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Abstract—Computation of antieigenvalue and its correspond-
ing antieigenvetors of matrices have received attention by the
researcher in recent years. In this paper, a unified framework for
generalized antieigenvalue pair of linear two-parameter matrix
eigenvalue problems (LTMEPs) are discussed. An upper bound of
generalized antieigenvalue pair is estimated in terms of numerical
range of certain pair operator matrices.

Index Terms—Linear two-parameter Matrix Eigenvalue Prob-
lems, generalized antieigenvalues, generalized antieigenvectors.

I. INTRODUCTION

Let H be any Hilbert Space with associoated inner product
〈.〉. Then, an operator T on the Hilbert Space H is called
accretive if Re 〈Tx, x〉 ≥ 0, ∀ x 6= 0 and strictly accretive if
Re 〈Tx, x〉 > 0, ∀ x 6= 0. In (Gustafson, 1968), the antieigen-
value concept was first introduced for an accretive operator,
while Gustafson studied the problems in the perturbation
theory of semi-group generators. For a given accertive operator
T acting on the Hilbert space H , Gustafson considered the first
antieigenvalue of the operator T as follows:

µ1(T ) = min
Tx6=0

Re 〈Tx, x〉
‖Tx‖ ‖x‖

(1)

A vector x for which infimum of (1) is attained is called
antieigenvector of T. To find numerics of Antieigenvalues are
complex task than eigenvalues due to the involvement non-
linear Euler equations in the theory. Geometrically, antieigen-
value µ1(T ) defined in equation (1) represents the cosine (real
cosine) of largest (real) angle through which an arbitrary vector
0 6= x can be rotated by the action of the operator T. Denote
µ1(T ) by cos(T ). Then cos(T ) is called cosine of the angle
of the operator T. It has wide applications in diverse scientific
domains. First developed of Antieigenvalues theory reported in
(Gustafson, 1968, 1994, 2000, 1972; Krĕin, 1969). For general
antieigenvalue theory and its application to operator theory,
numerical analysis, wavelets, statistics, quantum mechanics,
finance and optimization has been found in (Gustafson, 2012).
More applications has been presented in (Gustafson, 2002;
Gustafson & Rao, 1997; Khattree, 2019, 2003), and the refer-
ences therein. Extensive overview on antieigenvalues analysis

has been done for accretive normal operator in (Gustafson
& Seddighin, 1972, 1993; Seddighin & Gustafson, 2005)
and for Hermitian positive definite operators in (Mirman,
1983). Antieigenvalue theory has also been extended by the
researchers to some higher Antieigenvalue (Khattree, 2002), to
Joint Antieigenvalue (Seddighin, 2005), to total Antieigenvalue
and antieigenvectors (Gustafson, 1968; Seddighin, 2002), to
symmetric Antieigenvalue (Hossein et. al., , 2008), to θ-
Antieigenvalue (Paul et al., 2015) and to interaction antieigen-
values (Gustafson, 2004). Bounds of Antieigenvalue has been
reported in (Gustafson, 1968). Lp-antieigenvalue condition
for complex-valued Ornstein-Uhlenbeck operators has been
reported in (Otten, 2016). Many attempts have been made
by the researchers over the years to compute approximate
antieigenvalue and their associated antieigenvectors for op-
erators on complex Hilbert spaces. In particular, numerical
aspects of normal operators have been analyzed in (Gustafson
& Rao, 1997; Seddighin & Gustafson, 2005; Seddighin, 2002,
2003, 2004, 2005, 2012; Paul et al., 2015; Mirman, 1983), and
the references therein. For matrix numerical computations have
been reported in (Khattree, 2013).

The rest of the paper has been organized as follows. In
Section 2 an abstract formulation LTMEP is presented. In
Section 3 general framework of generalized antieigenvalue
pair and the their associated generalized antieigenvectors are
discussed. Similarly, in Section 4 computation of generalized
antieigenvalue of right definite problem is considered. Finally,
a conclusion is drawn in Section 5.

II. LINEAR TWO-PARAMETER MATRIX EIGENVALUE
PROBLEMS

We consider LTMEP of the form given below

W1(λ)x1 := (Q1 − λ1V11 − λ2V12)x1 = 0 (2)

W2(λ)x2 := (Q2 − λ1V21 − λ2V22)x2 = 0 (3)

where λi ∈ C; xi ∈ Cni ; and Qi, Vij are n1 × n2 over
C; i, j = 1, 2. The pair (λ1, λ1) is called eigenvalue, if
for some LTMEP has a solution for 0 6= xi; i := 1 : 2
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and the corresponding tensor product x = x1 ⊗ x2 is called
the eigenvector (right), where ⊗ stands for usual Kronecker
product. Similarly, a tensor product v = v1 ⊗ v2 is called a
left eigenvector if vi 6= 0 and v∗iWi(λ) = 0 for i := 1, 2.
The origin of the problem LTMEP can be traced back to
mathematical physics (Volkmer, 1988; Cottin, 2001). The
spectral theory and its related classical results can be found in
the books (Sleeman, 1978; Atkinson, 1972) and in the papers
(Hochstenbach & Plestenjak, 2003; Košir, 1994). The standard
method to study the spectrum of LTMEP by transforming it
into a commuting tuple of operators matrices given by

