Some New Fixed-Point Results in non-Archimedean Dislocated Quasi Modular Metric Space Via C-Class and A-Class functions

Babla Chandra Ghosh ${ }^{* 1}$ and Dipankar Das ${ }^{2}$
${ }^{* 1}$ Department of Mathematical Sciences, Bodoland University, Kokrajhar-783370, Assam (India), Email ID bcghosh50@ gmail.com
${ }^{2}$ Department of Mathematical Sciences, Bodoland University, Kokrajhar-783370, Assam (India), Email ID dipankardas@yahoo.com

Abstract

In this paper we investigate some new fixed point theorems in non-Archimedean dislocated quasi modular metric space and some of its properties. We use C-class and A-class function together with $\mathcal{J H} \mathcal{R}$ - operator to serve our purpose. An application in integral equation with an example is also furnished to validate our result.

Index Terms-coincidence point, dq-modular metric spaces, $\mathcal{J} \mathcal{H}$ - operator, non-Archimedean dq-modular metric spaces,

I. Introduction

Many researchers studied generalization of Banach [Banach , 1922] fixed point theory in metric space with different concepts such as giving the flexibility in contraction condition taking maximum of the terms $d(p, q), d(T p, q), d(p, T q)$ etc. for a self- mapping "T". Dislocated quasi metric is a generalization of the concept of metric space. Hitzler [Hitzler \& Seda, 2000; Hitzler, 2001] in 2000 and in 2006 Zeyada et.al.[Zeyada et. al. , 2006] introduced dislocated quasi metric space and its application plays an important role in electronic engineering, logic programming etc. and development in the field of fixed point theory. H. Nakano [Nakano , 1950] coined the idea of modular in 1950. Different results were also established in modular. Later V. V. Chistyakov [Chistyakov, 2008; V.V. Chistyakov , 2010; Chistyakov , 2010] announced modular metric and prove some results in modular metric space which has aphysical significance. In 2019, E. Girgin and M.Öztürk [Girgin \& Öztürk, 2019] in their work introduced the concept of quasi modular metric space and non-Archimedean quasi modular metric space in the field of fixed point theory. Das et. al. [Das et. al. , 2021] recently introduced the concept of dislocated quasi modular metric space as well as nonArchimedean dislocated quasi modular metric space.

In this paper, we prove some new fixed point theorem in the setting of non-Archimedean dislocated quasi modular metric space with application in the field of fixed point theory.

II. Preliminaries

Definition 1. [Das et. al. , 2021; Girgin \& Öztürk , 2019] Let $M \neq \emptyset$ and $\xi \in(0, \infty)$. A dislocated quasi modular metric (dq-modular metric) is a real function $\Theta:(0, \infty) \times M \times M \rightarrow$ $[0, \infty)$ of ordered pair of elements of M which satisfies the following two conditions for all $p, q, r \in M$.
(i) $\Theta_{\xi}(p, q)=\Theta_{\xi}(q, p)=0$ for all $\xi>0 \Rightarrow p=q$
(ii) $\Theta_{\xi+\mu}(p, q) \leq \Theta_{\xi}(p, r)+\Theta_{\mu}(r, q)$ for all $\xi, \mu>0$
and the pair consisting of two objects M_{Θ} and Θ_{ξ} is called a dislocated quasi modular metric space. M_{Θ} is called nonArchimedean dislocated quasi modular metric space (in short nADQmMS) if the second condition is replaced by the condition

$$
\Theta_{\max \{\xi, \mu\}}(p, q) \leq \Theta_{\xi}(p, r)+\Theta_{\mu}(r, q), \forall \xi, \mu>0
$$

. This condition implies condition (ii) above. So, every non-Archimedean dislocated quasi modular metric space is Archimedean quasi modular metric space. Throughout this paper we choose $\xi=\mu=1$ for nADQmMS.
Example 1. Let $\left(M_{\Theta}, \Theta_{1}\right)$ be a nADQmMS. The function Θ_{1} is defined as $\Theta_{1}(p, q)=e|p|$ then Θ_{1} is a non-Archimedean dislocated quasi modular metric space on M_{Θ}.
Definition 2. Let M_{Θ} be nADQmMS with metric Θ_{1} and let $\left\{p_{n}\right\}$ be a sequence of points in M_{Θ} Then
(i) We say $\left\{p_{n}\right\}$ is convergent if there exists a point $p \in M_{\Theta}$ such that $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p\right)=0=\lim _{n \rightarrow \infty} \Theta_{1}\left(p, p_{n}\right)$. i.e., if and only if every sequence in M_{Θ} is left convergent as well as right convergent.
(ii) $\left(M_{\Theta}, \Theta_{1}\right)$ be a complete nADQmMS in which every Cauchy sequence in M_{Θ} is both left convergent as well as right convergent; i.e.,there exists a positive integer $n_{0}>0$ such that $n>m \geq n_{0} \Rightarrow \lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p_{m}\right)=0=$ $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{m}, p_{n}\right)$.
(iii) A self mapping B is said to be Θ-continuous in M_{Θ}, if for every sequence $\left\{p_{n}\right\}$ of points in M_{Θ} such that $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p\right)=\lim _{n \rightarrow \infty} \Theta_{1}\left(p, p_{n}\right)$ then $\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n}, B p\right)=\lim _{n \rightarrow \infty} \Theta_{1}\left(B p, B p_{n}\right)$,
(iv) A subset D of M_{Θ} is said to be Θ-bounded if

