

Journal of Scientific Research

of

The Banaras Hindu University

Some New Fixed-Point Results in non-Archimedean Dislocated Quasi Modular Metric Space Via C-Class and A-Class functions

Babla Chandra Ghosh *1 and Dipankar Das²

*¹Department of Mathematical Sciences, Bodoland University, Kokrajhar-783370, Assam (India), Email ID bcghosh50@gmail.com
²Department of Mathematical Sciences, Bodoland University, Kokrajhar-783370, Assam (India), Email ID dipankardas@yahoo.com

Abstract—In this paper we investigate some new fixed point theorems in non-Archimedean dislocated quasi modular metric space and some of its properties. We use C-class and A-class function together with \mathcal{JHR} —operator to serve our purpose. An application in integral equation with an example is also furnished to validate our result.

Index Terms—coincidence point, dq-modular metric spaces, $\mathcal{JHR}-$ operator, non-Archimedean dq-modular metric spaces,

I. INTRODUCTION

Many researchers studied generalization of Banach [Banach , 1922] fixed point theory in metric space with different concepts such as giving the flexibility in contraction condition taking maximum of the terms d(p,q), d(Tp,q), d(p,Tq) etc. for a self- mapping "T". Dislocated quasi metric is a generalization of the concept of metric space. Hitzler [Hitzler & Seda, 2000; Hitzler, 2001] in 2000 and in 2006 Zeyada et.al.[Zeyada et. al., 2006] introduced dislocated quasi metric space and its application plays an important role in electronic engineering, logic programming etc. and development in the field of fixed point theory. H. Nakano [Nakano, 1950] coined the idea of modular in 1950. Different results were also established in modular. Later V. V. Chistyakov [Chistyakov , 2008; V.V. Chistyakov, 2010; Chistyakov, 2010] announced modular metric and prove some results in modular metric space which has aphysical significance. In 2019, E. Girgin and M.Öztürk [Girgin & Öztürk, 2019] in their work introduced the concept of quasi modular metric space and non-Archimedean quasi modular metric space in the field of fixed point theory. Das et. al. [Das et. al., 2021] recently introduced the concept of dislocated quasi modular metric space as well as non-Archimedean dislocated quasi modular metric space.

In this paper, we prove some new fixed point theorem in the setting of non-Archimedean dislocated quasi modular metric space with application in the field of fixed point theory.

II. PRELIMINARIES

Definition 1. [Das et. al. , 2021; Girgin & Öztürk , 2019] Let $M \neq \emptyset$ and $\xi \in (0, \infty)$. A dislocated quasi modular metric (dq-modular metric) is a real function $\Theta : (0, \infty) \times M \times M \rightarrow [0, \infty)$ of ordered pair of elements of M which satisfies the following two conditions for all $p, q, r \in M$.

(i)
$$\Theta_{\xi}(p,q) = \Theta_{\xi}(q,p) = 0$$
 for all $\xi > 0 \Rightarrow p = q$
(ii) $\Theta_{\xi+\mu}(p,q) \le \Theta_{\xi}(p,r) + \Theta_{\mu}(r,q)$ for all $\xi, \mu > 0$

and the pair consisting of two objects M_{Θ} and Θ_{ξ} is called a dislocated quasi modular metric space. M_{Θ} is called non-Archimedean dislocated quasi modular metric space (in short nADQmMS) if the second condition is replaced by the condition

$$\Theta_{\max\{\xi,\mu\}}(p,q) \le \Theta_{\xi}(p,r) + \Theta_{\mu}(r,q), \forall \xi, \mu > 0$$

. This condition implies condition (ii) above. So, every non-Archimedean dislocated quasi modular metric space is Archimedean quasi modular metric space. Throughout this paper we choose $\xi = \mu = 1$ for nADQmMS.

Example 1. Let (M_{Θ}, Θ_1) be a nADQmMS. The function Θ_1 is defined as $\Theta_1(p,q) = e|p|$ then Θ_1 is a non-Archimedean dislocated quasi modular metric space on M_{Θ} .

Definition 2. Let M_{Θ} be nADQmMS with metric Θ_1 and let $\{p_n\}$ be a sequence of points in M_{Θ} Then

- (i) We say {p_n} is convergent if there exists a point p ∈ M_Θ such that lim_{n→∞} Θ₁(p_n, p) = 0 = lim_{n→∞} Θ₁(p, p_n).
 i.e., if and only if every sequence in M_Θ is left convergent as well as right convergent.
- (ii) (M_Θ, Θ₁) be a complete nADQmMS in which every Cauchy sequence in M_Θ is both left convergent as well as right convergent; i.e.,there exists a positive integer n₀ > 0 such that n > m ≥ n₀ ⇒ lim_{n→∞} Θ₁(p_n, p_m) = 0 = lim_{n→∞} Θ₁(p_m, p_n).