∆0 := V11 ⊗ V22 − V12 ⊗ V21 (4)

∆1 := Q1⊗V22−V12⊗Q2; ∆2 := V11⊗Q2−Q1⊗V21 (5)

Usually, for analysis of spectrum, LTMEP is considered as
nonsingular i.e when ∆0 given by (4) is nonsingular. A
nonsingular system can be transformed into a system of joint
generalized eigenvalue problems (GEPs) (Atkinson, 1972) of
the form

∆ix = λ1∆0x (6)

Definition 1: [Section 9, (Košir, 1994)] A LTMEP is called
Hermitian, if all the matrices Bij defined in (2) and (3) are
Hermitian i.e. Bij = B∗ij , i, j := 1 : k

Definition 2: [Section 1, (Hochstenbach & Plestenjak,
2003)] A LTMEP is called nonsingular, if the corresponding
operator matrix ∆0 is nonsingular, where ∆0 is given by (4).

Definition 3: [Section 1, (Muhič & Plestenjak, 2009)] A
LTMEP is called singular, when the operator matrix ∆0 is
singular, where ∆0 is given by (4).

Definition 4: A Hermitian LTMEP is called Right definite
if

det

(
x∗1V11x1 x∗1V12x1

x∗2V21x2 x∗2V22x2

)
≥ α (7)

for some α > 0 and for all xi ∈ Hi, ‖xi‖ = 1, i := 1 : 2.
Atkinson proved that Right definiteness of LTMEP is equiv-
alent to the condition that the operator matrix ∆0 is positive
definite [(Atkinson, 1972), Theorem 7.8.2]. Set N := n1n2.,
then if LTMEP is Right definite, then there exist N linearly
independent eigenvectors such that all λi ∈ Rk; i := 1 : 2.
Furthermore, if all the operators Bij of the Right definite prob-
lem are real, then the eigenvectors can be chosen real. Again,
for a real geometrically simple eigenvalue of a Hermitian
LTMEP the corresponding left and right eigenvectors agree.
Again, for nonsingular LTMEP the matrices Γi := ∆−1

0 ∆i,
i = 1, 2 commute. In this case all eigenvalues of the systems
(2)-(3) agree with eigenvalues of (6).

III. GENERALIZED ANTIEIGENVALUE PAIRS AND
ANTIEIGENVECTORS

Assumptions
• The problem is Right definite.
• The matrices ∆i; i := 1, 2 are positive definite.
Definition 5: A Hermitian matrix H is called accretive and

strictly accretive according as H is positive semi-definite and
positive definite.

Then each operator ∆i; i := 0, 1, 2 are nonsingular.
Extending the idea of (Paul, 2008), we define parameters
ν(Γi), i := 1 : 2 for the GEPs of the form (6) as follows:

ν(Γi) := min

{
Re 〈∆ix,∆0x〉
‖∆ix‖ ‖∆0x‖

: x ∈ H,∆ix 6= 0,∆0x 6= 0

}
(8)

The pair (ν(Γ1), ν(Γ2)) is called generalized antieigenvalue
pair for the system (6), and the vector x for which the
minimum are attained is called generalized antieigenvectors
corresponding to the pair (ν(Γ1), ν(Γ2)) The inner products
〈∆ix,∆0x〉 present in equations (8) can also be represented
in following ways

〈∆ix,∆0x〉 =
〈
∆i∆

−1
0 y, y

〉
; i := 1 : 2

where ∆0x = y. Denote Gi := ∆i∆
−1
0 ; i := 1 : 2. Then, the

expressions in (8) reduces to

ν(Γi) := min

{
Re 〈Giy, y〉
‖Giy‖ ‖y‖

: y ∈ H,Giy 6= 0, y 6= 0

}
(9)

ν(Γi) := min
0 6=y∈H,Giy 6=0

{
Re 〈Giy, y〉
‖Giy‖ ‖y‖

}
(10)

Set N := n1n2. Since the matrices Qi and Vij are of
dimension n1×n2, and hence the size of the operator matrices
∆i are N × N . This increase in size makes it difficult to
calculate generalized antieigenvalue pairs (ν(Γ1), ν(Γ2)) for
the matrices of higher size.

