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Abstract—In this paper we investigate some new fixed point
theorems in non-Archimedean dislocated quasi modular metric
space and some of its properties. We use C-class and A-class
function together with 77{R— operator to serve our purpose. An
application in integral equation with an example is also furnished
to validate our result.

Index Terms—coincidence point, dq-modular metric spaces,
JHR— operator, non-Archimedean dq-modular metric spaces,

I. INTRODUCTION

Many researchers studied generalization of Banach [Banach
, 1922] fixed point theory in metric space with different
concepts such as giving the flexibility in contraction condition
taking maximum of the terms d(p, q),d(T'p, q),d(p, Tq) etc.
for a self- mapping “T”. Dislocated quasi metric is a general-
ization of the concept of metric space. Hitzler [Hitzler & Seda,
2000; Hitzler , 2001] in 2000 and in 2006 Zeyada et.al.[Zeyada
et. al. , 2006] introduced dislocated quasi metric space and its
application plays an important role in electronic engineering,
logic programming etc. and development in the field of fixed
point theory. H. Nakano [Nakano , 1950] coined the idea of
modular in 1950. Different results were also established in
modular. Later V. V. Chistyakov [Chistyakov , 2008; V.V.
Chistyakov , 2010; Chistyakov , 2010] announced modular
metric and prove some results in modular metric space which
has aphysical significance. In 2019, E. Girgin and M.Oztiirk
[Girgin & Oztiirk , 2019] in their work introduced the concept
of quasi modular metric space and non-Archimedean quasi
modular metric space in the field of fixed point theory. Das
et. al. [Das et. al. , 2021] recently introduced the concept
of dislocated quasi modular metric space as well as non-
Archimedean dislocated quasi modular metric space.

In this paper, we prove some new fixed point theorem in the
setting of non-Archimedean dislocated quasi modular metric
space with application in the field of fixed point theory.
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II. PRELIMINARIES

Definition 1. [Das et. al. , 2021; Girgin & Oztiirk , 2019] Let
M # 0 and € € (0,00). A dislocated quasi modular metric
(dg-modular metric) is a real function © : (0,00) x M x M —
[0,00) of ordered pair of elements of M which satisfies the
following two conditions for all p,q,r € M.

(i) O¢(p,q) =O¢(g,p) =0forall § >0=p=gq
(i) O¢ypu(p,q) < Oc(p,r)+©Ou(r,q) forall & >0

and the pair consisting of two objects Mg and Ogis called
a dislocated quasi modular metric space. Mg is called non-
Archimedean dislocated quasi modular metric space (in short
nADQmMS) if the second condition is replaced by the con-
dition

G)max{g,y}(pa Q) S 6€(p7 T) + @M(T, Q)avaﬂ >0

. This condition implies condition (ii) above. So, every
non-Archimedean dislocated quasi modular metric space is
Archimedean quasi modular metric space. Throughout this
paper we choose £ = u = 1 for nADQmMMS.

Example 1. Let (Mg, ©1) be a nADQmMMS. The function 6,
is defined as ©1(p,q) = e|p| then ©; is a non-Archimedean
dislocated quasi modular metric space on Mg.

Definition 2. Let Mg be nADQmMMS with metric ©; and let
{pn} be a sequence of points in Mg Then

(i) We say {p,,} is convergent if there exists a point p € Mg
such that lim,,— o0 ©1(pn,p) = 0 = lim, 0 ©1(p, Pr)-
i.e., if and only if every sequence in Mg is left convergent
as well as right convergent.

(ii)) (Meo,©1) be a complete nADQmMMS in which every
Cauchy sequence in Mg is both left convergent as well as
right convergent; i.e.,there exists a positive integer ng > 0
such that n > m > ng = lim, o0 ©1(Pp,pm) = 0 =
limn—>oo 61 (pma pn)



(iii)) A self mapping B is said to be O-continuous in
Meg, if for every sequence {p,} of points in Mg
such that lim,, o, ©1(pp,p) = lim, o, ©1(p, p,) then
hmn—>oo 61(Bpn7 Bp) = hmn—>oo 61(Bpa Bpn)7

(iv) A subset D of Mg is said to be ©-bounded if

do(D) =sup{O1(p,q) : p,q € D} < .

