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Abstract—Competing risks arise in reliability and life-
testing studies when units under test face the risk of
failure due to multiple causes. In such studies, time to
failure and cause of failure of units are observed, and
competing risk analysis is carried out to assess failure
behaviour of the unit due to any particular cause. In
many cases, the time to failure of units might be reported
imprecisely or inaccurately. The analysis of such data can
be performed with higher accuracy by considering the
lifetimes to be fuzzy. This paper discusses the maximum
likelihood and Bayesian estimation of component reliability
measures using fuzzy series system lifetime data. We
carry out an extensive simulation study to observe the
effect of different membership functions on the considered
estimators. Finally, we analyse a real data set of small
electric appliances.

Index Terms—Bayes estimator, fuzzy numbers, maxi-
mum likelihood estimator, reliability, series system, trape-
zoidal membership function.

I. INTRODUCTION

In lifetime data analysis, we often deal with
problems where units face the risk of failure from
more than one mutually exclusive cause. For example,
a computer system may fail because of the failure
of its motherboard, hard disk, or power supply. A
diabetic-cardiac patient, besides cardiac arrest, might
be at risk of death due to hypoglycaemia. Many such
examples can be cited from different fields of science,
engineering, medicine, and ecology. In such studies,
competing risk theory may be applied to assess the
failure behaviour of the unit due to any particular risk in
the presence of several other risks. Many authors have
considered the competing risk analysis of series system
lifetime data because failure of a series system occurs

as soon as any of its components fail. They focus either
on analysing the failure behaviour of a system owing
to any particular component or estimation of reliability
measures of individual components. To get more insight
into the theory of competing risks, one may refer to
Crowder [2001], Flehinger et al. [2002], Deshpande and
Purohit [2001], Lagakos [1978].

Consider a non-repairable series system consisting of
J components. Let the random variable Tj denotes the
lifetime of jth component, j = 1,2, . . . ,J. Since a series
system fails as soon as any of its components fail, the
system’s lifetime X is equal to the minimum of life-
times of its components, that is, X = min{T1,T2, . . . ,TJ}.
The component that causes the system’s breakdown is
termed its cause of failure. Let C, a discrete random
variable, denotes the cause of failure of the system, then
C ∈ {1,2, . . . ,J}. Once the system fails, we observe a
random vector (X ,C) consisting of time to failure and
cause of failure of the system. Sometimes, the time
to failure of a unit cannot be measured or recorded
accurately due to machine errors, human errors, or some
other unavoidable circumstances. In such cases, one has
to deal with the data where time to failure is reported in
the form of imprecise quantities such as ‘approximately
3 years’, ‘almost between 3 and 4 years’, ‘essentially less
than 4 years’, and sometimes in the form of ‘rounded
off’ integer values. This kind of lack of precision or
‘vagueness’ involved in the data, along with the natural
randomness of lifetime random variable, can be well
described by incorporating fuzzy theory concepts in
usual statistical methods.

Statistical analysis by describing ‘vagueness’ in data
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through fuzzy concepts has been considered by Cor-
ral and Gil [1984]. They proposed minimum accuracy
method for fuzzy data as an extension of the conven-
tional maximum likelihood method. Further, Gil et al.
(1985) provided Bayes fuzzy estimator for such data.
Gil and Corral [1987] discussed ML and minimum
accuracy methods of estimation for grouped fuzzy data.
Hung [2001] and Hung [2006], respectively considered
bootstrap and weighted bootstrap methods for interval
estimation of parameters. Huang et al. [2006] discuss
Bayesian reliability analysis for fuzzy data and proposed
a new method to determine the membership function
of the estimates of the parameters and the reliability
function of multi-parameter lifetime distributions. Pak
et al. [2014] considered the estimation of the stress-
strength reliability when strength and stress are statis-
tically independent exponential random variables, and
observed data from both the distributions are reported
in the form of fuzzy numbers. To our knowledge, there
is no report on the estimation of reliability measures in
the presence of competing risks when data are observed
in fuzzy form.