IV. CALCULATION

It follows from the assumption that the matrices Gi for
i := 1 : 2 are also positive definite. Then (Horn et. al., , 2012)

ν(Γi) = min
0 6=y∈H,Giy 6=0

y
′
Giy√

y′(Gi)2y.y′y
=

2
√
λi1λ

i
k

λi1 + λik
(11)

This implies

ν(Γi) =
2
√
KGi

KGi
+ 1

=
GM(λi1, λ

i
k)

AM(λi1, λ
i
k)

(12)

where 0 < λi1 ≤ . . . ≤ λik are positive eigenvalues of Gi and
KGi

:=
λi
k

λi
1

is the spectral condition number of the matrices

Gi. Thus ν(Γi) is the quotient of Geometric mean
√
λi1λ

i
k

and Arithmetic mean 1
2 (λi1 + λik) of the least and greatest

eigenvalues of Gi. The equality ν(Γi) = Re〈Giy,y〉
‖Giy‖‖y‖ is satisfied

for the x =
√
λiku

i
1 +

√
λi1u

i
k, where ui1, u

i
k ∈ Rni are

orthogonal vectors with Giu
i
1 = λ1u

i
1 and Giu

i
k = λku

i
k

such that ‖x‖ = 1. Again, spectral condition number of the
operator matrices Gi are given by
KGi = ‖Gi‖

∥∥G−1
i

∥∥
=
∥∥∆i∆

−1
0

∥∥∥∥(∆i∆
−1
0 )−1

∥∥
=
∥∥∆i∆

−1
0

∥∥∥∥∆0∆−1
i

∥∥
≤ ‖∆i‖

∥∥∆−1
0

∥∥ ‖∆0‖
∥∥∆−1

i

∥∥
= ‖∆i‖

∥∥∆−1
i

∥∥∥∥∆−1
0

∥∥ ‖∆0‖
= K∆i

K∆0

Remark 1: Let K∆i
and K∆0

be the condition number of
the matrix operator ∆0 and ∆1 respectively, then

ν(Γi) =
2
√
KGi∥∥∆i∆

−1
0

∥∥ ∥∥∆0∆−1
i

∥∥+ 1
≤

2
√
K∆i

K∆0∥∥∆i∆
−1
0

∥∥ ∥∥∆0∆−1
i

∥∥+ 1
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Remark 1 follows from (12). Bound of antieigenvalues ν(Γi)
can be expressed in terms of numerical radius of the matrices
Gi; i := 1 : 2. Numerical radius of any matrix P over C is
denoted by w(P ) and is defined as

w(P ) := Max {|u| : u ∈W (P )} (13)

where W (P ) is numerical range of P defined by

W (P ) := {v∗Pv : x ∈ C, ‖v‖ = 1} (14)

where ‖v‖ =
√
v∗v is the Euclidean length v ∈ Cn and v∗ is

the transpose conjugate of v.
Theorem 1: Let w(Gi) be the numerical radius of Gi for

i := 1 : 2, then

ν(Γi) ≤
2
√∥∥∆0∆−1

i

∥∥w(Gi)∥∥∆0∆−1
i

∥∥w(Gi) + 1

Proof: It is well known (Al-Dolat et al., 2016) that

1

2
‖Gi‖ ≤ w(Gi) ≤ ‖Gi‖

Thus w(Gi) ≤ ‖Gi‖, which gives

w(Gi) ≤
‖Gi‖‖G−1

i ‖
‖G−1

i ‖
=

KGi

‖∆0∆−1
i ‖

⇒ KGi
+ 1 ≥

∥∥∆0∆−1
i

∥∥w(Gi) + 1
Similarly using 1

2 ‖Gi‖ ≤ w(Gi) we have
‖Gi‖ ≤ 2w(Gi)

⇒ ‖Gi‖‖G−1
i ‖

‖G−1
i ‖

≤ 2w(Gi)

⇒ KGi
≤ 2

∥∥∆0∆−1
i

∥∥w(Gi)
Hence the theorem.

V. NUMERICAL ILLUSTRATIONS

Example 1: Consider the following two-parameter problem
defined by (15) and (16) with real diagonal matrices:[(

2 0
0 1

)
− λ1

(
8 0
0 9

)
− λ2

(
1 0
0 2

) ]
x1 = 0

(15)[(
1 0
0 1

)
− λ1

(
3 0
0 1

)
− λ2

(
6 0
0 7

) ]
x2 = 0

(16)
Here

∆0 =


45 0 0 0
0 55 0 0
0 0 48 0
0 0 0 61



G1 =


0.2444 0 0 0

0 0.2364 0 0
0 0 0.0833 0
0 0 0 0.0820



G2 =


0.0444 0 0 0

0 0.1091 0 0
0 0 0.1250 0
0 0 0 0.1311


Clearly, all the eigenvalues of ∆0 are positive and hence the
problem considered is Right definite. Computed generalized
antieigenvector pair is shown in Table 1.

λ1 λ2 (ν(Γ1), ν(Γ2))
+0.2444 +0.0444
+0.2364 +0.1091 (+0.0820,+0.0444)
+0.0833 +0.1250
+0.0820 +0.1311

TABLE I
GENERALIZED ANTIEIGENVALUE PAIR

VI. FINAL REMARKS

In this paper, a general framework for generalized antieigen-
value pair of linear Right definite two-parameter matrix eigen-
value problems is presented. Bounds of generalized antieigen-
value pair in terms of numerical range of Gi are derived. If
LTMEP is singular, then the ν(Γi) can’t be represented in
the form (9), which may be future prospects of antieigenvalue
analysis of singular problem, and it will conduit new avenues
for future research in this topic.
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