$$
\delta_{\Theta}(D)=\sup \left\{\Theta_{1}(p, q): p, q \in D\right\}<\infty
$$

Lemma 1. [Das et. al., 2021] Let $\left(M_{\Theta}, \Theta_{1}\right)$ be $n A D Q m M S$. Then
(i) If $\Theta_{1}(p, q)=\Theta_{1}(q, p)=0$ then $\Theta_{1}(p, p)=\Theta_{1}(q, q)=0$
(ii) If $\left\{p_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p_{n+1}\right)=$ $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n+1}, p_{n}\right)=0$ then $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p_{n}\right)=$ $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n+1}, p_{n+1}\right)=0$
(iii) If $p \neq q$ then $\Theta_{1}(p, q)>0$
(iv) $\begin{aligned} & \Theta_{1}(p, p) \leq \frac{1}{n} \sum_{i=1}^{n}\left[\Theta_{1}\left(p, p_{i}\right)+\Theta_{1}\left(p_{i}, p\right)\right] \text { holds for all } \\ & \\ & p_{i}, p \in M_{\Theta}\end{aligned}$

In 2014, Ansary [Ansari , 2014] first introduced the concept C- class function and using it A. H. Ansari et. al. proved some results in fixed point theorems for generalized $\alpha-\eta-\psi-$ $\phi-F-$ contraction type mappings in $\alpha-\eta-$ complete metric space.

Definition 3. [Ansari , 2014] A continuous function f : $[0, \infty)^{2} \rightarrow R$ is called a C - class function if
(i) $f(u, v) \leq u$ for all $u, v \in[0, \infty)$
(ii) $f(u, v)=u \Rightarrow$ either $u=0$ or $v=0$ for all $u, v \in[0, \infty)$

Definition 4. [Yalcin et. al. , 2020] A continuous function $\theta:[0, \infty) \rightarrow[0, \infty)$ is called an A - class function if $\theta(\xi) \geq \xi$ for all $\xi \in[0, \infty)$.

Definition 5. [Khan et. al., 1984] Let ψ denote the set of alternating distance function, and $\psi:[0, \infty) \rightarrow[0, \infty)$ be continuous, non-decreasing and satisfies $\psi(\xi)=0$ if and only if $\xi=0$.

Definition 6. [Ansari, 2014] Let ϕ denote the set of ultra alternating distance function, and $\phi:[0, \infty) \rightarrow[0, \infty)$ be continuous, non-decreasing and satisfies $\phi(\xi)>0$ for $\xi>0$ and $\psi(0) \geq 0$.

Definition 7. [Sintunavarat \& Kumam , 2011] Let S, T be two self mappings on a nADQmMS, M_{Θ}. A point $p \in M_{\Theta}$ is called a coincidence point of S and $T ;(C P(S, T))$ if and only if $B p=A p$. We shall call $\xi=B p=A p$ a point of coincidence of S and T; $(P O C(S, T))$.

Definition 8. [Das et. al. , 2021; Sintunavarat \& Kumam , 2011] Let S, T be two self mappings on a nADQmMS M_{Θ}, the pair (S, T) is called a $\mathcal{J H} \mathcal{R}$-operator pair if there exists a point $\xi=B p=A p$ in $P O C(S, T) \neq \phi$ and there exists a sequence $\left\{p_{n}\right\}$ in M_{Θ} such that $\lim _{n \rightarrow \infty} B p_{n}=$ $\lim _{n \rightarrow \infty} A p_{n}=\xi \in M_{\Theta}$ that satisfies

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\Theta_{1}\left(p_{n}, \xi\right)\right\| \leq \delta_{\Theta}(P O C(S, T)) \\
& \lim _{n \rightarrow \infty}\left\|\Theta_{1}\left(\xi, p_{n}\right)\right\| \leq \delta_{\Theta}(P O C(T, S))
\end{aligned}
$$

III. Main result

Theorem 1. Let $\left(M_{\Theta}, \Theta_{1}\right)$ be a complete nADQmMS. Let $A, B: M_{\Theta} \rightarrow M_{\Theta}$ be two continuous self mapping such that $A\left(M_{\Theta}\right) \subseteq B\left(M_{\Theta}\right)$ and satisfying the inequality
$\theta\left(\psi \Theta_{1}((A p, A q)) \leq F\left(\psi\left(N(p, q), \phi(N(p, q)) ;\right.\right.\right.$ for $p, q \in M_{\Theta}$
where $\psi \in \Psi, \phi \in \Phi F$ is a C-class function, θ is a A-class function and

$$
N(p, q)=\max \left\{\Theta_{1}(B p, B q), \Theta_{1}(A p, A q), \Theta_{1}(A q, B q)\right\}
$$

If the pair (A, B) is a $\mathcal{J H} \mathcal{R}$-operator pair, then A and B have a common unique fixed point.