Lemma 1. [Das et. al. , 2021] Let (Mg, ©1) be nADQmMMS.
Then

(1) If@l(pa Q) = @1(qap) = 0 then 61(p7p) = GI(Q7Q) =0
(ii) If {pn} is a sequence such that lim,, o, O1(ppn, Pnt1) =
hmn—)oo ®l(pn+1;pn) = 0 then hmn—)oo @1 (pnapn) =
hmn—>oo el(pn+17pn+1) =0
(iii) If p # ¢ then ©1(p,q) > 0

. I —n
(iv) ©1(p,p) < - > i—11©1(p, pi) + ©1(pi, p)] holds for all
pi,p € Mo

In 2014, Ansary [Ansari , 2014] first introduced the concept
C- class function and using it A. H. Ansari et. al. proved some
results in fixed point theorems for generalized o — n — ¢ —
¢ — F'— contraction type mappings in o —n— complete metric
space.

Definition 3. [Ansari , 2014] A continuous function f :
[0,00)2 — R is called a C- class function if

i) f(u,v) <wu for all u,v € [0,00)
(i) f(u,v) =u = eitheru = 0 or v = 0 for all u, v € [0, c0)

Definition 4. [Yalcin et. al. , 2020] A continuous function
6 :[0,00) — [0,00) is called an A - class function if 0(&) > &
for all £ € [0, 00).

Definition 5. [Khan et. al. , 1984] Let ) denote the set of
alternating distance function, and ¢ : [0,00) — [0,00) be
continuous, non-decreasing and satisfies ¢(¢) = 0 if and only
itE=0.

Definition 6. [Ansari , 2014] Let ¢ denote the set of ultra
alternating distance function, and ¢ : [0,00) — [0,00) be
continuous, non-decreasing and satisfies ¢(¢) > 0 for £ > 0
and ¢(0) > 0.

Definition 7. [Sintunavarat & Kumam , 2011] Let S, T be
two self mappings on a nADQmMMS, Meg. A point p € Mg
is called a coincidence point of S and T'; (CP(S,T)) if and
only if Bp = Ap. We shall call £ = Bp = Ap a point of
coincidence of S and T'; (POC(S,T)).

Definition 8. [Das et. al. , 2021; Sintunavarat & Kumam
, 2011] Let S,T be two self mappings on a nADQmMMS
Meg, the pair (S,T) is called a JHR-operator pair if there
exists a point £ = Bp = Ap in POC(S,T) # ¢ and there
exists a sequence {p,} in Mg such that lim, ., Bp, =
limy, o Apn, = & € Mg that satisfies

lim_[[01(ps, ) < 36(POC(S, T)),

1im (|4 (€.pa)| < 56 (POC(T. S)).
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III. MAIN RESULT

Theorem 1. Let (Mg, ©1) be a complete nADQmMMS. Let
A,B: Mg — Mg be two continuous self mapping such that
A(Meo) C B(Mp) and satisfying the inequality

0(¥O1((Ap, Aq)) < F(¢(N(p,q), ¢(N(p, q)); for p,q € Me

)]
where ¥ € U, ¢ € & F is a C-class function, 6 is a A-class
function and

N(p7 q) = maX{GI(Bpa Bq)a el(Ap7 Aq)7 el(AQa BQ)}

If the pair (A, B) is a JHR-operator pair, then A and B
have a common unique fixed point.

Proof: Let py € Mg. We construct a sequence {p,} by
the iteration Ap,, = Bp,+1 for any n € N. Now,

Y(©1(Bpny1, Brn) < 0(9(01(Bpnt1, Bpn))

= 0(¥(01(App, Apn-1))

< F(w(N(pn»pnfl))a ¢(N(pn7pn71))
< P(N(pnspn—1)) 2

where N(pnvpnfl) = max{Gl(Bpnv Bpn—1)7
61(Bpn+17 Bpn)7 91(Bpn> Bpnfl)}-
Hence

N (pn,pn—1) = max{©1(Bppt1, Bpn), ©1(Bpn, Bron-1)}

If for some ng € N,

N(Pros Pro—1) = ©1(Bpng+1, Bpn,)
Then
1,/1(@1(317”04_1, Bpno))
< F(Y(N(Prgs Pro-1)),
¢(N(pn0,pn0,1))
< Y(©1(Bpno+1, Bpn, )

Definition of ¥, ® and C-class function, for some ng € N,
guarantee that,

¥ (01(Bpno+1, Bpn,)) =0 3)

Therefore, let for all n > 0,

N(pnapn—l) = @1(Bpn, Bpn—1)-

From (3) we get,

(01 (Bpr+1, Bpn) < 9(01(Bpy, Bpn-1))