- (iii) A self mapping B is said to be Θ -continuous in M_{Θ} , if for every sequence $\{p_n\}$ of points in M_{Θ} such that $\lim_{n\to\infty} \Theta_1(p_n,p) = \lim_{n\to\infty} \Theta_1(p,p_n)$ then $\lim_{n \to \infty} \Theta_1(Bp_n, Bp) = \lim_{n \to \infty} \Theta_1(Bp, Bp_n),$
- (iv) A subset D of M_{Θ} is said to be Θ -bounded if

$$\delta_{\Theta}(D) = \sup\{\Theta_1(p,q) : p, q \in D\} < \infty$$

Lemma 1. [Das et. al., 2021] Let (M_{Θ}, Θ_1) be nADQmMS. Then

- (i) If $\Theta_1(p,q) = \Theta_1(q,p) = 0$ then $\Theta_1(p,p) = \Theta_1(q,q) = 0$
- (ii) If $\{p_n\}$ is a sequence such that $\lim_{n\to\infty} \Theta_1(p_n, p_{n+1}) =$ $\lim_{n\to\infty} \Theta_1(p_{n+1}, p_n) = 0$ then $\lim_{n\to\infty} \Theta_1(p_n, p_n) =$ $\lim_{n \to \infty} \Theta_1(p_{n+1}, p_{n+1}) = 0$
- (iii) If $p \neq q$ then $\Theta_1(p,q) > 0$
- (iv) $\Theta_1(p,p) \leq \frac{1}{n} \sum_{i=1}^n [\Theta_1(p,p_i) + \Theta_1(p_i,p)]$ holds for all $p_i, p \in M_{\Theta}$

In 2014, Ansary [Ansari, 2014] first introduced the concept C- class function and using it A. H. Ansari et. al. proved some results in fixed point theorems for generalized $\alpha - \eta - \psi$ – $\phi - F -$ contraction type mappings in $\alpha - \eta -$ complete metric space.

Definition 3. [Ansari, 2014] A continuous function f: $[0,\infty)^2 \to R$ is called a C- class function if

(i) $f(u,v) \le u$ for all $u, v \in [0,\infty)$

(ii) $f(u, v) = u \Rightarrow \text{either} u = 0 \text{ or } v = 0 \text{ for all } u, v \in [0, \infty)$

Definition 4. [Yalcin et. al., 2020] A continuous function $\theta: [0,\infty) \to [0,\infty)$ is called an A - class function if $\theta(\xi) \ge \xi$ for all $\xi \in [0, \infty)$.

Definition 5. [Khan et. al., 1984] Let ψ denote the set of alternating distance function, and $\psi : [0,\infty) \to [0,\infty)$ be continuous, non-decreasing and satisfies $\psi(\xi) = 0$ if and only if $\xi = 0$.

Definition 6. [Ansari, 2014] Let ϕ denote the set of ultra alternating distance function, and $\phi : [0,\infty) \to [0,\infty)$ be continuous, non-decreasing and satisfies $\phi(\xi) > 0$ for $\xi > 0$ and $\psi(0) \ge 0$.

Definition 7. [Sintunavarat & Kumam , 2011] Let S, T be two self mappings on a nADQmMS, M_{Θ} . A point $p \in M_{\Theta}$ is called a coincidence point of S and T; (CP(S,T)) if and only if Bp = Ap. We shall call $\xi = Bp = Ap$ a point of coincidence of S and T; (POC(S,T)).

Definition 8. [Das et. al., 2021; Sintunavarat & Kumam , 2011] Let S, T be two self mappings on a nADQmMS M_{Θ} , the pair (S,T) is called a \mathcal{JHR} -operator pair if there exists a point $\xi = Bp = Ap$ in $POC(S, T) \neq \phi$ and there exists a sequence $\{p_n\}$ in M_{Θ} such that $\lim_{n\to\infty} Bp_n =$ $\lim_{n\to\infty} Ap_n = \xi \in M_{\Theta}$ that satisfies

$$\lim_{n \to \infty} \|\Theta_1(p_n, \xi)\| \le \delta_{\Theta}(POC(S, T)),$$
$$\lim_{n \to \infty} \|\Theta_1(\xi, p_n)\| \le \delta_{\Theta}(POC(T, S)).$$