Proof: Let $p_{0} \in M_{\Theta}$. We construct a sequence $\left\{p_{n}\right\}$ by the iteration $A p_{n}=B p_{n+1}$ for any $n \in \mathbb{N}$. Now,

$$
\begin{align*}
\psi\left(\Theta_{1}\left(B p_{n+1}, B p_{n}\right)\right. & \leq \theta\left(\psi\left(\Theta_{1}\left(B p_{n+1}, B p_{n}\right)\right)\right. \\
& =\theta\left(\psi\left(\Theta_{1}\left(A p_{n}, A p_{n-1}\right)\right)\right. \\
& \leq F\left(\psi\left(N\left(p_{n}, p_{n-1}\right)\right), \phi\left(N\left(p_{n}, p_{n-1}\right)\right)\right. \\
& \leq \psi\left(N\left(p_{n}, p_{n-1}\right)\right) \tag{2}
\end{align*}
$$

where $N\left(p_{n}, p_{n-1}\right)=\max \left\{\Theta_{1}\left(B p_{n}, B p_{n-1}\right)\right.$, $\left.\Theta_{1}\left(B p_{n+1}, B p_{n}\right), \Theta_{1}\left(B p_{n}, B p_{n-1}\right)\right\}$.
Hence

$$
N\left(p_{n}, p_{n-1}\right)=\max \left\{\Theta_{1}\left(B p_{n+1}, B p_{n}\right), \Theta_{1}\left(B p_{n}, B p_{n-1}\right)\right\}
$$

If for some $n_{0} \in \mathbb{N}$,

$$
N\left(p_{n_{0}}, p_{n_{0}-1}\right)=\Theta_{1}\left(B p_{n_{0}+1}, B p_{n_{0}}\right)
$$

Then

$$
\begin{aligned}
\psi\left(\Theta_{1}\left(B p_{n_{0}+1}, B p_{n_{0}}\right)\right) & \\
& \leq F\left(\psi\left(N\left(p_{n_{0}}, p_{n_{0}-1}\right)\right)\right. \\
& \phi\left(N\left(p_{n_{0}}, p_{n_{0}-1}\right)\right) \\
& \leq \psi\left(\Theta_{1}\left(B p_{n_{0}+1}, B p_{n_{0}}\right)\right)
\end{aligned}
$$

Definition of Ψ, Φ and C-class function, for some $n_{0} \in \mathbb{N}$, guarantee that,

$$
\begin{equation*}
\psi\left(\Theta_{1}\left(B p_{n_{0}+1}, B p_{n_{0}}\right)\right)=0 \tag{3}
\end{equation*}
$$

Therefore, let for all $n>0$,

$$
N\left(p_{n}, p_{n-1}\right)=\Theta_{1}\left(B p_{n}, B p_{n-1}\right)
$$

From (3) we get,

$$
\psi\left(\Theta_{1}\left(B p_{n+1}, B p_{n}\right) \leq \psi\left(\Theta_{1}\left(B p_{n}, B p_{n-1}\right)\right)\right.
$$

Therefore, $\left\{\Theta_{1}\left(B p_{n+1}, B p_{n}\right)\right\}$ is a decreasing sequence of positive real numbers. The fact that a real number $\epsilon \geq 0$ exists is a consequence of decreasing sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n+1}, B p_{n}\right)=\epsilon
$$

We claim that $\epsilon=0$, on the contrary suppose that $\epsilon>0$. Letting $n \rightarrow \infty$ in (3), the continuity of ψ and ϕ give

$$
\psi(\epsilon) \geq F(\psi(\epsilon), \phi(\epsilon)) \geq \psi(\epsilon)
$$

It follows that, $\epsilon=0$. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n+1}, B p_{n}\right)=0 \tag{4}
\end{equation*}
$$

We next prove $\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n}, B p_{n+1}\right)$ is also zero. From (2) we get,

$$
\begin{align*}
\psi\left(\Theta_{1}\left(B p_{n}, B p_{n+1}\right)\right) & \leq \theta\left(\psi\left(\Theta_{1}\left(B p_{n}, B p_{n+1}\right)\right)\right) \\
& =\theta\left(\psi\left(\Theta_{1}\left(A p_{n-1}, A p_{n}\right)\right)\right) \\
& \leq F\left(\psi\left(N\left(p_{n-1}, p_{n}\right)\right), \phi\left(N\left(p_{n-1}, p_{n}\right)\right)\right) \\
& \leq \psi\left(N\left(p_{n-1}, p_{n}\right)\right) \tag{5}
\end{align*}
$$

where $N\left(p_{n-1}, p_{n}\right)=\max \left\{\Theta_{1}\left(B p_{n-1}, B p_{n}\right)\right.$, $\left.\Theta_{1}\left(B p_{n}, B p_{n+1}\right), \Theta_{1}\left(B p_{n+1}, B p_{n}\right)\right\}$.

