELF) which is the posterior 

mean, is expressed as, 

 𝛼̂𝐵 = ∫ 𝛼𝑝(𝛼|𝛽,𝑋)𝑑𝛼 = ∫ 𝛼 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛽 
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(3)  

The marginal posterior density function for the unknown parameter β is given as, 

  

𝑝(𝛽|𝛼,𝑋) = ∫𝑝(𝛼,𝛽|𝑋)𝑑𝛼

= ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛼 

Therefore, the Bayesian estimator of the unknown parameter β under SELF which is the posterior mean, is expressed as, 

𝛽̂𝐵 = ∫ 𝛽𝑝(𝛽|𝛼,𝑋)𝑑𝛽

= ∫𝛽 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼
]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛼 𝑑𝛽 

(4) 

In the above equations the integrals are not obtained in closed form therefore, we obtain Bayes estimators (𝛼̂𝐵, 𝛽̂𝐵) of the unknown 

parameters (α, β) using Markov Chain Monte Carlo (MCMC) iterative approximation technique. 

  

VII. E-BAYESIAN ESTIMATION  

E-Bayesian paradigm proposed by Han (2009) for failure rate 

estimation of small samples arising from test trials on robust 

items  which are obtained under censoring or truncation, is 

regarded as an efficient alternative to the classical and the 

conventional Bayesian perspective in recent times. E-Bayes 

estimate is popularly referred to as Expected Bayes or Extended 
Bayes estimate. Assuming that α ~ Gamma(a, b) and β ~ 

Gamma(c, d), we restrict the hyper parameters as 0 < a < 1, b > 

0 and 0 < c < 1, d > 0 in order to ensure the defining condition 

that the prior distribution should be decreasing function of the 

random variable for which it is specified. This is ensured as, the 

first derivative of the respective prior distribution with respect to 

α and β respectively are given as 
𝑑𝜋1(𝛼|𝑎,𝑏)

𝑑𝛼
=

𝑏𝑎𝛼𝑎−1𝑒−𝑏𝛼

𝛤𝑎
[(𝑎 −

1) − 𝑏𝛼]  and 
𝑑𝜋2(𝛽|𝑐,𝑑)

𝑑𝛽
=

𝑑𝑐𝛽𝑐−1𝑒−𝑑𝛽

𝛤𝑐
[(𝑐 − 1) − 𝑑𝛽] . Also, the 

larger the hyper parameters b and d are, the thinner is the tail of 

gamma (decreasing) function. Berger (1985) has argued that the 

thinner tailed prior distributions often reduce the robustness of 

Bayesian estimates. Accordingly, b and d should be bounded 

above by some s and t respectively, where s > 0 and t > 0 are 

fixed scalars to be determined for individual trial run. The 

rescaled boundaries are given as 0 < a < 1, 0 < b < s and 0 < c < 

1, 0 < d < t respectively. Thus, defining the (continuous) finite 

E-Bayes parameters  𝛼̂𝐸𝐵(𝑎,𝑏) and 𝛽̂𝐸𝐵(𝑐,𝑑), we write  

𝛼̂𝐸𝐵 = 𝐸[𝛼̂𝐵(𝑎,𝑏)] = ∬ 𝛼̂𝐵(𝑎,𝑏) Gamma(𝑎,𝑏) 𝑑𝑎 𝑑𝑏   and 

      (5) 

𝛽̂𝐸𝐵 = 𝐸[𝛽̂𝐵(𝑐,𝑑)] = ∬ 𝛽̂𝐵(𝑐,𝑑)Gamma(𝑐, 𝑑) 𝑑𝑐 𝑑𝑑 

      (6) 

 Postulating three different prior specifications for the 

underlying hyper parameters, such that they are increasing, 

constant and decreasing functions of the hyper parameter 

respectively, 

𝜋11(𝑎,𝑏) =
2(𝑠−𝑏)

𝑠2   ;   1 < 𝑏 < 𝑠  

𝜋12(𝑎,𝑏) =
1

𝑠
  ;   1 < 𝑏 < 𝑠  

𝜋13(𝑎,𝑏) =
2𝑏

𝑠2   ;   1 < 𝑏 < 𝑠           (7) - (9) 

and  

𝜋21(𝑐, 𝑑) =
2(𝑡−𝑑)

