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Abstract—The present paper, presents a new single parameter
probability distribution having bathtub and increasing hazard
rates. It also discusses some of its important statistical prop-
erties like order relationship, moments, conditional moments,
generating functions, mean deviations, quantile function, median
and Shannon entropy. The unknown parameter is estimated by
the technique of maximum likelihood estimation. At last, the
applicability of the model have been utilised by two different
datasets over eight other lifetime models.

Index Terms—Bathtub Hazard rate, Lifetime model, Lindley
distribution, Maximum likelihood estimation, Statistical Proper-
ties

I. INTRODUCTION

The lifetime distributions are used to analyse the real-
life problems, especially in applied field like in engineering,
marketing, medical, banking, finance and in others. Since, a
lifetime model has its own merits and demerits and can be
considerable for a specific area of life. So that, a numbers
of lifetime models are proposed in statistical literature as;
Weibull, gamma, exponential, Burr, Pareto, etc. In this series,
Lindley (1958) proposed a new distribution that was popu-
larised latter by his name and called it as Lindley distribution.
The cumulative distribution function (CDF) of the Lindley
distribution is defined as,

G(x) = 1− e−θx 1 + θ + θx

1 + θ
θ, x ≥ 0. (1)

The nature of the model was increasing hazard type and very
applicable to study stress-strength reliability. This property
was studied by Ghitany et al. (2008). After that, several authors
work on it and proposed various lifetime models based on it as;
Ghitany et al. (2008a) proposed Poisson-Lindley distribution,
Ghitany and Al-Mutairi (2008b) proposed size biased Poisson
Lindley model, Elbatal et al. (2013) proposed three-parameter
generalized Lindley distribution, Deniz and Ojeda (2011)
proposed discrete Lindley distribution, Nadarajah et al. (2011)
proposed two-parameter generalized Lindley distribution, Has-
san et al. (2016) proposed Weibull-Quasi Lindley distribution,
Rashid and Jan (2016) proposed Lindley power series distri-
bution, Maurya et al. (2017a) proposed a new transformed

Lindley distribution based on DUS transformation (Kumar
et al. (2015)). Recently, Maurya et al. (2020a) proposed an
extended Lindley distribution, and Maurya et al. (2020b)
proposed a generalized Lindley distribution. But one common
thing appears nearly in all the generalized models that they
add up some additional parameters to increase the flexibility
of its baseline model. Perhaps taking this point, Maurya et al.
(2018) suggest another transformation technique that has more
flexibility without adding a parameter. The proposed technique
gives the CDF F (x) on the basis of baseline CDF G(x) by
the method

F (x) =
log(1 +G(x))

log 2
. (2)

By using this transformation, in this paper, I am introducing
a new probability distribution based on Lindley, which also
incorporate all the properties of its baseline model along
with more flexibility in term of fitting without any additional
parameter. Let the random variable (RV) X have the baseline
CDF is Lindley distribution, then by using the same concept,
the CDF of our proposed distribution is

F (x) =
log
[
2− e−θx

(
1 + θx

θ+1

)]
log 2

θ, x ≥ 0 (3)

and the associated probability density function (PDF) is:

f(x) =
θ2

(θ + 1) log 2

(1 + x)e−θx[
2− e−θx(1 + θx

θ+1 )
] θ, x ≥ 0

(4)
and names it as Logarithmic Transformed Lindley (LoTL)
distribution.

The whole paper is organised as follows: Section 2, discuss
the nature of distribution function and its hazard rate. The
Section 3, study some statistical properties, whereas, Section
4, deals the maximum likelihood procedure for the parameter
estimation. Section 5, discusses two real datasets to show
the model superiority over eight other models. Section 6,
concludes the whole paper.