If for some $n_{0} \in \mathbb{N}$,

$$
N\left(p_{n_{0}}, p_{n_{0}-1}\right)=\Theta_{1}\left(B p_{n_{0}}, B p_{n_{0}+1}\right)
$$

Then from (5) we get, Then

$$
\begin{aligned}
\psi\left(\Theta_{1}\left(B p_{n_{0}}, B p_{n_{0}+1}\right)\right) & \leq F\left(\psi\left(N\left(p_{n-1}, p_{n}\right)\right)\right. \\
& \left.\phi\left(N\left(p_{n-1}, p_{n}\right)\right)\right) \\
& \leq \psi\left(\Theta_{1}\left(B p_{n_{0}}, B p_{n_{0}+1}\right)\right)
\end{aligned}
$$

Keeping in mind the definition of Ψ, Φ and C-class function gives, for some $n_{0} \in \mathbb{N}$,

$$
\begin{equation*}
\psi\left(\Theta_{1}\left(B p_{n_{0}}, B p_{n_{0}+1}\right)\right)=0 \tag{6}
\end{equation*}
$$

From (4) and (6), we have for some $n_{0} \in \mathbb{N}, B p_{n_{0}}=B p_{n_{0}+1}$ and hence $B p_{n_{0}}=A p_{n_{0}}$.
If we assume that for all $n>0, N\left(p_{n-1}, p_{n}\right)=$ $\Theta_{1}\left(B p_{n+1}, B p_{n}\right)$ then we get similar type of result as above. Therefore, $\left\{\Theta_{1}\left(B p_{n}, B p_{n+1}\right)\right\}$ is a decreasing sequence of positive real numbers. The fact that a real number $\epsilon \geq 0$ exists is a consequence of decreasing sequence of positive numbers such that

$$
N\left(p_{n-1}, p_{n}\right)=\Theta_{1}\left(B p_{n-1}, B p_{n}\right)
$$

Hence from (6) we get,

$$
\psi\left(\Theta_{1}\left(B p_{n}, B p_{n+1}\right)\right) \leq \psi\left(\Theta_{1}\left(B p_{n-1}, B p_{n}\right)\right)
$$

This in turn means that, $\left.\left\{\Theta_{1}\left(B p_{n}, B p_{n+1}\right)\right)\right\}$ is a decreasing sequence of of positive real numbers. Thus there exists a real number $\epsilon \geq 0$ is a consequence of decreasing sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n}, B p_{n+1}\right)=\epsilon
$$

We claim that $\epsilon=0$, on the contrary suppose that $\epsilon>0$. Letting $n \rightarrow \infty$ relation (5), by the continuity of ψ and ϕ gives

$$
\psi(\epsilon) \geq F(\psi(\epsilon), \phi(\epsilon)) \geq \psi(\epsilon)
$$

Implying that $F(\psi(\epsilon), \phi(\epsilon))=\psi(\epsilon)$. By definition of F either $\psi(\epsilon)=0$ or $\phi(\epsilon)=0$. This gives $\epsilon=0$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n}, B p_{n+1}\right)=0 \tag{7}
\end{equation*}
$$

Next we shall show that $\left\{B p_{n}\right\}$ is right Cauchy Sequence. Suppose on the contrary $\left\{B p_{n}\right\}$ is not a right Cauchy sequence. For any $\epsilon>0$ and $k \in \mathbb{N}$, we can find sub sequences
$\left\{B p_{m_{k}}\right\}$ and $\left\{B p_{n_{k}}\right\}$ of $\left\{B p_{n}\right\}$ with $n_{k}>m_{k}>k$ satisfying $\Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right) \geq \epsilon$ and $\Theta_{1}\left(B p_{n_{k}-1}, B p_{m_{k}}\right)<\epsilon$.

$$
\begin{aligned}
\epsilon & \leq \Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right) \\
& \leq \Theta_{1}\left(B p_{n_{k}}, B p_{n_{k-1}}\right)+\Theta_{1}\left(B p_{n_{k-1}}, B p_{m_{k}}\right) \\
\therefore & \leq \lim _{k \rightarrow \infty} \Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right)<\epsilon \\
\Rightarrow & \lim _{k \rightarrow \infty} \Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right)=\epsilon
\end{aligned}
$$

Again from (3) we get,

$$
\begin{align*}
\psi\left(\Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right)\right) & \leq \theta\left(\psi\left(\Theta_{1}\left(A p_{n_{k}-1}, A p_{m_{k}-1}\right)\right)\right) \\
& \leq F\left(\psi\left(N\left(p_{n_{k}-1}, p_{m_{k}-1}\right)\right)\right. \\
& \phi\left(N\left(p_{n_{k}-1}, p_{m_{k}-1}\right)\right) \\
& \leq \psi\left(N\left(p_{n_{k}-1}, p_{m_{k}-1}\right)\right) \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
N\left(p_{n_{k}-1}, p_{m_{k}-1}\right) & =\max \left\{\Theta_{1}\left(B p_{n_{k}-1}, B p_{m_{k}-1}\right)\right. \\
& \left.\Theta_{1}\left(A p_{n_{k}-1}, A p_{m_{k}-1}\right), \Theta_{1}\left(A p_{m_{k}-1}, B p_{m_{k}-1}\right)\right\} \\
& =\max \left\{\Theta_{1}\left(B p_{n_{k}-1}, B p_{m_{k}-1}\right)\right. \\
& \left.\Theta_{1}\left(B p_{n_{k}}, B p_{m_{k}}\right), \Theta_{1}\left(B p_{m_{k}}, B p_{m_{k}-1}\right)\right\}
\end{aligned}
$$