𝑡2   ;   1 < 𝑑 < 𝑡   

𝜋22(𝑐, 𝑑) =
1

𝑡
  ;   1 < 𝑑 < 𝑡  

𝜋23(𝑐, 𝑑) =
2𝑑

𝑡2   ;   1 < 𝑑 < 𝑡         (10) -(12) 
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Let 𝑋1:𝑚:𝑛, … , 𝑋𝑁:𝑚:𝑛 represent the sample observations from the distribution H(α,β). Then E-Bayes estimate of the unknown 

parameters α and β under SELF, 

(i) under 𝜋11 and 𝜋21 are respectively given as (13) and (14) as under, 

𝛼̂𝐸𝐵1 = ∬ 𝛼̂𝐵(𝑎,𝑏)𝜋11(𝑎,𝑏) 𝑑𝑎𝑑𝑏 

= ∬

[
 
 
 
 
 
 

∫𝛼 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

∬ 𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2
𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛽𝑑𝛼

]
 
 
 
 
 
 

2(𝑠− 𝑏)

𝑠2 𝑑𝑎𝑑𝑏 

(13) 

and  

𝛽̂𝐸𝐵1 = ∬ 𝛽̂𝐵(𝑐, 𝑑)𝜋21(𝑐, 𝑑) 𝑑𝑐𝑑𝑑 

= ∬

[
 
 
 
 
 
 

∫𝛽 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2
𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2
𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛼 𝑑𝛽

]
 
 
 
 
 
 

2(𝑡 − 𝑑)

𝑡2 𝑑𝑐𝑑𝑑 

(14) 

(ii)  under 𝜋21 and 𝜋22 are respectively given as (15) and (16) as under, 

𝛼̂𝐸𝐵2 = ∬ 𝛼̂𝐵(𝑎,𝑏)𝜋12(𝑎,𝑏) 𝑑𝑎𝑑𝑏 

= ∬

[
 
 
 
 
 
 

∫𝛼 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬ 𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛽 𝑑𝛼

]
 
 
 
 
 
 

1

𝑠
𝑑𝑎𝑑𝑏 

(15) 

and   

𝛽̂𝐸𝐵2 = ∬ 𝛽̂𝐵(𝑐, 𝑑)𝜋22(𝑐, 𝑑) 𝑑𝑐𝑑𝑑 
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= ∬

[
 
 
 
 
 
 

∫𝛽 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛼 𝑑𝛽

]
 
 
 
 
 
 

1

𝑡
𝑑𝑐𝑑𝑑 

 (16) 

(iii) under 𝜋13  and 𝜋32  are respectively given as (17) and (18) as under, 

𝛼̂𝐸𝐵3 = ∬ 𝛼̂𝐵(𝑎,𝑏)𝜋13(𝑎,𝑏) 𝑑𝑎𝑑𝑏 

= ∬

[
 
 
 
 
 
 

∫𝛼 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛽 𝑑𝛼

]
 
 
 
 
 
 

2𝑏

𝑠2 𝑑𝑎𝑑𝑏 

(17) 

𝛽̂𝐸𝐵3 = ∬ 𝛽̂𝐵(𝑐, 𝑑)𝜋23(𝑐, 𝑑) 𝑑𝑐𝑑𝑑 

= ∬

[
 
 
 
 
 
 

∫𝛽 ∫

𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽) [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∬𝛼𝑎−1𝛽𝑐−1𝑒−(𝑏𝛼+𝑑𝛽)[
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛

2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

𝑑𝛼𝑑𝛽

𝑑𝛼 𝑑𝛽

]
 
 
 
 
 
 

2𝑑

𝑡2 𝑑𝑐𝑑𝑑 

(18) 

We obtain solution to the above eqs. (13)-(18) through the iterative MCMC technique 

. 