This paper focuses on competing risk analysis of
series system lifetime data (X ,C) when system life-
time X is observed in ‘vague’ or ‘imprecise’ form.
Considering components’ lifetimes to be s-independent
exponential random variables, we first introduce the
likelihood function, assuming each observation to be in
the form of a trapezoidal fuzzy number. Then we derive
maximum likelihood and Bayes estimators of the model
parameters as well as component reliabilities. Through
a simulation study, we determine the effect of different
membership functions on considered estimators, which
may help select an appropriate membership function for
the considered estimation problem. The rest of the paper
is organized as follows. In Section II, we consider the
maximum likelihood estimation of the parameters using
fuzzy data and obtain asymptotic as well as bootstrap
confidence intervals in subsections. Section III explores
the Bayesian methodology for considered data and eval-
uates Bayes estimates and Bayesian credible intervals.
In Section IV, an extensive simulation study has been
performed, which provides a comparison of estimators
obtained by considering different forms of membership
functions. Finally, in Section V, we present the analysis
of small electric appliance data, and lastly, Section VI
concludes the paper.

II. LIKELIHOOD FUNCTION

Following our discussion in the previous section,
consider that Tj, the lifetime of jth component, has
probability density function f j(.|λ j) with respect to the
Lebesgue measure in R+, the positive half of the real

line. Here λ j denotes the parameter which may be vector-
valued. The probability that the system fails at time x due
to jth cause is given by the joint distribution of (X ,C)
which comes out to be

lim
∆x→0

1
∆x

P[x≤ X ≤ x+∆x,C = j] = f j(x|λ j)
J

∏
l 6= j

F̄l(x|λl),

(1)

where, F̄j(x|λ j) =
∫

∞

t f j(x|λ j)dx represents the relia-
bility function of jth component.

Let us consider a life-testing experiment where the
system’s lifetime X cannot be observed precisely, but it
may be conceived in the form of a fuzzy number. A
fuzzy number x̃ on X is a fuzzy subset of X which is
characterized by a Borel-measurable membership func-
tion µx̃(.) which associates with each observation in X
a real number in the interval [0,1]. The value of µx̃(.)
represent the ‘grade of membership’ of X in x̃. Under this
notion, on using Zadeh’s (1968) probabilistic definition,
the probability of the system’s failure due to jth cause
given by (1) can be defined by the Lebesgue-Stieltjes
integral

∫
f j(x|λ j)

J

∏
l 6= j

F̄l(x|λl)µx̃(x)dx.

Suppose that n identical series-systems were put
to test and the test was terminated as soon as all
the systems fail. So that n independent observations
(xi,ci); i = 1,2, . . . ,n, were realized on (X, C). Here,
all xi

′s; i = 1,2, . . . ,n, are in vague form and we
consider them independent fuzzy observations x̃i with
membership functions µx̃i(x). The likelihood function
of Λ = (λ1,λ2, . . . ,λJ), in the light of observed data
d = (d1,d2, . . . ,dn), where di = (x̃i,ci); i = 1,2, . . . ,n, can
be written as follows;

L(Λ|d) =
J

∏
j=1

{ n j

∏
i=1

∫
f j(x|λ j)

J

∏
l 6= j

F̄l(x|λl)µx̃i(x)dx
}
, (2)

where n j denotes the number of systems that failed
due to jth component. We assume that the lifetime of jth

component follows exponential distribution with mean-
life λ j having pd f

f j(x|λ j) =
1
λ j

exp
(
− x

λ j

)
(3)

with its reliability function

F̄j(x|λ j) = exp
(
− x

λ j

)
. (4)
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The hazard rate of this distribution is constant (= 1/λ j
for jth component). The assumption of the exponential
distribution is quite relevant when the burn-in period of
the device is over and the time to occurrence of wear-
out is very large. That is, for the useful period of the
device, this distribution fits lifetime data very well. For
exponential lifetimes, the expression of likelihood (2)
becomes

L(Λ|d) =
J

∏
j=1

{(
1
λ j

)n j n j

∏
i=1

∫
exp

(
−∑

j

(
1
λ j

)
x

)
µx̃i(x)dx

}

=

{ J

∏
j=1

(
1
λ j

)n j
} n

∏
i=1

∫
exp

(
−∑

j

(
1
λ j

)
x

)
µx̃i(x)dx

(5)

where, n = ∑
J
j=1 n j.