Thus

$$
\lim _{k \rightarrow \infty} N\left(p_{n_{k}-1}, p_{m_{k}-1}\right)=\epsilon
$$

Taking limit as $k \rightarrow \infty$ in (8) we get,

$$
\psi(\epsilon) \geq F(\psi(\epsilon), \phi(\epsilon)) \geq \psi(\epsilon)
$$

In determining $\epsilon=0$, involves the definition of Ψ, Φ and C-class function, which is a contradiction. Hence, $\left\{B p_{n}\right\}$ is a right Cauchy sequence. Since (M, Θ) is right complete so, there exists $B \xi \in M_{\Theta}$ such that,

$$
\lim _{n \rightarrow \infty} \Theta_{1}\left(B \xi, B p_{n}\right)=0
$$

Similarly, we can show that $\left\{B p_{n}\right\}$ is a left Cauchy sequence, and $\lim _{n \rightarrow \infty} \Theta_{1}\left(B p_{n}, B \xi\right)=0$. So,

$$
\lim _{n \rightarrow \infty} B p_{n}=B \xi
$$

Now,

$$
\begin{aligned}
\psi\left(\left(A \xi, B p_{n+1}\right)\right) & \leq \theta\left(\psi\left(A \xi, A p_{n}\right)\right) \\
& \leq F\left(\psi \left(N\left(\xi, p_{n}\right), \phi\left(N\left(\xi, p_{n}\right)\right)\right.\right. \\
& \leq \psi\left(N\left(\xi, p_{n}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
N\left(\xi, p_{n}\right) & =\max \left\{\Theta_{1}\left(B \xi, B p_{n}\right), \Theta_{1}\left(A \xi, A p_{n}\right), \Theta_{1}\left(A p_{n}, B p_{n}\right)\right\} \\
& \Rightarrow \lim _{n \rightarrow \infty} \psi\left(A \xi, B p_{n+1}\right) \\
& \leq \psi\left(\Theta_{1}(A \xi, B \xi)\right)
\end{aligned}
$$

Similarly, we can show that

$$
\lim _{n \rightarrow \infty} \psi\left(B p_{n+1}, A \xi\right) \leq \psi\left(\Theta_{1}(B \xi, A \xi)\right)
$$

. Hence, $\lim _{n \rightarrow \infty} B p_{n}=A \xi=B \xi$. By hypothesis $P O C(A, B) \neq \phi$ and there exists a point $q \in M_{\Theta}$ such that $B q=A q=\eta$.

$$
\begin{aligned}
\psi\left(\Theta_{1}(B \xi, \eta)\right) & \leq \theta\left(\psi\left(\Theta_{1}(A \xi, A q)\right)\right) \\
& \leq F(\psi(N(\xi, q)), \phi(N(\xi, q))) \\
& =\psi(N(\xi, q))
\end{aligned}
$$

where,

$$
\begin{aligned}
M(\xi, q) & =\max \left\{\Theta_{1}(B \xi, B q), \Theta_{1}(A \xi, A q), \Theta_{1}(A q, B q)\right\} \\
& =\Theta_{1}(B \xi, \eta)
\end{aligned}
$$

So, by the definition of C-class function we get $\psi\left(\Theta_{1}(B \xi, \eta)\right)=0$ or $\phi\left(\Theta_{1}(B \xi, \eta)\right)=0$. Similarly, we can get $\psi\left(\Theta_{1}(\eta, B \xi)\right)=0$ or $\phi\left(\Theta_{1}(\eta, B \xi)\right)=0$. Which implies $B \xi=\eta$. Hence $B \xi=A \xi=\eta$. If there exists another point $p^{\prime} \in M_{\Theta}$ such that $B p^{\prime}=A p^{\prime}=\eta^{\prime}$.
We can similarly show that, $\eta=\eta^{\prime}=B \xi=A \xi$ i.e. there exists a unique point of coincidence and so $\delta_{\Theta}(P O C(A, B))=0$.
Since, (A, B) is a $\mathcal{J H} \mathcal{R}$ operator so, there exists a sequence $\left\{g_{n}\right\}$ in M_{Θ} such that

$$
\lim _{n \rightarrow \infty} B g_{n}=\lim _{n \rightarrow \infty} A g_{n}=g
$$

and $\lim _{n \rightarrow \infty} \Theta_{1}\left(g, g_{n}\right)=\lim _{n \rightarrow \infty} \Theta_{1}\left(g_{n}, g\right)=0$. Clearly, $\lim _{n \rightarrow \infty} g_{n}=g$.