VIII. HIERARCHICAL BAYESIAN ESTIMATION UNDER SELF 

 

Assuming exponential conditional priors 𝑔(𝛼|𝑏) =
𝑏𝑒−𝑏𝛼  ,𝑏 > 0 under the hyper parameter specifications given by 

(7)-(9), the unconditional hierarchical priors for the unknown 

parameter α are elicited as, 

𝑔11(𝛼) =
2

𝑠2 ∫ 𝑏(𝑠 − 𝑏)𝑒−𝑏𝛼

𝑠

0

𝑑𝑏 

𝑔21(𝛼) =
1

𝑠
∫ 𝑏𝑒−𝑏𝛼

𝑠

0

𝑑𝑏 

𝑔31(𝛼) =
2

𝑠2
∫ 𝑏2𝑒−𝑏𝛼𝑠

0
𝑑𝑏      (19)-(21) 

Similarly, assuming exponential conditional priors 𝑔(𝛽|𝑑) =
𝑑𝑒−𝑑𝛽   , 𝑑 > 0 under the hyper parameter specifications given 

by (10)-(12), the unconditional hierarchical priors for the 

unknown parameter β are elicited as, 

𝑔12(𝛽) =
2

𝑡2
∫ 𝑑(𝑡 − 𝑑)𝑒−𝑑𝛽𝑡

0
𝑑𝑑  

𝑔22(𝛽) =
1

𝑡
∫ 𝑑𝑒−𝑑𝛽𝑡

0
𝑑𝑑  

𝑔32(𝛽) =
2

𝑡2 ∫ 𝑑2𝑒−𝑑𝛽𝑡

0
𝑑𝑑    (22)-(24) 

 

Now, Hierarchical Bayes estimator of α under SELF  
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(i) with respect to the hierarchical prior 𝑔11(𝛼) is 𝛼̂𝐻𝐵1 =
∫ 𝛼𝐿(𝛼,𝛽)𝑔11(𝛼)
∞
0 𝑑𝛼

∫ 𝐿(𝛼,𝛽)𝑔11(𝛼)
∞
0 𝑑𝛼

  . Thus, 

𝛼̂𝐻𝐵1 =

∫ 𝛼[
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

(
2

𝑠2
∫ 𝑏(𝑠−𝑏)𝑒−𝑏𝛼𝑠
0 𝑑𝑏)

∞
0 𝑑𝛼

∫ [
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

(
2

𝑠2
∫ 𝑏(𝑠−𝑏)𝑒−𝑏𝛼𝑠
0 𝑑𝑏)

∞
0 𝑑𝛼

   

(ii) with respect to the hierarchical prior 𝑔21(𝛼) is 𝛼̂𝐻𝐵2 =
∫ 𝛼𝐿(𝛼,𝛽)𝑔21(𝛼)
∞
0 𝑑𝛼

∫ 𝐿(𝛼,𝛽)𝑔21(𝛼)
∞
0 𝑑𝛼

 . Thus, 

𝛼̂𝐻𝐵2 =

∫ 𝛼 [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

(
1
𝑠 ∫ 𝑏𝑒−𝑏𝛼𝑠

0
𝑑𝑏)

∞

0
𝑑𝛼

∫ [
𝑒−

𝛽
2𝑍2

(1+ 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1+ 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

(
1
𝑠 ∫ 𝑏𝑒−𝑏𝛼𝑠

0
𝑑𝑏)

∞

0
𝑑𝛼

 

(iii) with respect to the hierarchical prior 𝑔23(𝛼) is 𝛼̂𝐻𝐵3 =
∫ 𝛼𝐿(𝛼,𝛽)𝜋31(𝛼)
∞
0 𝑑𝛼

∫ 𝐿(𝛼,𝛽)𝜋31(𝛼)
∞
0 𝑑𝛼

 .Thus, 

𝛼̂𝐻𝐵3 =

∫ 𝛼 [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼
]

𝑅𝑖

(
2
𝑠2 ∫ 𝑏2𝑒−𝑏𝛼𝑠

0
𝑑𝑏)

∞

0
𝑑𝛼

∫ [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

(
2
𝑠2 ∫ 𝑏2𝑒−𝑏𝛼𝑠

0
𝑑𝑏)

∞

0
𝑑𝛼

 

(25-27) 

Now, Hierarchical Bayes estimator of β under SELF  

(i) with respect to the hierarchical prior 𝑔12(𝛽) is 𝛽̂𝐻𝐵1 =
∫ 𝛽𝐿(𝛼,𝛽)𝜋12(𝛽)
∞
0 𝑑𝛽