A. The Membership Function
A frequently occurred form of ‘lack of precision’ in

lifetime data is seen when they are reported in the form
of floored values (integer values by ignoring decimal
parts). We can obtain estimates of various parametric
functions by considering these floored observations as
fuzzy numbers. In light of this, we assign the following
membership function to the floored lifetime of ith system

µ
(a,b)
x̃i

(x) =



x− xi

a
, xi ≤ x≤ xi +a

1 ,xi +a≤ x≤ xi +b
xi +1− x

1−b
,xi +b≤ x≤ xi +1

0 ,otherwise

(6)

where 0 ≤ a ≤ b ≤ 1 are arbitrary real numbers. The
membership defined in (6) is a membership of a trape-
zoidal fuzzy number [xi,xi +a,xi +b,xi +1]. If a = b in
(6), it reduces to a triangular membership function.

Using (6), the likelihood (5) becomes

L(Λ|d) =
{ J

∏
j=1

(
1
λ j

)n j
} n

∏
i=1

(∫ xi+a

xi

exp

(
−∑

j

(
1
λ j

)
x

)
x− xi

a
dx

+
∫ xi+b

xi+a
exp

(
−∑

j

(
1
λ j

)
x

)
dx

+
∫ xi+1

xi+b
exp

(
−∑

j

(
1
λ j

)
x

)
xi +1− x

1−b
dx
)

=

{ J

∏
j=1

(
1
λ j

)n j
}(

∏ j λ j

∑ j λ j

)n n

∏
i=1

({
exp

(
−∑

j

(
1
λ j

)
xi

)}
{

∏ j λ j

a∑ j λ j

[
1−exp

(
−∑

j

(
1
λ j

)
a

)]

+
∏ j λ j

(1−b)∑ j λ j

[
exp

(
−∑

j

(
1
λ j

))
−exp

(
−∑

j

(
1
λ j

)
b

)]})

L(Λ|d) =
{ J

∏
j=1

(
1
λ j

)n j
}

∏ j λ 2n
j

(∑ j λ j)2nan(1−b)n

{
exp

(
−∑

j

(
1
λ j

) n

∑
i=1

xi

)}
{
(1−b)

[
1− exp

(
−∑

j

(
1
λ j

)
a

)]

+a
[

exp

(
−∑

j

(
1
λ j

))
− exp

(
−∑

j

(
1
λ j

)
b

)]}n

. (7)

Finally, the MLE λ̂ j of λ j is the solution of the
likelihood equation

∂ logL(Λ|d)
∂λ j

=
2n

λ̂ j
−

n j

λ̂ j
− 2n

∑ j λ̂ j
+

1

λ̂ 2
j

n

∑
i=1

xi−
na

λ̂ 2
j

·A(a,b, λ̂ j)=0.

(8)

where

A(a,b,λ̂ j)=

(1−b)exp
(
−∑ j

(
1

λ̂ j

)
a
)
−exp

(
−∑ j

(
1

λ̂ j

))
+bexp

(
−∑ j

(
1

λ̂ j

)
b
)

(1−b)
[
1−exp

(
−∑ j

(
1

λ̂ j

)
a
)]

+a
[
exp
(
−∑ j

(
1

λ̂ j

))
−exp

(
−∑ j

(
1

λ̂ j

)
b
)]

The likelihood equation (8) cannot be solved analyti-
cally. We, therefore, use an iterative numerical procedure
to obtain the value of λ̂ j. For the implementation of this
procedure, we rewrite (8) as given below in which the
value of λ̂ j can be updated using the right-hand side
expression. We start with an initial approximation of λ̂ j
and continue updation till it converges.

λ̂ j =
1

2n−n j

{ 2nλ̂ 2
j

∑ j λ̂ j
−

n

∑
i=1

xi +na ·A(a,b, λ̂ j)

}
. (9)

B. Asymptotic Confidence Interval
One can obtain asymptotic confidence intervals(ACIs),

a family of sets that contain the true value of the
parameter with a certain high probability, by using
asymptotic normality of MLE [Casella and Berger,
2002]. Thus, if Λ̂ is an MLE of the parameter
Λ = (λ1,λ2, . . . ,λ j), then

√
n(Λ̂−Λ)

d−→ N(J)(0, I−1(Λ)),

where I(Λ) is the (J× J) sample Fisher information
matrix given by

Irk(Λ) = E
(
−∂ 2logL(Λ|d)

∂ 2λrλk

)
;r,k = 1,2, . . . ,J.