$$
\begin{aligned}
\psi\left(\Theta_{1}\left(A g_{n}, q\right)\right) & \leq \theta\left(\psi\left(\Theta_{1}\left(A g_{n}, A \xi\right)\right)\right) \\
& \leq F\left(\psi\left(N\left(g_{n}, \xi\right)\right), \varphi\left(N\left(g_{n}, \xi\right)\right)\right) \\
& =\psi\left(N\left(g_{n}, \xi\right)\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
& N\left(g_{n}, \xi\right)=\max \left\{\Theta_{1}\left(B g_{n}, B \xi\right)\right. \\
& \left.\Theta_{1}\left(A g_{n}, A \xi\right), \Theta_{1}(A \xi, B \xi)\right\}
\end{aligned}
$$

Hence as $n \rightarrow \infty$, we have $\Theta_{1}(g, q)=0$. Similarly, we can show that $\Theta_{1}(q, g)=0$. Hence, $g=q$.
Since, B is Θ-continuous and $\lim _{n \rightarrow \infty} B g_{n}=g$ so $B \eta=$ $\eta=A \eta$. Hence A and B have common fixed point. Uniqueness can be shown in similar manner.
Example 2. Let $M_{\Theta}=\mathbb{R}$, define a nADQmMS
$\Theta_{1}(p, q)=\{|2 p-q|-1\}$, for all $p, q \in M_{\Theta}$. Define $A, B:$ $M_{\Theta} \longrightarrow M_{\Theta}$ by

$$
A p=2 p^{2}-1, \quad B p=2 p-1
$$

and $\psi(t)=2 t, \quad \phi(t)=t, F(s, t)=s-t$, and $\theta(t)=t$. For all $p, q \in M_{\Theta}$ and $\lambda>0$ we have,
$\Theta_{1}(A p, A q)=0<\infty . A$ and B are continuous mapping, and $\theta\left(\psi\left(\Theta_{1}(A p, A q)\right)\right) \leq F\left(\psi\left(M(p, q), \phi(N(p, q)) ;\right.\right.$ for $p, q \in M_{\Theta}$
Also, $A\left(M_{\Theta}\right) \subseteq B\left(M_{\Theta}\right)=\mathbb{R}$. Let $\left\{z_{n}\right\}$ be a sequence of points in M_{Θ} such that $z_{n}=\left\{1+\frac{1}{n}\right\}, n=1,2,3, \ldots$. Then $\lim _{n \rightarrow \infty} A z_{n}=\lim _{n \rightarrow \infty} B z_{n}=z=1$. Now,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \Theta_{1}\left(z, z_{n}\right) & =\lim _{n \rightarrow \infty} \Theta_{1}\left(z_{n}, z\right)=0 \\
& \leq \delta_{\Theta}(P O C(A, B))=0
\end{aligned}
$$

Hence all the condition of Theorem (1) are satisfied. So, 1 is the common unique fixed point of A and B.

Theorem 2. Let $\left(M_{\Theta}, \Theta_{1}\right)$ be a complete $n A D Q m M S$. Let $A: M_{\Theta} \rightarrow M_{\Theta}$ be continuous self mapping satisfying the inequality

$$
\begin{equation*}
\theta(\psi(A p, A q) \leq F(\psi(N(p, q), \phi(N(p, q)) \tag{9}
\end{equation*}
$$

for $p, q \in M_{\Theta}$. where $\psi \in \Psi, \phi \in \Phi, F$ is a C-class function, θ is a A-class function and

$$
N(p, q)=\max \left\{\Theta_{1}(p, q), \Theta_{1}(A q, q)\right\}
$$

Then A has unique fixed point.
Proof. Let $B=I$, identity mapping of M_{Θ}. Then by Theorem (1) we can easily get the result.

Theorem 3. Let $\left(M_{\Theta}, \Theta_{1}\right)$ be a complete nADQmMS. Let $T: M_{\Theta} \rightarrow M_{\Theta}$ be a continuous self mapping satisfying contraction condition,

$$
\Theta_{1}(T p, T q) \leq \alpha \Theta_{1}(p, q), 0 \leq \alpha<1
$$

Then T has unique fixed point.
Proof: Let $p_{0} \in M_{\Theta}$. We construct a sequence $\left\{p_{n}\right\}$ by the iteration $T p_{n}=p_{n+1}$ for any $n \in \mathbb{N}$. Now,

$$
\begin{align*}
\Theta_{1}\left(p_{n+1}, p_{n}\right)=\Theta_{1}\left(T p_{n}, T p_{n-1}\right) & \leq \alpha \Theta_{1}\left(p_{n}, p_{n-1}\right) \\
& \leq \ldots \\
& \leq \alpha^{n} \Theta_{1}\left(p_{1}, p_{0}\right) \tag{10}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n+1}, p_{n}\right)=0 \tag{11}
\end{equation*}
$$

Similarly we can show that,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, p_{n+1}\right)=0 \tag{12}
\end{equation*}
$$