III. MAIN RESULT

Theorem 1. Let (M_{Θ}, Θ_1) be a complete nADQmMS. Let $A, B: M_{\Theta} \to M_{\Theta}$ be two continuous self mapping such that $A(M_{\Theta}) \subseteq B(M_{\Theta})$ and satisfying the inequality

$$\theta(\psi\Theta_1((Ap, Aq)) \le F(\psi(N(p, q), \phi(N(p, q)); \text{ for } p, q \in M_\Theta)$$
(1)

where $\psi \in \Psi, \phi \in \Phi$ F is a C-class function, θ is a A-class function and

$$N(p,q) = \max\{\Theta_1(Bp, Bq), \Theta_1(Ap, Aq), \Theta_1(Aq, Bq)\}$$

If the pair (A, B) is a \mathcal{JHR} -operator pair, then A and B have a common unique fixed point.

Proof: Let $p_0 \in M_{\Theta}$. We construct a sequence $\{p_n\}$ by the iteration $Ap_n = Bp_{n+1}$ for any $n \in \mathbb{N}$. Now,

$$\psi(\Theta_1(Bp_{n+1}, Bp_n)) \leq \theta(\psi(\Theta_1(Bp_{n+1}, Bp_n)))$$

$$= \theta(\psi(\Theta_1(Ap_n, Ap_{n-1})))$$

$$\leq F(\psi(N(p_n, p_{n-1})), \phi(N(p_n, p_{n-1})))$$

$$\leq \psi(N(p_n, p_{n-1}))$$
(2)

where $N(p_n, p_{n-1}) = \max\{\Theta_1(Bp_n, Bp_{n-1}), \}$ $\Theta_1(Bp_{n+1}, Bp_n), \Theta_1(Bp_n, Bp_{n-1})\}.$ Hence

$$N(p_n, p_{n-1}) = \max\{\Theta_1(Bp_{n+1}, Bp_n), \Theta_1(Bp_n, Bp_{n-1})\}$$

If for some $n_0 \in \mathbb{N}$,

$$N(p_{n_0}, p_{n_0-1}) = \Theta_1(Bp_{n_0+1}, Bp_{n_0})$$

Then

$$\psi(\Theta_1(Bp_{n_0+1}, Bp_{n_0})) \leq F(\psi(N(p_{n_0}, p_{n_0-1})), \phi(N(p_{n_0}, p_{n_0-1}))) \leq \psi(\Theta_1(Bp_{n_0+1}, Bp_{n_0}))$$

Definition of Ψ , Φ and C-class function, for some $n_0 \in \mathbb{N}$, guarantee that,

$$\psi(\Theta_1(Bp_{n_0+1}, Bp_{n_0})) = 0 \tag{3}$$

Therefore, let for all n > 0,

$$N(p_n, p_{n-1}) = \Theta_1(Bp_n, Bp_{n-1}).$$

From (3) we get,

$$\psi(\Theta_1(Bp_{n+1}, Bp_n) \le \psi(\Theta_1(Bp_n, Bp_{n-1})))$$

Therefore, $\{\Theta_1(Bp_{n+1}, Bp_n)\}$ is a decreasing sequence of positive real numbers. The fact that a real number $\epsilon \geq 0$ exists is a consequence of decreasing sequence of positive numbers such that

$$\lim_{n \to \infty} \Theta_1(Bp_{n+1}, Bp_n) = \epsilon$$

We claim that $\epsilon = 0$, on the contrary suppose that $\epsilon > 0$. Letting $n \to \infty$ in (3), the continuity of ψ and ϕ give

$$\psi(\epsilon) \ge F(\psi(\epsilon), \phi(\epsilon)) \ge \psi(\epsilon)$$

It follows that, $\epsilon = 0$. Therefore

$$\lim_{n \to \infty} \Theta_1(Bp_{n+1}, Bp_n) = 0 \tag{4}$$

We next prove $\lim_{n\to\infty} \Theta_1(Bp_n, Bp_{n+1})$ is also zero. From (2) we get,

$$\psi(\Theta_1(Bp_n, Bp_{n+1})) \le \theta(\psi(\Theta_1(Bp_n, Bp_{n+1})))$$

$$= \theta(\psi(\Theta_1(Ap_{n-1}, Ap_n)))$$

$$\le F(\psi(N(p_{n-1}, p_n)), \phi(N(p_{n-1}, p_n)))$$

$$\le \psi(N(p_{n-1}, p_n))$$
(5)

where $N(p_{n-1}, p_n) = \max\{\Theta_1(Bp_{n-1}, Bp_n), \Theta_1(Bp_n, Bp_{n+1}), \Theta_1(Bp_{n+1}, Bp_n)\}.$