Since derivation of I(Λ) is not possible analytically, we
approximate it by its consistent estimator I(Λ̂) which is

Irk(Λ̂) =

(
−∂ 2logL(Λ|d)

∂ 2λrλk

)∣∣∣∣
Λ=Λ̂

;r,k = 1,2, . . . ,J.

Denoting by zp, the upper 100∗ p% quantile of standard
normal distribution, the 100(1− 2α)% ACI for λ j is
given by

λ̂ j± zα

√
I−1

j j (λ̂ j). (10)

C. Bootstrap Confidence Interval

The ACIs discussed above are based on the large
sample property of MLE. It may not be appropriate
to use ACIs when the sample is not sufficiently large.
Alternatively, we can find confidence intervals for the pa-
rameter based on bootstrap percentiles which are termed
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as boot-p confidence intervals [Efron and Tibshirani
[1993]]. Hung [2001, 2006] have obtained bootstrap
and weighted bootstrap estimates for fuzzy data. Here,
using the method of Efron to evaluate boot-p confidence
intervals for the parameters using fuzzy competing risk
data. The main steps of the algorithm are as follows.

1. From the original sample x̃1, x̃2, . . . , x̃n, draw a sam-
ple ỹ1, ỹ2, . . . , ỹn with replacement.

2. Compute the MLE of λ̂ based on ỹ1, ỹ2, . . . , ỹn, say
λ̂ ∗j .

3. Repeat Step 1 and Step 2, B times and ar-
range the values of λ̂ ∗j in ascending order. Let
λ̂ ∗j(1), λ̂

∗
j(2), . . . , λ̂

∗
j(B), be the ordered values.

Let λ̂ ∗j([pB]) denote the pth empirical percentile, that is,
[pB]th value in the ordered list λ̂ ∗j(1), λ̂

∗
j(2), . . . , λ̂

∗
j(B). A

two-sided 100(1−2α)% percentile bootstrap confidence
interval of λ j, is then given by(

λ̂
∗
j([αB]), λ̂

∗
j([(1−α)B])

)
. (11)

Here [x] denotes the integer part of x.

III. BAYES ESTIMATION

In the Bayesian paradigm, the parameter of interest
is treated as a random variable having its distribution
termed as the prior distribution. It is well known that
Bayesian methods perform well when the sample size
is small. We consider the prior distribution of λ j to be
gamma with hyper-parameter (α j,β j) given by

π j(λ j) =
β

α j
j λ

α j−1
j exp(−β jλ j)

Γ(α j)
. (12)

Assuming λ ′js to be independent, the joint prior for Λ

is π(Λ) = ∏ j π j(λ j). Merging the joint prior with the
likelihood function (7) we get the expression for joint
posterior of Λ given d as follows,

π(Λ|d) = π(Λ)L(Λ|d)∫
∞

0 π(Λ)L(Λ|d)dΛ

∝
∏ j λ

2n+α j−n j−1
j

∑ j λ j
exp(−∑

j
β jλ j)

{
exp

(
−∑

j

(
1
λ j

) n

∑
i=1

xi

)}
{
(1−b)

[
1− exp

(
−∑

j

(
1
λ j

)
a

)]

+a
[

exp

(
−∑

j

(
1
λ j

))
− exp

(
−∑

j

(
1
λ j

)
b

)]}n

(13)

From (13), it is not possible to derive the expressions
for the marginal posterior of any of the λ js. We, there-
fore, use the Gibbs sampler. The full conditional for λ j

obtained from (13), is as follows;

π j(λ j|Λ(− j),d) ∝
λ

2n+α j−n j−1
j

∑ j λ j
exp

(
−β jλ j−

(
1
λ j

) n

∑
i=1

xi

)

.