Next we shall show that $\left\{p_{n}\right\}$ is right Cauchy Sequence. Suppose on the contrary $\left\{p_{n}\right\}$ is not a right Cauchy sequence. For any $n>m$,

$$
\begin{align*}
\left.\Theta_{1}\left(p_{n}, p_{m}\right)\right) & =\Theta_{1}\left(T p_{n-1}, T p_{m-1}\right) \\
& \leq \alpha \Theta_{1}\left(p_{n-1}, p_{m-1}\right) \\
& \leq \cdots \\
& \leq \alpha^{m} \Theta_{1}\left(p_{n-m}, p_{0}\right) \tag{13}\\
\lim _{n \rightarrow \infty} & \Theta_{1}\left(p_{n}, p_{m}\right)=0
\end{align*}
$$

Hence, $\left\{p_{n}\right\}$ is a right Cauchy sequence, similarly we can show that $\left\{p_{n}\right\}$ is a left Cauchy sequence. Since (M, Θ) is complete so, there exists $r \in M_{\Theta}$ such that,

$$
\lim _{n \rightarrow \infty} \Theta_{1}\left(r, p_{n}\right)=0=\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, r\right)
$$

Now,

$$
\left.\left.\left.\Theta_{1}\left(\operatorname{Tr}, p_{n}\right)\right) \leq \alpha \Theta_{1}\left(r, p_{n-1}\right)\right) \leq \ldots \leq \alpha^{n} \Theta_{1}\left(r, p_{0}\right)\right)
$$

Similarly, we can show that $\lim _{n \rightarrow \infty} \Theta_{1}\left(p_{n}, T r\right)=0=$ $\left.\Theta_{1}\left(T r, p_{n}\right)\right)$. Hence,

$$
\lim _{n \rightarrow \infty} p_{n}=T r=r
$$

Uniqueness can be shown in similar manner.
Example 3. Let $M_{\Theta}=\mathbb{R}$, define a nADQmMS by $\Theta_{1}(p, q)=|p|$, for all $p, q \in M_{\Theta}$. Define $T: M_{\Theta} \longrightarrow M_{\Theta}$ by $T p=p / 6$.
For all $p, q \in M_{\Theta}$ and $\lambda>0$ we have, $\Theta_{1}(T x, T y)<\infty . S$ and T are continuous mapping, and

$$
\Theta_{1}(T p, T q) \leq \alpha \Theta_{1}(p, q) ; \text { for } p, q \in M_{\Theta}
$$

Hence all the condition of Theorem (3) are satisfied. So, 0 is the unique fixed point of T.

IV. Application

Let $M_{\Theta}=C[0,1]$ be a set of all real valued continuous functions on closed interval $[0,1] \in \mathbb{R}$. Define a nonArchimedean dislocated quasi modular metric space defined by

$$
\Theta_{1}(p, q)=\sup _{t \in[0,1]}|p(t)|
$$

for all $p \in M_{\Theta}$.

Theorem 4. Consider the following integral equation:

$$
\begin{equation*}
p(t)=\int_{0}^{1} k(t, s) K(s, p(s)) d s \quad \forall s, t \in[0,1] \tag{14}
\end{equation*}
$$

such that
(i) $K:[0,1] \times M_{\Theta} \rightarrow \mathbb{R}$ is continuous function with $T(t, p) \geq 0$ and for any $p, q \in M_{\Theta}$ there exits

$$
|K(s, p(s))| \leq \Theta_{1}(p(s), q(s))
$$

(ii) $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is continuous in $t \in[0,1]$ for all $s \in[0,1]$ for every $t, s \in[0,1]$ such that

$$
\sup \int_{0}^{1}|k(t, s)| d s \leq \alpha<1
$$

Then the integral equation (14) has unique solution.

$$
\text { Proof: Let } T: M_{\Theta} \rightarrow M_{\Theta} \text { defined by }
$$

$$
T(p(t))=\int_{0}^{1} k(t, s) K(s, p(s)) d s \quad \forall t \in[0,1]
$$

For any $p_{0} \in M_{\Theta}$, define a sequence $\left\{p_{n}\right\} \in M_{\Theta}$ by $p_{n+1}=$ $T p_{n}=T^{n+1} p_{0}, n \geq 1$. From the integral equation we obtain

$$
p_{n+1}=T p_{n}(t)=\int_{0}^{1} k(t, s) K\left(s, p_{n}(s)\right) d s
$$

For $p, q \in M_{\Theta}$, we have

$$
\begin{aligned}
\Theta_{1}(T p, T q) & =\sup _{t \in[0,1]}|T(p(t))| \\
& =\sup _{t \in[0,1]}\left|\int_{0}^{1} k(t, s) K(s, p(s)) d s\right| \\
& \leq \sup _{t \in[0,1]} \int_{0}^{1}|k(t, s)||K(s, p(s))| d s \\
& \leq \alpha \Theta_{1}(p(s), q(s))
\end{aligned}
$$

Hence T satisfies all the conditions of theorem (3). Therefore the integral equation (14) has unique solution in $C([0,1])$.