If for some $n_0 \in \mathbb{N}$,

$$N(p_{n_0}, p_{n_0-1}) = \Theta_1(Bp_{n_0}, Bp_{n_0+1})$$

Then from (5) we get, Then

$$\psi(\Theta_1(Bp_{n_0}, Bp_{n_0+1})) \le F(\psi(N(p_{n-1}, p_n))), \phi(N(p_{n-1}, p_n))) \le \psi(\Theta_1(Bp_{n_0}, Bp_{n_0+1}))$$

Keeping in mind the definition of Ψ , Φ and C-class function gives, for some $n_0 \in \mathbb{N}$,

$$\psi(\Theta_1(Bp_{n_0}, Bp_{n_0+1})) = 0 \tag{6}$$

From (4) and (6), we have for some $n_0 \in \mathbb{N}$, $Bp_{n_0} = Bp_{n_0+1}$ and hence $Bp_{n_0} = Ap_{n_0}$.

If we assume that for all $n > 0, N(p_{n-1}, p_n) = \Theta_1(Bp_{n+1}, Bp_n)$ then we get similar type of result as above. Therefore, $\{\Theta_1(Bp_n, Bp_{n+1})\}$ is a decreasing sequence of positive real numbers. The fact that a real number $\epsilon \ge 0$ exists is a consequence of decreasing sequence of positive numbers such that

$$N(p_{n-1}, p_n) = \Theta_1(Bp_{n-1}, Bp_n)$$

Hence from (6) we get,

$$\psi(\Theta_1(Bp_n, Bp_{n+1})) \le \psi(\Theta_1(Bp_{n-1}, Bp_n))$$

This in turn means that, $\{\Theta_1(Bp_n, Bp_{n+1}))\}$ is a decreasing sequence of of positive real numbers. Thus there exists a real number $\epsilon \geq 0$ is a consequence of decreasing sequence of positive numbers such that

$$\lim_{n \to \infty} \Theta_1(Bp_n, Bp_{n+1}) = \epsilon$$

We claim that $\epsilon=0$, on the contrary suppose that $\epsilon>0$. Letting $n\to\infty$ relation (5) , by the continuity of ψ and ϕ gives

$$\psi(\epsilon) \ge F(\psi(\epsilon), \phi(\epsilon)) \ge \psi(\epsilon)$$

Implying that $F(\psi(\epsilon), \phi(\epsilon)) = \psi(\epsilon)$. By definition of F either $\psi(\epsilon) = 0$ or $\phi(\epsilon) = 0$. This gives $\epsilon = 0$. Therefore,

$$\lim_{n \to \infty} \Theta_1(Bp_n, Bp_{n+1}) = 0 \tag{7}$$

Next we shall show that $\{Bp_n\}$ is right Cauchy Sequence. Suppose on the contrary $\{Bp_n\}$ is not a right Cauchy sequence. For any $\epsilon > 0$ and $k \in \mathbb{N}$, we can find sub sequences

$\{Bp_{m_k}\}\$ and $\{Bp_{n_k}\}\$ of $\{Bp_n\}\$ with $n_k > m_k > k$ satisfying $\Theta_1(Bp_{n_k}, Bp_{m_k}) \ge \epsilon$ and $\Theta_1(Bp_{n_k-1}, Bp_{m_k}) < \epsilon$.

$$\epsilon \leq \Theta_1(Bp_{n_k}, Bp_{m_k})$$

$$\leq \Theta_1(Bp_{n_k}, Bp_{n_{k-1}}) + \Theta_1(Bp_{n_{k-1}}, Bp_{m_k})$$

$$\therefore \epsilon \leq \lim_{k \to \infty} \Theta_1(Bp_{n_k}, Bp_{m_k}) < \epsilon$$

$$\Rightarrow \lim_{k \to \infty} \Theta_1(Bp_{n_k}, Bp_{m_k}) = \epsilon$$

Again from (3) we get,

$$\psi(\Theta_{1}(Bp_{n_{k}}, Bp_{m_{k}})) \leq \theta(\psi(\Theta_{1}(Ap_{n_{k}-1}, Ap_{m_{k}-1})))$$

$$\leq F(\psi(N(p_{n_{k}-1}, p_{m_{k}-1})),$$

$$\phi(N(p_{n_{k}-1}, p_{m_{k}-1}))$$

$$\leq \psi(N(p_{n_{k}-1}, p_{m_{k}-1}))$$
(8)

where

$$N(p_{n_k-1}, p_{m_k-1}) = \max\{\Theta_1(Bp_{n_k-1}, Bp_{m_k-1}), \\\Theta_1(Ap_{n_k-1}, Ap_{m_k-1}), \Theta_1(Ap_{m_k-1}, Bp_{m_k-1})\} \\= \max\{\Theta_1(Bp_{n_k-1}, Bp_{m_k-1}), \\\Theta_1(Bp_{n_k}, Bp_{m_k}), \Theta_1(Bp_{m_k}, Bp_{m_k-1})\}$$