II. SHAPES OF THE DISTRIBUTION AND ITS FAILURE RATE

The graphical representation is a key aspect of every dis-
tribution function, as it helps to recognise the nature of its
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density, CDF and types of hazard rate function. The equations
(3) and (4) gives the CDF and PDF plots for different values
of the parameters θ and it is shown in Figure 1. The PDF plot
shows that it goes to zero as the RV tends to infinity and the
CDF plot represent that it holds stochastic order relationship
as looking the value of CDF in association with X . This can
be proved mathematically in subsequent Sections. The hazard
rate function gives the change in failure rate over the lifetime
of a system. The corresponding hazard rate function is,

h(x) =
θ2(1 + x)e−θx

(θ + 1)
[
2− e−θx(1 + θx

θ+1 )
]
log

[
2

2−e−θx(1+ θx
θ+1

)

] . (5)

However, the shapes of hazard rate for different choices of
the parameter value are plotted in Figure 1. From this, one
can see that the proposed LoTL model may have increasing
and bathtub hazard rate. Since, we know that the IHR holds
the relation of IHR ⇒ IHRA ⇒ NBU ⇒ NBUE, where
IHRA is increasing hazard rate average, NBU is for new
better than used and NBUE for new better than used in
expectation (see Barlow and Proschan (1975), Gupta et al.
(1998), Marshall and Olkin (2007)). So, the proposed model
also hold these relationship.

A. Limiting behaviour of the distribution

The limiting value of PDF of the proposed model can be
obtained from the equation (4). Since, the extreme values of
X (0 and ∞) as, lim

x→0
f(x) = θ2

(1+θ) log 2 and lim
x→∞

f(x) = 0.

Similarly, the limiting behaviour of hazard function can be
known by using the equation (5). As, lim

x→0
h(x) = θ2

(1+θ) log 2 .
Thus, one can say that the limiting values of proposed distri-
bution is 1

log 2 times value of the Lindley model (see Ghitany
et al. (2008) for more details).

III. SOME STATISTICAL PROPERTIES

This section deal with some basic statistical properties of
the proposed model like, its order relationship, moments, its
conditional moments, its generating functions like moment
and characteristics function, in measure of dispersion; mean
deviation from mean and also from median, quantile function,
distribution function of its order statistics and Shannon en-
tropy. All the properties are given by one by one in subsequent
subsections.

A. Some order relationship

Order relationship provide a thought to analyse the key
features the distribution, density and hazard rate function of
the RV. Before going to obtain its expressions, we recall its
definitions as

A RV W is called to be smaller than another RV V in the
following order term
• Stochastically (W ≤ST V ): if F (w) ≥ F (v) ∀w;
• In hazard rate (W ≤HR V ): if h(w) ≤ h(v) ∀w;
• In mean residual life (W ≤MLR V ): if Mr(w) ≤Mr(v)
∀w, where Mr(·) is mean residual life;

• In likelihood ratio (W ≤LR V ): if f(w)/f(v) decreasing
in w.

Shaked and Shanthikumar (1994) show another relation be-
tween these is W ≤ST V =⇒ W ≤HR V =⇒ W ≤LR V
and W ≤HR V =⇒ W ≤MLR V ; see also, Ghitany et al.
(2008), Gupta et al. (1998) etc. for order relationship.

Also, Ghitany et al. (2008) prove that Lindley distribution
holds likelihood ratio ordering for θ1 > θ2 i.e. if two RVs
X1 and X2 with PDF g1(x), g2(x) and CDF G1(x), G2(x)
respectively and follow Lindley model having parameters
value θ1 and θ2 and satisfied a condition θ1 > θ2 then,
g1(x)/g2(x) is decreasing and G1(x) ≥ G2(x) ∀x. Then,
G2(x) + 1 ≤ G1(y) + 1 and this implies that

g1(x)(G2(x) + 1)

g2(x)(G2(x) + 1)
=
f1(x)

f2(x)
< 1

where f1(x) and f2(x) are density functions of the RVs
X1 and X2 of the proposed distribution. This result shows
that for θ1 > θ2 the proposed distribution holds likelihood
ratio ordering X1 ≤lr X2 and hence holds all the above
relationship like its baseline Lindley distribution. Now, using
the above results, it can say that the proposed distribution holds
stochastic order relationship also and it can verified by the
Figure 1.