{
(1−b)

[
1− exp

(
−∑

j

(
1
λ j

)
a

)]

+a
[

exp

(
−∑

j

(
1
λ j

))
− exp

(
−∑

j

(
1
λ j

)
b

)]}n

(14)

where Λ(− j) = (λ1,λ2, . . . ,λ j−1,λ j+1, . . . ,λJ). We carry-
out Gibbs sampling using the following Multistage Gibbs
Sampler algorithm [Robert and Casella, 2004].
Algorithm 1: At tth iteration, t = 1,2, . . . , using Λ(t) =

(λ
(t)
1 , . . . ,λ

(t)
J ), we generate

1. λ
(t+1)
1 ∼ π1(λ1|λ (t)

2 , . . . ,λ
(t)
J ,d);

2. λ
(t+1)
2 ∼ π2(λ2|λ (t+1)

1 , . . . ,λ
(t)
J ,d);

...
J. λ

(t+1)
J ∼ πJ(λJ |λ (t+1)

1 , . . . ,λ
(t+1)
J−1 ,d).

This algorithm provides us J Markov chains. We
find the points of convergence for these chains by
evaluating their respective cumulative means. As soon
as a chain converges to its stationary distribution,
we start sampling. Let λ

(1)
j ,λ

(2)
j , ...,λ

(N)
j , where N is

sufficiently large, be the observations drawn from the
stationary distribution of jth Markov chain to estimate
λ j. Under the squared error loss function, we can obtain
Bayes estimate of λ j by calculating the mean of these
observations.

Further, from (14) we observe that none of the above
full conditionals is in the form of closed density. There-
fore, to generate sample observations from the marginal
densities of λ j, j = 1,2, . . .J, we use the Metropolis-
Hastings (M-H) algorithm, which includes the following
steps.

1. Generate a new value using this candidate distribu-
tion, say λ new

j ∼ N(λ̂ j,var(λ̂ j)).

2. Calculate the ratio: ρ =
π j(λ

new
j |Λ(−λnew

j ),d)

π j(λ
old
j |Λ(−λold

j )
,d)

.

3. Draw a random number from U(0,1), say u.
4. Accept the new value λ new

j if u < min(1,ρ).

A. Bayesian Credible Intervals
Here we evaluate Bayesian credible interval for λ j

based on MCMC sample λ
(1)
j ,λ

(2)
j , . . . ,λ

(N)
j , obtained

from π j(λ j|d) through Gibbs Sampler. We first arrange
these sample values into ascending order and denote
these by λ j(1),λ j(2), . . . ,λ j(N). Then using method of
[Chen and Shao, 1999] we obtain following estimates.
(a) The 100(1− 2α)% Bayesian credible interval is,

given by
(λ j([αN]),λ j([(1−α)N]))
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where λ j([qN]) denotes the [qN]th smallest in the
list λ j(1),λ j(2), . . . ,λ j(N).

(b) For a fixed coverage probability, the credible in-
terval having the shortest length is a better confi-
dence estimate. Therefore we also obtain the highest
posterior density(HPD) intervals which have the
property that the minimum density of any point
within this interval is equal to or larger than the
density of any point outside it. To evaluate an HPD
interval using sample values λ j(1),λ j(2), . . . ,λ j(N),
we first obtain all the possible 100(1−2α)% cred-
ible intervals, that is

(λ( j),λ( j+[(1−2α)N])); j = 1,2, . . . , [2αN]

and evaluate their corresponding length given by

l j = λ( j+[(1−2α)N])−λ( j)

then pick up the interval having minimum length.

IV. NUMERICAL ILLUSTRATION

In this section, we numerically illustrate the effect
of introducing fuzzy concepts on various estimates of
competing risk. We consider the vague data that occur
when lifetimes are stored in the form of floored integers
by ignoring decimal values. In order to incorporate
fuzzy concept, we consider three forms of triangular
membership function(MF) which can be obtained from
(6) by choosing (a = b). These forms are based on the
assumptions that most of the observations lie in the
beginning, end, and middle of the interval (xi,xi + 1).
These are respectively presented in Fig. 1