∫ 𝐿(𝛼,𝛽)𝜋12(𝛽)
∞
0 𝑑𝛽

 

𝛽̂𝐻𝐵1   =

∫ 𝛽 [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∞

0
(
2
𝑡2 ∫ 𝑑(𝑡 − 𝑑)𝑒−𝑑𝛽𝑡

0
𝑑𝑑)𝑑𝛽

∫ [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼
]

𝑅𝑖

∞

0
(
2
𝑡2 ∫ 𝑑(𝑡 − 𝑑)𝑒−𝑑𝛽𝑡

0
𝑑𝑑) 𝑑𝛽

 

(ii) with respect to the hierarchical prior 𝑔22(𝛽) is 𝛽̂𝐻𝐵2 =
∫ 𝛽𝐿(𝛼,𝛽)𝜋22(𝛽)
∞
0 𝑑𝛽

∫ 𝐿(𝛼,𝛽)𝜋22(𝛽)
∞
0 𝑑𝛽

 

 𝛽̂𝐻𝐵2 =

∫ 𝛽[
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖

∞
0 (

1

𝑡
∫ 𝑑𝑒−𝑑𝛽𝑡
0 𝑑𝑑)𝑑𝛽

∫ [
𝑒
−

𝛽
2
𝑍2

(1+𝑍)𝛼
]

𝑅

∏
𝛼+𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛+1)

(1+𝑥𝑖:𝑚:𝑛)
𝛼+1

𝑁
𝑖=1 𝑒

−
𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒
−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

(1+𝑥𝑖:𝑚:𝑛)
𝛼]

𝑅𝑖
∞
0 (

1

𝑡
∫ 𝑑𝑒−𝑑𝛽𝑡
0 𝑑𝑑)𝑑𝛽

 

(iii) with respect to the hierarchical prior 𝑔32(𝛽) is 𝛽̂𝐻𝐵3 =
∫ 𝛽𝐿(𝛼,𝛽)𝜋32(𝛽)
∞
0 𝑑𝛽

∫ 𝐿(𝛼,𝛽)𝜋32(𝛽)
∞
0 𝑑𝛽
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𝛽̂𝐻𝐵3 ==

∫ 𝛽 [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1 + 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2
[

𝑒−
𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∞

0
(
2
𝑡2 ∫ 𝑑2𝑒−𝑑𝛽𝑡

0
𝑑𝑑)𝑑𝛽

∫ [
𝑒−

𝛽
2𝑍2

(1 + 𝑍)𝛼]

𝑅

∏
𝛼 + 𝛽𝑥𝑖:𝑚:𝑛(𝑥𝑖:𝑚:𝑛 + 1)

(1+ 𝑥𝑖:𝑚:𝑛)𝛼+1
𝑁
𝑖=1 𝑒−

𝛽
2
𝑥𝑖:𝑚:𝑛
2

[
𝑒−

𝛽
2𝑥𝑖:𝑚:𝑛

2

(1 + 𝑥𝑖:𝑚:𝑛)𝛼]

𝑅𝑖

∞

0
(
2
𝑡2 ∫ 𝑑2𝑒−𝑑𝛽𝑡

0
𝑑𝑑) 𝑑𝛽

 

(28)-(30) 

It is observed that the above integrals (25)-(30) are not obtained in closed forms, therefore for obtaining hierarchical Bayes 

estimates of the unknown parameters for the H(α,β) density, we use MCMC method. 

IX. SIMULATION 

In this section, we compare simulated performance of the ML, 

Bayes, E-Bayes and hierarchical Bayes estimates of the 

unknown parameters developed in the earlier sections. MLEs 

𝛼̂𝑀 and 𝛽̂𝑀 are computed with the help of N-R method based on 

1000 replications. For obtaining Bayes estimators 𝛼̂𝐵  and 𝛽̂𝐵 
under SELF the hyper-parameters are assumed as (a, b) = (2, 2) 

and (c, d) = (2, 3). Sensitivity of E-Bayes and Hierarchical 

Bayes estimators of parameters α and β is monitored by 

assigning the following upper bounds to s = 10, s = 50, s = 100; 

and to t = 20, t = 100, t = 200. MCMC is iterated 10000 times. 

All simulation is implemented using R codes. 