Thus

$$\lim_{k \to \infty} N(p_{n_k-1}, p_{m_k-1}) = \epsilon$$

Taking limit as $k \to \infty$ in (8) we get,

$$\psi(\epsilon) \ge F(\psi(\epsilon), \phi(\epsilon)) \ge \psi(\epsilon)$$

In determining $\epsilon = 0$, involves the definition of Ψ , Φ and C-class function, which is a contradiction. Hence, $\{Bp_n\}$ is a right Cauchy sequence. Since (M, Θ) is right complete so, there exists $B\xi \in M_{\Theta}$ such that,

$$\lim_{n \to \infty} \Theta_1(B\xi, Bp_n) = 0$$

Similarly, we can show that $\{Bp_n\}$ is a left Cauchy sequence, and $\lim_{n\to\infty} \Theta_1(Bp_n, B\xi) = 0$. So,

$$\lim_{n \to \infty} Bp_n = B\xi$$

Now,

$$\begin{split} \psi((A\xi, Bp_{n+1})) &\leq \theta(\psi(A\xi, Ap_n)) \\ &\leq F(\psi(N(\xi, p_n), \phi(N(\xi, p_n))) \\ &\leq \psi(N(\xi, p_n)) \end{split}$$

where

$$N(\xi, p_n) = \max\{\Theta_1(B\xi, Bp_n), \Theta_1(A\xi, Ap_n), \Theta_1(Ap_n, Bp_n)\}$$

$$\Rightarrow \lim_{n \to \infty} \psi(A\xi, Bp_{n+1})$$

$$< \psi(\Theta_1(A\xi, B\xi))$$

Similarly, we can show that

$$\lim_{n \to \infty} \psi(Bp_{n+1}, A\xi) \le \psi(\Theta_1(B\xi, A\xi))$$

 $\lim_{n\to\infty} Bp_n = A\xi = B\xi$. By hypothesis . Hence, $POC(A, B) \neq \phi$ and there exists a point $q \in M_{\Theta}$ such that $Bq = Aq = \eta$.

$$\psi(\Theta_1(B\xi,\eta)) \le \theta(\psi(\Theta_1(A\xi,Aq)))$$

$$\le F(\psi(N(\xi,q)),\phi(N(\xi,q)))$$

$$= \psi(N(\xi,q))$$

where,

$$M(\xi, q) = \max\{\Theta_1(B\xi, Bq), \Theta_1(A\xi, Aq), \Theta_1(Aq, Bq)\}$$

= $\Theta_1(B\xi, \eta)$

So, by the definition of C-class function we get $\psi(\Theta_1(B\xi,\eta)) = 0$ or $\phi(\Theta_1(B\xi,\eta)) = 0$. Similarly, we can get $\psi(\Theta_1(\eta, B\xi)) = 0$ or $\phi(\Theta_1(\eta, B\xi)) = 0$. Which implies $B\xi = \eta$. Hence $B\xi = A\xi = \eta$. If there exists another point $p' \in M_{\Theta}$ such that $Bp' = Ap' = \eta'$.

We can similarly show that, $\eta = \eta' = B\xi = A\xi$ i.e. there exists a unique point of coincidence and so $\delta_{\Theta}(POC(A, B)) = 0.$

Since, (A, B) is a \mathcal{JHR} operator so, there exists a sequence $\{g_n\}$ in M_{Θ} such that

$$\lim_{n \to \infty} Bg_n = \lim_{n \to \infty} Ag_n = g$$

and $\lim_{n\to\infty} \Theta_1(g,g_n) = \lim_{n\to\infty} \Theta_1(g_n,g) = 0$. Clearly, $\lim_{n \to \infty} g_n = g.$

$$\psi(\Theta_1(Ag_n, q)) \le \theta(\psi(\Theta_1(Ag_n, A\xi)))$$

$$\le F(\psi(N(g_n, \xi)), \varphi(N(g_n, \xi)))$$

$$= \psi(N(g_n, \xi))$$

where,

$$N(g_n, \xi) = \max\{\Theta_1(Bg_n, B\xi), \\ \Theta_1(Ag_n, A\xi), \Theta_1(A\xi, B\xi)\}$$

Hence as $n \to \infty$, we have $\Theta_1(g,q) = 0$. Similarly, we can show that $\Theta_1(q,g) = 0$. Hence, g = q.