A. Monte Carlo Simulation

We conduct this simulation study for two-component
series systems. The case of systems with more than two
components can be dealt with similarly. To generate
a competing risk data set, we first generate lifetimes
of component 1 (T1) and component 2 (T2) from
exponential distribution with mean-lives λ1 = 2.0 and
λ2 = 2.005, respectively. The system’s lifetime then
becomes X = min(T1,T2). Simultaneously, we note
down an indicator of the component (1 or 2) for which
minimum occurs. This indicator is considered the cause
of failure of the system, and thus we obtain a pair of
data (X ,C). Repeating this process n times, we get the
competing risk data (x1,c1),(x2,c2), . . . ,(xn,cn). Finally,
we omit decimal parts of each of xi, i = 1,2, . . . ,n
and get the desired floored competing risk data for
which estimation procedures are being developed in this
paper. The estimates obtained with these floored(crisp)
values are presented with a heading of ‘crisp’ in various

tables. These floored values are then fuzzified with MFs
µ
(1)
x̃i

(x), µ
(2)
x̃i

(x) and µ
(3)
x̃i

(x) which are defined earlier
in this very section. For the fuzzified data, we obtain
ML estimates of parameters λ1 and λ2 by solving (9),
through the iterative numerical procedure. For Bayesian
estimation, as we employ γ(α j,β j) prior for λ j; j = 1,2,
we have chosen values of prior hyper-parameters to be
α1 = α2 = 4 and β1 = β2 = 2. The Bayes estimates λ1
and λ2 are then obtained using Gibbs sampler. Note
that, here λ1 and λ2, respectively denote average lives
of Component 1 and Component 2.

In order to check the performance of estimators for
varying sample sizes, we generate data with sample sizes
viz. n= 20, 40, 60, 80, and 100. For each value of n, we
replicate the whole procedure by generating N = 5000
random samples, and based on these samples; we have
obtained average values, Bias, and MSE(mean squared
error) of estimates (for a true value of λ ) by using
expressions

Bias(λ̂ ) = 1
N ∑

N
i=1(λ̂i−λ ) and

MSE(λ̂ ) = 1
N ∑

N
i=1(λ̂i−λ )2.

We have presented average values of point estimates
of the parameters λ1 and λ2, corresponding biases
and MSEs in Table I. It can be observed from the
table that as sample size increases, MSEs and biases
of estimators decreases. Further from same table, we
observe that bias of estimators is negative under MF
µ
(1)
x̃i

(x) and is positive under µ
(2)
x̃i

(x) and µ
(3)
x̃i

(x). One
can explore these findings in deciding an appropriate
MF when underestimation and overestimation are not
of equal consequences. That is, µ

(1)
x̃i

(x) can be utilized

when overestimation is more serious and µ
(2)
x̃i

(x) in
the case of underestimation. Among these three MFs,
the bias as well as MSE of estimators under MF
µ
(3)
x̃i

(x) is minimum. To have a better view of change
in distribution of deviations of estimated value from
truevalue for varying sample size and under different
MFs, boxplots have been drawn in Fig. 2.

We calculate average lengths, corresponding coverage
probabilities, and shapes based on repeated samples for
interval estimators. Efron and Tibshirani [1993] evalu-
ates the length and shapes of the confidence interval as
follows:

length = λ̂U − λ̂L and shape = λ̂U−λ̂

λ̂−λ̂L
,

where λ̂ is the point estimator, λ̂L and λ̂U are lower
and upper limits of interval estimators, respectively. The
shape gives the measure of the dispersal of the interval
estimator on either side of the point estimate. If it takes
a value lesser than 1, then the point estimate is shifted
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more towards the upper side, i.e., λ̂ is lying farther
to λ̂L then in comparison to λ̂U and similarly when it
assumes value greater than 1, then the point estimate
is shifted more towards the lower side. These intervals
are called asymmetric, while for symmetric intervals, the
shape takes on value 1. The third and last measure is the
coverage probability which gives us the actual coverage
of true parameter by an interval estimator, which can be
either on the lower side of 100(1−2α) or on the higher
side. These are presented in Table II and III. It may be
noted that the average length decreases as the sample
size increases.

In this paper, we are focussing mainly on the reliability
measures of the unit under consideration. So far, we
have provided various estimates of mean-lives, which
are parameters λ ′js. In order to find an ML estimate of
reliability at a given point in time, one can use the in-
variance property of MLE. According to the property, an
ML estimator of any parametric function can be obtained
by replacing the parameter with its ML estimator. To
evaluate Bayes estimate of reliability function, one has
to generate a Markov chain for it, and then the estimation
procedure is similar to the case of parameters. Table
IV is constructed to see the performance of ML and
Bayes estimators of reliability function under different
MFs at the time point T = 1.5. One can observe the
same behaviour in the case of reliability as seen in the
point estimation of parameters.