Therefore, {©1(Bpn+1,Bpn)} is a decreasing sequence of
positive real numbers. The fact that a real number ¢ > 0 exists
is a consequence of decreasing sequence of positive numbers
such that

lim el(Bpn+1a Bpn) =€

n— oo

We claim that ¢ = 0, on the contrary suppose that ¢ > 0 .
Letting n — oo in (3), the continuity of i) and ¢ give

P(e) = F(i(e), ¢(€)) = 1(e)
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It follows that, ¢ = 0. Therefore

lim 61(Bpn+laBpn) =0 4)

n—oo

We next prove lim,, o O1(Bpp, Bpn+1) is also zero. From
(2) we get,

Y(01(Bpn, Bpn+1)) < 0(¢(01(Bpn, Bpnt1)))
9(1/1(91(Apn71,14pn)))
F(w(N(pnfl,pn))v d)(N(pnflapn)))
Y(N(Prn—1,pPn)) &)
where N (pp—1,pn) = max{©1(Bpn—_1, Bpn),

©1(Bpn; Bpn+1), ©1(Bpnt1, Bpn)}-
If for some ng € N,

IN N

N(pnoapnofl) = @1(BpnoaBpno+1)

Then from (5) we get, Then
?ﬁ(@l(Bpnm Bpn0+1)> < F(w(N(pnflapn)%

A(N(pn-1,pn)))
< 1/1(@1(]3]%0, Bpn0+1))

Keeping in mind the definition of ¥, ® and C'-class function
gives, for some ng € N,

w(gl(Bpnovano-‘rl)) = 0 (6)

From (4) and (6), we have for some ng € N, Bp,, =
and hence Bp,, = Apn,.

Bp’n()+1

If we assume that for all n > O0,N(py_1,Pn) =
O1(Bpn+1, Bpy) then we get similar type of result as above.
Therefore, {©1(Bpy, Bpn11)} is a decreasing sequence of
positive real numbers. The fact that a real number € > 0 exists
is a consequence of decreasing sequence of positive numbers
such that

N(pn—hpn) = 61(Bpn—17Bpn)

Hence from (6) we get,

Y(O1(Bpn, Bpnt1)) < ¥(©1(Bpn—1, Bpn))

This in turn means that, {©1(Bp;,, Bp,+1))} is a decreasing
sequence of of positive real numbers. Thus there exists a real
number ¢ > 0 is a consequence of decreasing sequence of
positive numbers such that

ILm O1(Bpn, Bpnt1) =€

We claim that € = 0 , on the contrary suppose that ¢ > 0 .
Letting n — oo relation (5) , by the continuity of ¢ and ¢
gives

P(e) = F((e), ¢(€)) = v(e)
Implying that F(¢(¢), #(€)) = 1 (€) . By definition of F either
¥(€) =0 or ¢(e) =0 . This gives € = 0. Therefore,

nh~>nc}o @1 (Bpn; Bpn-l—l) =0 (7)

Next we shall show that {Bp,} is right Cauchy Sequence.
Suppose on the contrary {Bp,} is not a right Cauchy se-
quence. For any € > 0 and k£ € N, we can find sub sequences
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{Bpm, } and {Bpy, } of {Bp,} with n;, > my, > k satisfying
©1(Bpn,, Bpm,) > € and ©1(Bpp, 1, Bpm,) < €.
e < @1(Bpnk7Bpmk)
< 91(Bp’ﬂk7Bp7lk—l) + @1 (Bp"kfl’Bpmk)
VL€ S khm @1(BpnkaBpmk) <e€
—00

= lim ©1(Bpn,, BpPm,) =€
k—o0

Again from (3) we get,

Y(©1(Bpnys Bpmy,)) < 0(0(O1(Apny—1, APmy—1)))
§ F()(N(pnj,—1,Pmi—1)),
( Pnyp—15Pmy— 1))
YN (Prg—15Pmy—1)) (8)

I/\A

where

= max{O1(Bpn, -1, BPm,-1),

O1(Apny—1, APmy—1); O1(Apmy—1, BPmy—1)}
= max{O1(Bpn,—1, BPm,-1),

O1(Bpny s Bpmy ), ©1(Bpm,,, BPm,, 1)}

N (Pry—1:Pmp—1)

Thus
lim N(pnk—lapmk—l) =¢€
k—o0

Taking limit as £ — oo in (8) we get,

P(e) = F(y(e), ¢(€)) = v(e)