Since, B is Θ -continuous and $\lim_{n\to\infty} Bg_n = g$ so $B\eta =$ $\eta = A\eta$. Hence A and B have common fixed point. Uniqueness can be shown in similar manner.

Example 2. Let $M_{\Theta} = \mathbb{R}$, define a nADQmMS $\Theta_1(p,q) = \{|2p-q|-1\}, \text{ for all } p,q \in M_{\Theta}. \text{ Define } A,B:$ $M_{\Theta} \longrightarrow M_{\Theta}$ by

$$Ap = 2p^2 - 1, \qquad Bp = 2p - 1$$

and $\psi(t) = 2t$, $\phi(t) = t$, F(s, t) = s - t, and $\theta(t) = t$. For all $p, q \in M_{\Theta}$ and $\lambda > 0$ we have,

 $\Theta_1(Ap, Aq) = 0 < \infty$. A and B are continuous mapping, and

$$\theta(\psi(\Theta_1(Ap, Aq))) \le F(\psi(M(p, q), \phi(N(p, q)); \text{ for } p, q \in M_{\Theta}))$$

Also, $A(M_{\Theta}) \subseteq B(M_{\Theta}) = \mathbb{R}$. Let $\{z_n\}$ be a sequence of points in M_{Θ} such that $z_n = \{1 + \frac{1}{n}\}, n = 1, 2, 3, \dots$ Then $\lim_{n\to\infty} Az_n = \lim_{n\to\infty} Bz_n = z = 1$. Now,

$$\lim_{n \to \infty} \Theta_1(z, z_n) = \lim_{n \to \infty} \Theta_1(z_n, z) = 0$$
$$\leq \delta_{\Theta}(POC(A, B)) = 0$$

Hence all the condition of Theorem (1) are satisfied. So, 1 is the common unique fixed point of A and B.

Theorem 2. Let (M_{Θ}, Θ_1) be a complete nADQmMS. Let $A: M_{\Theta} \to M_{\Theta}$ be continuous self mapping satisfying the inequality

$$\theta(\psi(Ap, Aq) \le F(\psi(N(p, q), \phi(N(p, q));$$
(9)

for $p, q \in M_{\Theta}$, where $\psi \in \Psi, \phi \in \Phi, F$ is a C-class function, θ is a A-class function and

$$N(p,q) = \max\{\Theta_1(p,q), \Theta_1(Aq,q)\}$$

Then A has unique fixed point.

Proof. Let B = I, identity mapping of M_{Θ} . Then by Theorem (1) we can easily get the result.

Theorem 3. Let (M_{Θ}, Θ_1) be a complete nADQmMS. Let $T: M_{\Theta} \rightarrow M_{\Theta}$ be a continuous self mapping satisfying contraction condition,

$$\Theta_1(Tp, Tq) \le \alpha \Theta_1(p, q), \ 0 \le \alpha < 1$$

Then T has unique fixed point.

Proof: Let $p_0 \in M_{\Theta}$. We construct a sequence $\{p_n\}$ by the iteration $Tp_n = p_{n+1}$ for any $n \in \mathbb{N}$. Now,

$$\Theta_1(p_{n+1}, p_n) = \Theta_1(Tp_n, Tp_{n-1}) \le \alpha \Theta_1(p_n, p_{n-1})$$
$$\le \dots$$
$$\le \alpha^n \Theta_1(p_1, p_0) \quad (10)$$

Therefore

$$\lim_{n \to \infty} \Theta_1(p_{n+1}, p_n) = 0.$$
(11)

Similarly we can show that,

n-

$$\lim_{n \to \infty} \Theta_1(p_n, p_{n+1}) = 0.$$
(12)

Next we shall show that $\{p_n\}$ is right Cauchy Sequence. Suppose on the contrary $\{p_n\}$ is not a right Cauchy sequence. For any n > m,

$$\Theta_{1}(p_{n}, p_{m})) = \Theta_{1}(Tp_{n-1}, Tp_{m-1})$$

$$\leq \alpha \Theta_{1}(p_{n-1}, p_{m-1})$$

$$\leq \dots$$

$$\leq \alpha^{m} \Theta_{1}(p_{n-m}, p_{0}) \qquad (13)$$

$$\lim_{n \to \infty} \Theta_{1}(p_{n}, p_{m}) = 0.$$

Hence, $\{p_n\}$ is a right Cauchy sequence, similarly we can show that $\{p_n\}$ is a left Cauchy sequence. Since (M, Θ) is complete so, there exists $r \in M_{\Theta}$ such that,

$$\lim_{n \to \infty} \Theta_1(r, p_n) = 0 = \lim_{n \to \infty} \Theta_1(p_n, r).$$