Example 4. Define the function $T: M_{\Theta} \rightarrow M_{\Theta}$ defined by

$$
T(p(t))=\int_{0}^{1} k(t, s) K(s, p(s)) d s \quad \forall s, t \in[0,1]
$$

where $k(t, s)=\frac{(t+1) s}{8}$ and $T(s, p(s))=s p(s)$. Then

$$
T(p(t))=\int_{0}^{1} \frac{(t+1) s^{2}}{8} p(s) d s \quad \forall t \in[0,1]
$$

Since, $\sup _{t \in[0,1]} \left\lvert\, T\left(\left.p(t)\left|\leq \frac{1}{4} \sup _{s \in[0,1]}\right| p(s) \right\rvert\,\right.$. So, as the \right. above theorem we can show that it satisfies all the conditions of theorem (3), and it has unique solution.
Using iteration we obtain that,
$p_{n+1}=T^{n+1} p_{0}(t)=\int_{0}^{1} \frac{(t+1) s^{2}}{8} p_{n}(s) d s \quad \forall s, t \in[0,1]$ Let $p_{0}=0$ be an initial solution. Then $p_{0}=p_{1}=\ldots=0$. So it has a solution $T 0=0$.

V. Concluding Remarks

All the results of fixed point theory in non-Archimedean quasi modular metric spaces may not be true in dislocated non-Archimedean quasi modular metric spaces, but converse may be true.

References

Ansari, A. H. (2014). Note on $\phi-\psi-$ contractive type mappings and related fixed point. The 2nd Regional Conference on Mathematics and Applications, Payame Noor University. (pp. 377-380). https://www.researchgate.net/publication/309033585 Note on ph ps contractive type mappings and related fixed point
Abdou, A. A. N. \& Khamsi, M. A. (2014). Fixed points of multi-valued contraction mappings in modular metric spaces. Fixed Point Theory Appl. Vol. 2014. Article ID 249. https://doi.org/10.1186/1687-1812-2014-249
Banach, S. Sur (1922). les operations dans les ensembles abstraits et leur application aux equations integrales, Fund Math. Vol. 3. (pp. 133-181) http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf
Chistyakov, V. V. (2008). Modular metric spaces generated by F modulars, Folia Mathematica, Vol. 14, 3. http://fm.math.uni.lodz.pl/artykuly/15/01chistyakov.pdf
Chistyakov, V.V. (2010). Modular metric spaces, I: basic concepts, Nonlinear Analysis, Theory method and application. Vol. 72. (pp. 1-14) . https://doi.org/10.1016/j.na.2009.04.057
Chistyakov, V.V. (2010). Modular metric spaces, II: basic concepts. Nonlinear Analysis, Theory method and application. Vol. 72. (pp. 15-30). https://fm.math.uni.Iodz.pl/artykuly/15/01chistyakov.pdf
Das D. , B. C. Ghosh \& Mishra, B. N. (2021)..Some common fixed point results on dislocated quasi modular metric space via C-class and A-class function, Communicated
Girgin, E.\& Öztürk, M. (2019). $(\alpha, \beta)-\psi-$ type contraction in non-Archimedean quasi modular metric spaces and applications. J. Math. Anal. Vol. 10. (pp. 19-30). https://www.ilirias.com/jma/repository/docs/JMA10-1-3.pdf

Hitzler, P. \& Seda, A. K. (2000). Dislocated Topologies. J.Electr. Engin. Vol. 51. 3. http://people.cs.ksu.edu/ hitzler/resources/publications/pdf/scam00tr.pdf
Hitzler, P. (2001). Generalized Metrices and Topology in Logic Programming Semantics. Ph.D. thesis, National University of Ireland, University College Cork, . http://people.cs.ksu.edu/ hitzler/pub/pdf/phd.pdf
Khan,S. M. Swaleh, M. \& Sessa, S.(1984). Fixed point theorems by altering distance between the points, Bull. Aust. Math. Soc. Vol.30. 1. https://www.researchgate.net/publication/231789317 Fixed point theorems by altering distances between the points
Nakano H.(1950). Modular Sem- Ordered Linear Spaces. In Tokyo math Book Ser. Maruzen Co. Tokyo , Vol. 1. MR0038565 https://eprints.lib.hokudai.ac.jp/dspace/bitstream /2115/55998/1/JFSHIU 13 N3-4 166-200.pdf
Sintunavarat, W. \& Kumam, P. (2011). Common Fixed Point Theorem for generalized JH-operator classes and invariant approximation. Journal of Inequality and Applications. Vol. 2011. (pp. 1-10). https://doi.org/10.1186/1029-242X-201167
Yalcin, T. M. Simsek, H. \& Altun, I. (2020). Fixed Point Theorem on Complete Quasi Metric Spaces Via C-class and A-class Function, SCMA, 17, 23. https://dx.doi.org/10.22130/scma.2019.97961.527
Zeyada, F. A. Hasan, G. H. \& Seda, (2006). In dislocated quasi metric spaces, Arab. J. Sci. Eng. Sec. A. Sci. Vol. 31. (pp. 111-114). https://www.academia.edu/download/35020191/311a 11p.pdf