V. REAL DATA STUDY

As a real-life example, we consider a competing risk
dataset of 36 small electric appliances. Here lifetime is
measured in the number of cycles completed by any
appliance till its failure. These electric appliances can
fail due to 18 different modes, but here we are focusing
mainly on two failure modes, 6 and 9, which are clubbed
together and are being considered cause 1 and failure
due to rest of the failure modes including censored
observations are denoted by cause 2. To get a floored
data, we have divided each lifetime by 100, and only
the integer part has been taken as shown in Table V and
Fig. 3. Table VI and VII compare estimates of fuzzy data
with actual(before data being floored) and crisp estimates
through classical and Bayesian methods, respectively. In
Table VIII estimates of reliability for the two causes
have been obtained at T1 = 45 and T2 = 35, as discussed
in Section IV. In figure 4 and 5 we have respectively
plotted posterior distributions and reliability functions
under different MFs.

VI. CONCLUSION
This paper considers competing risk analysis of series-

system lifetime data when lifetimes are not observed pre-
cisely. Considering such lifetimes to be fuzzy numbers,

we have provided a procedure to obtain maximum likeli-
hood and Bayesian point and interval estimates of mean-
lives and reliability functions of system components. We
carried out an extensive simulation study and observed
that different membership functions affect the considered
estimators differently in terms of bias and mean squared
error. Finally, a real data set of small electric appliances
is analysed, and various estimates of mean-lives and
reliabilities of components have been evaluated.
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µ
(1)
x̃i

(x) =


x− xi

0.05
, xi ≤ x≤ xi +0.05

xi +1− x
0.95

,xi +0.05≤ x≤ xi +1

0 ,otherwise

µ
(2)
x̃i

(x) =


x− xi

0.95
, xi ≤ x≤ xi +0.95

xi +1− x
0.05

,xi +0.95≤ x≤ xi +1

0 ,otherwise

µ
(3)
x̃i

(x) =


x− xi

0.5
, xi ≤ x≤ xi +0.5

xi +1− x
0.5

,xi +0.5≤ x≤ xi +1

0 ,otherwise

Figure 1: Membership Functions.

Figure 2: Boxplot for distribution of deviation for different membership function.
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Table I: Average values (AV) of point estimates of λ1 and λ2 with their MSEs and Bias when λ1 = 2.0 and
λ2 = 2.005.

n Parameter

Crisp Actual Fuzzy

MLE Bayes MLE Bayes
MLE Bayes

µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x) µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

AV 1.2452 1.4542 2.1088 2.1137 1.7961 2.5103 2.2062 1.9308 2.3758 2.1868
MSE 0.9024 0.531 0.6232 0.2269 0.4172 0.9043 0.635 0.2258 0.3584 0.2443λ1
Bias -0.7548 -0.5458 0.1088 0.1137 -0.2039 0.5103 0.2062 -0.0692 0.3758 0.1868

λ2

AV 1.2359 1.4458 2.1332 2.1261 1.796 2.5004 2.1885 1.9462 2.3575 2.1881
MSE 0.9176 0.5451 0.7149 0.2406 0.4112 0.9162 0.5773 0.2342 0.3353 0.2533

20

Bias -0.7691 -0.5592 0.1282 0.1211 -0.209 0.4954 0.1835 -0.0588 0.3525 0.1831

AV 1.1966 1.33 2.0509 2.0915 1.8034 2.4407 2.1339 1.8793 2.3969 2.1575
MSE 0.7871 0.582 0.2356 0.1618 0.2464 0.4713 0.2491 0.1655 0.317 0.1741λ1
Bias -0.8034 -0.67 0.0509 0.0915 -0.1966 0.4407 0.1339 -0.1207 0.3969 0.1575

λ2

AV 1.2015 1.3356 2.0595 2.0997 1.8043 2.4384 2.1429 1.8789 2.4015 2.1613
MSE 0.7859 0.5799 0.2274 0.1561 0.2569 0.4816 0.2575 0.1712 0.3198 0.1779