B. Moments of the distribution

Since moments of a distribution provides descriptive statis-
tics and also it is useful in parameter estimation. This section
discuss the expression for the moments of the proposed one
with the help of a lemma.

Lemma III.1.

T1(θ, r, δ) =

∫ ∞
0

xr(1 + x)e−δx(
2− e−θx

(
1 + θx

1+θ

))dx,
=

∞∑
k=0

k∑
l=0

l∑
m=0

m+1∑
n=0

(−1)k+l
(
k

l

)(
l

m

)(
m+ 1

n

)
× θm

(1 + θ)l
(n+ r)!

(δ + θl)n+r+1
.

(6)

Proof. Using the expansion of eu =
∑∞
l=0 u

l/l!, one have

T1(θ, r, δ) =

∫ ∞
0

x
r
(1 + x)e

−δx
∞∑
k=0

(−1)k
[
1− e−θx

(
1 +

θx

1 + θ

)]k
dx

now, by the result of expansion of series, (1 − v)b =∑∞
l=0(−1)l

(
b
l

)
vl, when b be a real number and (1− v)b =∑b

l=0(−1)l
(
b
l

)
vl, when b be an integer number then sim-

plifying, we have,

=
∞∑
k=0

k∑
l=0

l∑
m=0

m+1∑
n=0

(−1)
K+l

(
k

l

)(
l

m

)(
m + 1

n

)
θm

(1 + θ)l

(n + r)!

(δ + θl)n+r+1
.

(See Graham et al. (1989) for detail expression of series).

According to the Lemma III.1, one have the rth moment
as,

E(Xr) = KT1(θ, r, θ) (7)
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where K =
θ2

log 2(θ + 1)
. Hence, the first moment i.e. arith-

metic mean is, E(X) = KT1(θ, 1, θ). In the same way, other
moments can also be obtained.

C. Conditional Moments of the distribution
The conditional moments can be used to find the moments

under conditional probability, which is also helpful to find
out the mean deviations. Again, a lemma is used to find the
expression of it.
Lemma III.2.

T2(θ, r, δ, t) =

∫ ∞
t

xr(1 + x)e−δx(
2− e−θx

1 + θ + θx

1 + θ

)dx
=

∞∑
k=0

k∑
l=0

l∑
m=0

m+1∑
n=0

n+r∑
p=0

(−1)k+l
(
k

l

)(
l

m

)(
m+ 1

n

)

×
θm

(1 + θ)l
(n+ r)!

p!(δ + θl)n+r+1
e
−(δ+θl)t

[(δ + θl) t]
p
.

Proof.

T2(θ, r, δ, t) =

∫ ∞
t

xr(1 + x)e−δx(
2− e−θx 1 + θ + θx

1 + θ

)dx
A similar procedure have been taken as in Lemma III.1, the
expression can be written as:

=

∞∑
k=0

k∑
l=0

l∑
m=0

m+1∑
n=0

(−1)k+l
(
k

l

)(
l

m

)(
m+ 1

n

)
× θm

(1 + θ)l

∫ ∞
t

xr+ne−(δ+θl)xdx.

(8)

Here, we use complementary incomplete gamma function
Γ(b, y) =

∫∞
y
tb−1e−tdt which can be rewritten as (a −

1)!e−x
∑a−1
l=0 x

l/l!. By using this function in the equation (8)
and after application of it, the above equation simplified as

T2(θ, r, δ, t) =

∞∑
k=0

k∑
l=0

l∑
m=0

m+1∑
n=0

n+r∑
p=0

(−1)k+l
(
k

l

)(
l

m

)(
m+ 1

n

)

×
θm

(1 + θ)l
(n+ r)!

p!(δ + θl)n+r+1
e
−(δ+θl)t

[(δ + θl) t]
p
.

Using the Lemma III.2, the rth conditional moments could
be easily find out as,

E(Xr|X > x) =
K

(1− F (x))
T2(θ, r, θ, x). (9)

D. Generating functions and characteristics function
The moment generating function (MGF) of RV X of

proposed distribution is given as follows:

MX(t) = KT1(θ, 0, θ − t) for t < θ.