In determining ¢ = 0, involves the definition of ¥, & and
C-class function, which is a contradiction. Hence, {Bp,} is
a right Cauchy sequence. Since (M, ©) is right complete so,
there exists B¢ € Mg such that,

lim ©,(B¢, Bp,) =0
n—00

Similarly, we can show that {Bp,} is a left Cauchy sequence,
and lim,,_, o O1(Bpn, BE) = 0. So,

ILm Bp,, = B¢.
Now,
’(/}((A& Banrl)) S 9<’(/}(A£a Apn))
< F((N (& pn), &(N(€,pn))
< P(N(Epn))
where
N (&, pn) = max{01(BE, Bpy,), ©1(AE, Ap,), ©1(Apn, Bpn)}

= lim $(A€, Bpui)
< ¥(01(AE, BY))
Similarly, we can show that

i p(Bppy1, A8) < (01(BE, Ag))
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. Hence, lim, .. Bp, = A B¢. By hypothesis
POC(A, B) # ¢ and there exists a point ¢ € Mg such that
Bq=Aq=n.

P(©1(BE, 1)) < 0((01(AE, Ag))

)
((N(&,9), ¢(N(£,9)))

where,

M(ga q) = max{@l(Bg, BQ)a @1(146, AQ)7 @l(Aqa BQ)}

= 91 (B§7 77)

So, by the definition of C-class function we get
Y(O1(BE,m)) = 0 or ¢(©1(BE,n)) 0. Similarly, we
can get ¥(01(n, BE)) = 0 or ¢(O1(n, BE)) = 0. Which
implies B = 7. Hence B = AE = n. If there exists another
point p’ € Mg such that Bp' = Ap' =17'.
We can similarly show that, n = 7' = B¢ A€
i.e. there exists a unique point of coincidence and so
do(POC(A, B)) = 0.
Since, (4, B) is a JHR operator so, there exists a sequence
{gn} in Mg such that

lim Byg, =

n—oo

11*>In Agn =9
and lim, o0 ©1(9,9n) = lim, 00 O1(gn,g9) = 0. Clearly,
Y(O1(Agn, q)) < 0(1(O1(Agn, AE)))
< F(Y(N(gn:€)): p(N(gn,€)))
w(N(gn,f))

where,

N(gnaé-) = maX{Gl(Bgna B§)7
@1(Agn,A£), @1(1457 Bg)}

Hence as n — oo, we have ©1(g,¢) = 0. Similarly, we can
show that ©1(q,g) = 0. Hence, g = q.

Since, B is ©—continuous and lim,,_,~, Bg, = g so Bn =
n = An. Hence A and B have common fixed point. Unique-
ness can be shown in similar manner. [ |

Example 2. Let Mg = R, define a nADQmMMS
©1(p,q) = {|2p — ¢q| — 1}, for all p,q € Me. Define A, B :
M@ — M@ by

Ap=2p° — 1,
and ¥(t) =2t, ¢(t) =t,F(s,t)=s—t,and 6(t) =t. For

all p,q € Mg and X\ > 0 we have,
O1(Ap, Ag) = 0 < 0. A and B are continuous mapping, and

0(1(©1(Ap, Aq))) < F(¢(M(p,q), (N (p,q)); for p,q € Mo

Also, A(Mg) C B(Mg) = R. Let {z,} be a sequence of
points in Mg such that z, = {1+ 1}, n = 1,2,3,.... Then
lim,, o0 Az, = lim,,_,o Bz, = z = 1. Now,

Bp=2p—-1

lim O4(z,z,)

= lim ©1(2,,2) =0
n— oo n—00

< 66(POC(A,B)) =0
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Hence all the condition of Theorem (1) are satisfied. So, 1 is
the common unique fixed point of A and B.

Theorem 2. Let (Mg, ©1) be a complete nADQmMMS. Let
A 1 Mo — Mg be continuous self mapping satisfying the
inequality

0(¢(Ap, Aq) < F((N(p,q), 9(N(p,q)); )

for p,q € Mg. where ¥ € ¥, ¢ € @, F is a C-class function,
0 is a A-class function and

N(p,q) = max{©1(p, q), ©1(Aq,q)}
Then A has unique fixed point.

Proof. Let B = I, identity mapping of Mg. Then by Theorem
(1) we can easily get the result. O

Theorem 3. Let (Mg, ©1) be a complete nADQmMMS. Let
T : Mo — Mp be a continuous self mapping satisfying
contraction condition,

©1(Tp,Tq) < a®1(p,q), 0 < a <1
Then T has unique fixed point.