Now,

(

r

$$\Theta_1(Tr, p_n)) \le \alpha \Theta_1(r, p_{n-1})) \le \dots \le \alpha^n \Theta_1(r, p_0))$$

Similarly, we can show that $\lim_{n\to\infty} \Theta_1(p_n, Tr) = 0 =$ $\Theta_1(Tr, p_n))$. Hence,

$$\lim_{n \to \infty} p_n = Tr = r.$$

Institute of Science, BHU Varanasi, India

Uniqueness can be shown in similar manner.

Example 3. Let $M_{\Theta} = \mathbb{R}$, define a nADQmMS by $\Theta_1(p,q) = |p|$, for all $p,q \in M_{\Theta}$. Define $T: M_{\Theta} \longrightarrow M_{\Theta}$ by Tp = p/6. For all $p,q \in M_{\Theta}$ and $\lambda > 0$ we have,

 $\Theta_1(Tx,Ty) < \infty$. S and T are continuous mapping, and

$$\Theta_1(Tp, Tq) \le \alpha \Theta_1(p, q); \text{ for } p, q \in M_\Theta$$

Hence all the condition of Theorem (3) are satisfied. So, 0 is the unique fixed point of T.

IV. APPLICATION

Let $M_{\Theta} = C[0,1]$ be a set of all real valued continuous functions on closed interval $[0,1] \in \mathbb{R}$. Define a non-Archimedean dislocated quasi modular metric space defined by

$$\Theta_1(p,q) = \sup_{t \in [0,1]} |p(t)|,$$

for all $p \in M_{\Theta}$.

Theorem 4. Consider the following integral equation:

$$p(t) = \int_0^1 k(t, s) K(s, p(s)) ds \qquad \forall s, t \in [0, 1]$$
 (14)

such that

(i) $K : [0,1] \times M_{\Theta} \to \mathbb{R}$ is continuous function with $T(t,p) \ge 0$ and for any $p,q \in M_{\Theta}$ there exits

$$|K(s, p(s))| \le \Theta_1(p(s), q(s))$$

(ii) $k: [0,1] \times [0,1] \to \mathbb{R}$ is continuous in $t \in [0,1]$ for all $s \in [0,1]$ for every $t, s \in [0,1]$ such that

$$\sup \int_0^1 |k(t,s)| ds \leq \alpha < 1$$

Then the integral equation (14) has unique solution.

Proof: Let $T: M_{\Theta} \to M_{\Theta}$ defined by

$$T(p(t)) = \int_0^1 k(t,s)K(s,p(s))ds \qquad \forall t \in [0,1].$$

For any $p_0 \in M_{\Theta}$, define a sequence $\{p_n\} \in M_{\Theta}$ by $p_{n+1} = Tp_n = T^{n+1}p_0$, $n \ge 1$. From the integral equation we obtain

$$p_{n+1} = Tp_n(t) = \int_0^1 k(t,s)K(s,p_n(s))ds$$

For $p, q \in M_{\Theta}$, we have

$$\begin{split} \Theta_1(Tp,Tq) &= \sup_{t \in [0,1]} |T(p(t))| \\ &= \sup_{t \in [0,1]} |\int_0^1 k(t,s)K(s,p(s))ds| \\ &\leq \sup_{t \in [0,1]} \int_0^1 |k(t,s)| |K(s,p(s))|ds \\ &\leq \alpha \Theta_1(p(s),q(s)) \end{split}$$

Hence T satisfies all the conditions of theorem (3). Therefore the integral equation (14) has unique solution in C([0, 1]).

Example 4. Define the function
$$T: M_{\Theta} \to M_{\Theta}$$
 defined by

$$T(p(t)) = \int_0^1 k(t,s)K(s,p(s))ds \qquad \forall s,t \in [0,1]$$

where $k(t,s) = \frac{(t+1)s}{8}$ and T(s,p(s)) = sp(s). Then

$$T(p(t)) = \int_0^1 \frac{(t+1)s^2}{8} p(s)ds \qquad \forall t \in [0,1]$$

Since, $\sup_{t \in [0,1]} |T(p(t)| \leq \frac{1}{4} \sup_{s \in [0,1]} |p(s)|$. So, as the above theorem we can show that it satisfies all the conditions of theorem (3), and it has unique solution.