Similarly the the cumulant generating function (CGF) of X
is,

CGX(t) = logK + log T1(θ, 0, θ − t).

And the characteristic function (CHF) of X is,

φX(t) = KT1(θ, 0, θ − it).

where i =
√
−1 denotes imaginary value.

E. Mean deviation about its mean and median value

In descriptive statistics, measure of dispersion has as valu-
able as measure of central tendency. Mean deviation about
central value i.e. mean and median are one of the measure
of dispersion. The Mean deviation from mean (MDM) (ν) is
defined as L1 =

∫∞
0

(x− ν)f(x)dx and Mean deviation from
median (MDMD) (Md) L2 =

∫∞
0

(x − Md)f(x)dx. So by
using method of integration by part, the MDM is,

L1 =

∫ ν

0

(ν − x)f(x)dx+

∫ ∞
ν

(x− ν)f(x)dx.

Thus, since
∫ ν
0
f(x)dx = F (ν)

L1 = 2νF (ν)− 2ν + 2

∫ ∞
ν

xf(x)dx.

Now, considering the result of Lemma III.2,∫ ∞
ν

f(x)dx = KT2(θ, 1, θ, ν)

and hence,

L1 = 2νF (ν)− 2ν +KT2(θ, 1, θ, ν).

In the same fashion, the MDMD can be obtained as,

L2 =

∫ Md

0

(Md − x)f(x)dx+

∫ ∞
Md

(x−Md)f(x)dx

the rest steps are similar to MDM, we have

L2 = −ν + 2

∫ ∞
Md

xf(x)dx.

Now, using Lemma III.2,∫ ∞
Md

xf(x)dx = KT2(θ, 1, θ,Md).

Hence, the MDMD is

L2 = −ν +KT2(θ, 1, θ,Md).

F. Quantile function

The qth quantile P (q) can be obtained by the equation
F (P (q)) = q. So that, using the equation (3),

e−θP (q) 1 + θ + θP (q)

1 + θ
= q (10)

for 0 < q < 1, we put U(q) = −1 − θ − θP (q) in equation
(10) and put T (q) = 2 − 2q , we get U(q)eU(q) = −(1 +
θ)e−(1+θ)T (q) then solution for U(q) is,

U(q) = W
[
−(1 + θ)e−(1+θ)T (q)

]
(11)

here W (·) is Lambert W function, for more detail see Corless
et al. (1996). Hence, from equation (11), quantile function is,

P (q) = −1− 1

θ
− 1

θ
W
[
−(1 + θ)e−(1+θ)T (q)

]
.

One can easily obtain median of the proposed model just by
putting q = 1/2.
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G. Order statistics of the distribution

Let x1, x2, . . . , xm be m random sample from the proposed
LoTL and their corresponding order statistics is, x1:m <
x2:m < · · · < xm:m. Let F (x) and f(x) be the population
CDF and PDF respectively, then for p = 1, 2, . . . ,m the PDF
fp(x) of pth order statistics Xp:m is,

fp(x) =
m!

(p− 1)!(m− p)!
F p−1(x)[1− F (x)]m−pf(x)

=
m!

(p− 1)!(m− p)!

m−p∑
i=0

(−1)i
(
m− p
i

)
F p+i−1(x)f(x).

(12)

Now by using equations (3) and (4) in (12) we have,

fp(x) =
m!

(p− 1)!(m− r)!
θ2

(1 + θ) log 2

m−p∑
i=0

(−1)i(1 + x)e−θx(
2− 1+θ+θx

1+θ e−θx
)

×
(
m− p
i

) log
[
2− e−θx

(
1 + θx

1+θ

)]
log 2

p+i−1

.

And corresponding CDF Fp(x) is,

Fp(x) =

m∑
l=p

(m
l

)
F l(x)[1− F (x)]m−l

=

m∑
l=p

m−i∑
j=0

(m
l

)(m− l
j

)
(−1)jF l+j(x).

(13)

Using equation (3) in equation (13) we have,

Fp(x) =

m∑
l=p

m−l∑
j=0

(
m

l

)(
m− l
j

) log
[
2− e−θx

(
1 + θx

1+θ

)]
log 2

l+j .