Proof: Let pg € Mg. We construct a sequence {p,} by
the iteration T'p,, = p,+1 for any n € N. Now,

@l(pn+1apn) = @l(Tpnann—l) < Oé@l(pmpn—l)

<.
< a"O1(p1,po)  (10)
Therefore
nh~>n;o el(pn+1ypn) = 0. (11)
Similarly we can show that,
lim O1(pn,prt1) = 0. (12)
n—oo

Next we shall show that {p,} is right Cauchy Sequence.
Suppose on the contrary {p,,} is not a right Cauchy sequence.
For any n > m,

@l(pnapm)) = 91(Tpn—17Tpm—1)
S Oé@l(Pn—lapm—l)

< am®1(pn—7rz7p0) (13)
lim O1(pp,pm) = 0.
n—oo

Hence, {p,} is a right Cauchy sequence, similarly we can
show that {p,} is a left Cauchy sequence. Since (M, O) is
complete so, there exists r € Mg such that,

lim ©(r,p,) = 0= lim O;(py,r).
n—o0 n—oo
Now,

O1(Tr,pn)) < aO1(r,pp-1)) < ... < a"O1(r,po))

Similarly, we can show that lim, ., O1(p,,Tr) = 0 =
©1(Tr,py)). Hence,
lim p, =Tr=r.
n—oo
183



Uniqueness can be shown in similar manner. ]

Example 3. Let Mg = R, define a nADQmMS by
O1(p,q) = |p|, for all p,q € Mg. Define T : Mg — Mg

by Tp = p/6.
For all p,q € Mg and A > 0 we have,
01(Tx,Ty) < co. S and T are continuous mapping, and

01(Tp,Tq) < a®1(p, q); forp,q € Mo

Hence all the condition of Theorem (3) are satisfied. So, 0 is
the unique fixed point of 7.

IV. APPLICATION

Let Mo = C[0,1] be a set of all real valued continu-
ous functions on closed interval [0,1] € R. Define a non-
Archimedean dislocated quasi modular metric space defined
by

@1(paQ): sup |p(t)|7
t€(0,1]

for all p € Mp.

Theorem 4. Consider the following integral equation:

1
p(t) = /0 k(t,s)K (s,p(s))ds Vs, t € [0,1] (14)

such that

(i K : [0,1] x Mo — R is continuous function with
T(t,p) > 0 and for any p,q € Mg there exits

[K (s, p(5))] < ©1(p(s), q(s))

(i) k£ :[0,1] x [0,1] — R is continuous in ¢ € [0,1] for all
s € [0,1] for every t,s € [0, 1] such that

1
sup/ |k(t,s)|lds <a<1
0
Then the integral equation (14) has unique solution.

Proof: Let T : Mg — Mg defined by

T(p(t)) = /O k(t, $)K (s, p(s))ds Wt € [0,1].

For any pg € Mg, define a sequence {p,} € Mg by pp11 =
Tp, = T"py, n > 1. From the integral equation we obtain

D1 = Tpn(t) = /0 k(t,s)K(s,pn(s))ds

For p,q € Mo, we have

©1(Tp,Tq) = sup [T (p(t))]
t€[0,1]
1
= sup | k(t,s)K (s,p(s))ds|
tef0,1] Jo
1
< sup |k (t, s)[| K (s, p(s))|ds
te[0,1] JO
S agl(p(s)ﬂ Q(S))

Hence T satisfies all the conditions of theorem (3). Therefore
the integral equation (14) has unique solution in C([0, 1]). W
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Example 4. Define the function 7" : Mg — Mg defined by
1
T(p(0) = [ KK (spo)ds  Vste o1
0

where k(t, s) = % and T'(s,p(s)) = sp(s). Then

T(p(1)) = /0 1S s

Vit 0,1
3 € [0,1]

Since, sup;ejoq7|T(p(t)] < %supse[(n] Ip(s)|. So, as the
above theorem we can show that it satisfies all the conditions
of theorem (3), and it has unique solution.

Using iteration we obtain that,

t+1)s?

1
Pn+1 = T”+1p0(t) = / : 8
0

Let po = 0 be an initial solution. Then py = p; = ... = 0. So
it has a solution 70 = 0.

pn(8)ds Vs, t € [0,1]

V. CONCLUDING REMARKS

All the results of fixed point theory in non-Archimedean
quasi modular metric spaces may not be true in dislocated
non-Archimedean quasi modular metric spaces, but converse
may be true.
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