Using iteration we obtain that,

$$p_{n+1} = T^{n+1}p_0(t) = \int_0^1 \frac{(t+1)s^2}{8} p_n(s)ds \qquad \forall s, t \in [0,1]$$

Let $p_0 = 0$ be an initial solution. Then $p_0 = p_1 = ... = 0$. So it has a solution T0 = 0.

V. CONCLUDING REMARKS

All the results of fixed point theory in non-Archimedean quasi modular metric spaces may not be true in dislocated non-Archimedean quasi modular metric spaces, but converse may be true.

REFERENCES

- Ansari, A. H. (2014). Note on $\phi \psi -$ contractive and related fixed type mappings point. The 2nd Regional Conference on Mathematics and Applications, Payame Noor University. (pp. 377-380). https://www.researchgate.net/publication/309033585 Note on ph ps contractive type mappings and related fixed point
- Abdou, A. A. N. & Khamsi, M. A. (2014). Fixed points of multi-valued contraction mappings in modular metric spaces. Fixed Point Theory Appl. Vol. 2014. Article ID 249. https://doi.org/10.1186/1687-1812-2014-249
- Banach, S. Sur (1922). les operations dans les ensembles abstraits et leur application aux equations integrales, Fund Math. Vol. 3. (pp. 133–181) http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf
- Chistyakov, V. V. (2008). Modular metric spaces generated by F modulars, Folia Mathematica, Vol. 14, 3 . http://fm.math.uni.lodz.pl/artykuly/15/01chistyakov.pdf
- Chistyakov, V.V. (2010). Modular metric spaces, I: basic concepts, Nonlinear Analysis, Theory method and application. Vol. 72. (pp. 1-14). https://doi.org/10.1016/j.na.2009.04.057
- Chistyakov, V.V. (2010).Modular metric spaces, concepts. II: basic Nonlinear Analysis, Theory method and application. Vol. 72. (pp. 15-30). https://fm.math.uni.Iodz.pl/artykuly/15/01chistyakov.pdf
- Das D., B. C. Ghosh & Mishra, B. N. (2021)..Some common fixed point results on dislocated quasi modular metric space via C-class and A-class function, Communicated
- Girgin, E.& Öztürk, M. (2019). $(\alpha, \beta) \psi$ type contraction in non-Archimedean quasi modular metric spaces and applications. J. Math. Anal. Vol. 10. (pp. 19-30). https://www.ilirias.com/jma/repository/docs/JMA10-1-3.pdf

- Hitzler, P. & Seda, A. K. (2000). Dislocated Topologies. J.Electr. Engin. Vol. 51. 3. http://people.cs.ksu.edu/ hitzler/resources/publications/pdf/scam00tr.pdf
- Hitzler, P. (2001). Generalized Metrices and Topology in Logic Programming Semantics. Ph.D. thesis, National University of Ireland, University College Cork, . http://people.cs.ksu.edu/ hitzler/pub/pdf/phd.pdf
- Khan,S. M. Swaleh, M. & Sessa, S.(1984). Fixed point theorems by altering distance between the points, Bull. Aust. Math. Soc. Vol.30. 1. https://www.researchgate.net/publication/231789317 Fixed point theorems by altering distances between the points
- H.(1950). Modular Nakano Sem-Ordered Linear Spaces. In Tokyo math Book Ser. Maruzen Co. Tokyo Vol. 1. MR0038565 . https://eprints.lib.hokudai.ac.jp/dspace/bitstream /2115/55998/1/JFSHIU 13 N3-4 166-200.pdf
- Sintunavarat, W. & Kumam, P. (2011). Common Fixed Point Theorem for generalized JH-operator classes and invariant approximation. Journal of Inequality and Applications. Vol. 2011. (pp. 1–10). https://doi.org/10.1186/1029-242X-2011-67
- Yalcin, T. M. Simsek, H. & Altun, I. (2020). Fixed Point Theorem on Complete Quasi Metric Spaces Via C-class and A-class Function, SCMA, 17, 23 . https://dx.doi.org/10.22130/scma.2019.97961.527
- Zeyada, F. A. Hasan, G. H. & Seda, (2006). In dislocated quasi metric spaces, Arab. J. Sci. Eng. Sec. Α. Sci. Vol. 31. (pp. 111-114). https://www.academia.edu/download/35020191/311a 11p.pdf