H. Entropy for the distribution

Actually, entropy measures the amount of information con-
tained in RV X on average. A famous entropy is Shan-
non entropy (proposed by Shannon (1951)), and defined as,
E[− log f(x)]. For the proposed model

− log f(x) =− log

(
θ2

(1 + θ) log 2

)
− log(1 + x) + θx

− log

[
2− e−θx

(
1 +

θx

1 + θ

)]

and hence,

E[− log f(x)] =(1− logK) + θKT1(θ, 1, θ)−K
∞∑
i=1

(−1)i+1

i
T1(θ, i, θ).

where T1(·, ·, ·) has been define in Lemma III.1.

IV. ESTIMATION PROCEDURE FOR THE DISTRIBUTION

After studying various properties of model, it is important to
estimate the unknown population parameter involve in model.
One of the famous and used method is maximum likelihood
estimation (MLE) which gives the value of parameter for
which the likelihood function be maximum. Since maximizing
likelihood is same as maximizing its logarithmic function.

Thus, the logarithm likelihood function of the proposed dis-
tribution is,

logL = n logK − θ
n∑
i=1

xi +
n∑
i=1

log(1 + xi)

+
n∑
i=1

log

(
2−

1 + θ + θxi

1 + θ
e
−θxi

)
.

Now, differentiate the above one with respect to the parameter
θ one can easily get,

∂ logL

∂θ
=
n(θ + 2)

θ(θ + 1)
−

n∑
i=1

xi −
θe−θxi (1 + xi(1 + xi)(1 + θ))

(1 + θ)
(
2(1 + θ)− e−θxi (1 + θ + θxi)

)
(14)

Now, equating the equation (14) to zero, we have a non-
linear equation and its solution provide estimate θ̂ of the
parameter θ. This also need some computational method to
solve it because the likelihood equation is not in closed form.
Here, we suggest to the use of Newton type method. This
can be done by using R Core Team (2020) software. In the
large samples, the confidence intervals can be calculated by
using the Fisher information matrix I−1(θ̂) by which one
can get asymptotic variance for the estimated parameter. And,
two-sided 100(1 − ξ)% confidence interval of θ is obtain as

θ̂±Zξ/2
√
V (θ̂), where Zξ/2 stands for the upper ξ/2% points

of standard normal distribution.
The estimated Fisher Information matrix is,

I(θ̂) =

[
−∂2 logL

∂θ2

]
θ̂

where, −∂
2 logL
∂θ2 is second derivative of logarithmic of likeli-

hood function, obtained from equation (14).

V. REAL DATA APPLICATION

In this paper, two different real datasets in different fields
to validate the applicability of the proposed one. Here, eight
other lifetime models in which the only one has one pa-
rameter i.e. baseline Lindley distribution, otherwise, all other
seven have two parameters have been considered for model
comparison. The considered distributions are Chen model
(Chen (2000)), Lindley, generalized Lindley (GL) (Nadarajah
et al. (2011)), Weibull, gamma, GDUS exponential (GDUSE)
(Maurya et al. (2017b)), gamma Lindley (GaL) (Zeghdoudi
and Nedjar (2016)) and Power Lindley (PL) (Ghitany et al.
(2013)). Among the compared models, two are famous bathtub
models i.e. Chen and GDUSE models, three models are based
on Lindley as a baseline, and two other flexible lifetime models
as Weibull and gamma distributions.

A. Data Analysis

Data Set 1: Sand sample data.
These datasets contain 16 samples of maximum likeness esti-
mates from the Danish west coast and reported by Barndorff-
Nielsen (1977).

Data Set 2: Vinyl chloride data.
This data set is reported by Bhaumik et al. (2009). It consists
34 sample of vinyl chloride from clean up-gradient monitoring
wells in mg/l.
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Here, to know the type of the hazard rate of considered
real datasets, we draw a scaled TTT plot in Figure 2 (See
Aarset (1987) for more detailed about scaled TTT plot).