The obtained estimates and their corresponding Mean Square 

Errors (MSEs) are presented in Tables I-II Comparative 

performance is assessed on the basis of their MSEs.  It is 

observed that for fixed n, k, and T, the MSEs are found to take 

smaller values as m is increased. For fixed n, m, and T, the MSEs 

decrease as k increases. For fixed n, m, and k, the MSEs decrease 

as T rises. Thus, more observed failures and longer trial period 

leads to improved parameter estimation. In addition, the 

estimates are not sensitive to the upper bound on the hyper 

parameter either in case of E–Bayes or in case of Hierarchical 

Bayes method. Efficiencies (E) of various competitive 

estimators studied in this paper are presented as under: 

EMLE < EClassical Bayes < EE-Bayes< EHierarchical Bayes 
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X.  REAL DATA 

We consider two real data sets from Lawless (2003) for 

illustrating application to real life physical situation and portray 

the model fit to five competitive statistical lifetime models. Data 

set 1 (pp. 98) represents number of million revolutions before 

failure for each of 23 ball-bearings. These observations arise 
from test on endurance of deep-groove ball bearings. Lawless 

(2003) has proposed Log logistic distribution as a suitable model 

candidate for this data in preference to other lifetime models . 

On empirical assessment this data set is found to be a positively 

skew data which makes it a possible candidate for H(α,β) 

distribution.  

Data set 2 (pp. 112) represents the number of cycles to failure 

for a group of 60 electrical appliances in a life test. There are a 

substantial number of small failure times which suggests that the 

hazard function may be high for small failure times. This fact 

has motivated us to use the data as a possible candidate for being 

represented by the H(α,β) distribution and in competition with 

some more popular lifetime models. 

Table III: Model fit metrics for data set 1. 

Data – 1 

Model −𝐥𝐨𝐠𝐥 AIC BIC 

Hjorth 35.547 821.578 823.849 

Lindley 40.315 929.239 931.510 

Normal 55.148 1272.410 1274.680 

Gamma 73.341 1690.845 1693.116 

Log-
logistic 

82.545 1902.524 1904.795 

 

Table IV: Model fit metrics to data set 2. 

Data – 2 

 Model  −𝐥𝐨𝐠𝐥 AIC BIC 

Hjorth 18.388 426.926 422.771 
Lindley 37.062 854.434 858.589 

Normal 59.329 1368.559 1370.840 

Gamma 24.330 563.597 567.752 

Log-logistic 33.617 777.182 781.317 

 

To test the goodness of fit of the above distributions, we have 
used estimated negative log likelihood function  

(–ln L), the Akaike information criterion  as AIC =-2ln L+2k 

and Bayesian information criterion as BIC= -2ln L+ kln n , 

where k is the number of parameters in the distribution, n is the 

number of observations in the given data set, and L is the 

maximized value of likelihood function of the estimated model. 

Best distribution is indicated by the lowest values of the 

respective -lnL, AIC and BIC statistics. The corresponding 

values are reported in Table III and Table IV. The two parameter 

Hjorth model is found to fit most suitably to the chosen data sets.  

Thus, we propose H(α,β) model as a reliability model in 

context of robust equipment showing some early failures.  

XI. CONCLUSION 

The present work is an effort in the direction of continuous 

exploration for new and better fitted lifetime distributions for 

machine components and physical equipment. We present 

mathematical properties and develop expressions for the 
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classical and the Bayes estimators for H(α,β) reliability model 

under GT-IPH. GT-IPH ensures a certain minimum failure 

observations while simultaneously limiting the experimental 

time. Such preconceived group-removal along with an observed 

failure provides a good test-trial strategy especially in case of 

robust items.  We undertake Bayesian analysis using three non-

overlapping methodologies- classical, E-Bayes and hierarchical 

Bayes. Bayes methodologies are found superior in terms of 

providing more efficient estimates with respect to the MSE of 

the estimates as compared to the conventional MLE strategy. 

Among them hierarchical Bayes estimates appear to be closest to 

the true parameters closely followed by E– Bayes estimators. 

We also analyse two real data by several models to get an 

impression of the sensitivity to model assumptions. Illustrations 

undertaken in this paper through simulated and real data sets 

support the candidature of Hjorth distribution as a reliability and 

life-testing model. 
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