Here, firstly p value is calculated to validate that the model
fit to dataset or not. After that, two model section criterion
namely; AIC and BIC have been used. Also, we have used KS
statistic and log likelihood value as a model selection criterion.
Along with maximum likelihood estimates of the parameters
all the above values are shown in Table I.

From this, we observed that for both datasets, all the
considered models fitted at a 5% level of significance. And
for the first dataset, the proposed LoTL model has minimum
KS statistic and the log-likelihood value is almost same for
seven models. But, the AIC and BIC values are least for the
proposed LoTL model. For the second dataset, the KS statistics
are minimum for the GaL distribution and the value of -LogL
is almost same for five distributions. The AIC and BIC values
are least for our proposed LoTL model.
To check the uniqueness properties of MLE, we have plotted
log-likelihood value with a variation of a parameter value
in Figure 3. This figure represents that the proposed model
has a unique MLE. Also, we have considered non-parametric
tools like the empirical CDF (ECDF) plots (see Figure 2) for
all the considered models, kernel density (KD) plots, relative
histogram plots along with fitted density plots of the proposed
model have been presented in Figure 3. These figures also
support our findings.

TABLE I
MLE, LOG LIKELIHOOD, KS STATISTICS WITH P-VALUE, AND AIC, BIC

VALUES FOR THE DATASETS.

Dataset 1

Distribution
MLE KS

AIC BICα θ -LogL Statistic p-value
Chen 0.408 0.038 59.949 0.169 0.692 123.898 125.443

Lindley - 0.106 57.916 0.130 0.919 117.831 118.604
Proposed - 0.122 57.905 0.121 0.951 117.810 118.583

GL 1.404 0.144 57.566 0.143 0.855 119.132 120.677
Weibull 1.482 17.383 58.073 0.147 0.832 120.145 121.690
Gamma 2.265 6.871 57.456 0.140 0.873 118.912 120.457
GDUSE 2.224 0.123 57.659 0.143 0.852 119.317 120.862

GaL 10.000 0.128 57.564 0.127 0.931 119.128 120.673
PL 1.087 0.095 57.777 0.141 0.864 119.554 121.099

Dataset 2
Chen 0.506 0.303 57.975 0.115 0.755 119.950 123.002

Lindley - 0.824 56.304 0.133 0.588 114.607 116.134
Proposed - 0.725 55.658 0.106 0.843 113.315 114.841

GL 0.865 0.762 56.111 0.116 0.747 116.222 119.275
Weibull 1.010 1.888 55.450 0.092 0.937 114.899 117.952
Gamma 1.063 1.769 55.413 0.097 0.904 114.826 117.879
GDUSE 0.866 0.613 56.049 0.115 0.761 116.097 119.150

GaL 0.347 0.532 55.453 0.089 0.951 114.905 117.958
PL 0.883 0.914 55.760 0.094 0.923 115.520 118.573

VI. CONCLUSION

In this research paper, we propose an one parameter lifetime
distribution that have capability of increasing and bathtub type
hazard rates. We have derived some basic statistical properties
like its moments, conditional moments, generating functions
like; moment, cumulant and characteristic function, in measure
of dispersion; mean deviation about mean and median value
are calculated. The quantile function, Shannon entropy, the
CDF and PDF of order statistic are derived. Along with this,
method of obtaining the MLE, asymptotic confidence interval
and observed Fisher information have also been discussed in
detail. Two real datasets and eight other competitive distri-
butions namely Lindley, Chen, GDUSE, generalised Lindley,
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Fig. 1. Probability density and cumulative distribution function and hazard
rate plot
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Fig. 2. Scaled TTT and ECDF plots for real datasets
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Fig. 3. Log likelihood, kernel density with fitted density and histogram plots
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gamma and Weibull, Gamma Lindley and power Lindley have
been considered for model validation. And it have shown via
numerical measures as well as graphically that the proposed
one fit to the considered real datasets very well than the other
distributions. Hence, it is easily to conclude that the proposed
distribution is flexible and fits variety of datasets and in this
way be one may consider as a suitable model for lifetime data.
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