40

Bias -0.8035 -0.6694 0.0545 0.0947 -0.2007 0.4334 0.1379 -0.1261 0.3965 0.1563

AV 1.1834 1.2785 2.0293 2.0689 1.7882 2.4156 2.1126 1.8522 2.4016 2.1411
MSE 0.7536 0.6071 0.141 0.114 0.1797 0.352 0.1656 0.1333 0.2853 0.136λ1
Bias -0.8166 -0.7215 0.0293 0.0689 -0.2118 0.4156 0.1126 -0.1478 0.4016 0.1411

λ2

AV 1.1882 1.2835 2.0334 2.0718 1.7904 2.4163 2.1132 1.8538 2.4022 2.142
MSE 0.756 0.6089 0.1519 0.1216 0.1874 0.3464 0.1614 0.1391 0.2813 0.1313

60

Bias -0.8168 -0.7215 0.0284 0.0668 -0.2146 0.4113 0.1082 -0.1512 0.3972 0.137

AV 1.1845 1.2577 2.0196 2.054 1.7692 2.3938 2.1071 1.8225 2.3894 2.1329
MSE 0.7319 0.6186 0.1036 0.0898 0.1484 0.2838 0.1251 0.1153 0.2508 0.1105λ1
Bias -0.8155 -0.7423 0.0196 0.054 -0.2308 0.3938 0.1071 -0.1775 0.3894 0.1329

λ2

AV 1.1892 1.2627 2.0299 2.0631 1.7768 2.4109 2.1175 1.8298 2.4045 2.1428
MSE 0.7318 0.6178 0.1117 0.0962 0.1489 0.2949 0.1242 0.1159 0.2589 0.1106

80

Bias -0.8158 -0.7423 0.0249 0.0581 -0.2282 0.4059 0.1125 -0.1752 0.3995 0.1378

AV 1.1794 1.2388 2.0238 2.053 1.7676 2.3904 2.106 1.8124 2.3894 2.1291
MSE 0.7271 0.634 0.0863 0.0775 0.1293 0.252 0.0995 0.1039 0.2328 0.0923λ1
Bias -0.8206 -0.7612 0.0238 0.053 -0.2324 0.3904 0.106 -0.1876 0.3894 0.1291

λ2

AV 1.1856 1.2453 2.0195 2.0488 1.7746 2.398 2.1034 1.8192 2.3961 2.1266
MSE 0.725 0.6314 0.0888 0.079 0.1273 0.2569 0.099 0.1021 0.2359 0.0914

100

Bias -0.8194 -0.7597 0.0145 0.0438 -0.2304 0.393 0.0984 -0.1858 0.3911 0.1216
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Table II: Average lengths(AL) of asymptotic and boot-p interval estimates of λ1 and λ2 with respective coverage
probabilities (CP) and shapes when λ1 = 2.0 and λ2 = 2.005

n Parameter

Crisp Actual Fuzzy

ACI Boot ACI Boot
ACI Boot

µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x) µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

AL 1.6325 2.4874 2.7616 3.3406 2.3507 3.3099 2.9133 2.9212 3.7888 3.4897
CP 0.4498 0.7036 0.915 0.9238 0.8138 0.987 0.9452 0.8974 0.9044 0.9244λ1

Shape 1 2.1574 1 2.4387 1 1 1 2.2924 2.5577 2.5004

λ2

AL 1.6137 2.4469 2.8187 3.4078 2.3508 3.2911 2.8771 2.9248 3.7832 3.412
CP 0.4328 0.6522 0.9164 0.9248 0.8154 0.9854 0.9476 0.9002 0.9026 0.934

20

Shape 1 2.1328 1 2.4595 1 1 1 2.2902 2.5663 2.4614

AL 1.0734 1.5069 1.8378 1.96 1.6423 2.2152 1.9308 1.8558 2.1861 2.003
CP 0.2674 0.5216 0.934 0.935 0.819 0.9896 0.9622 0.8882 0.8666 0.943λ1

Shape 1 2.1574 1 2.4387 1 1 1 1.3905 1.7564 1.7207

λ2

AL 1.0814 1.5139 1.8522 1.9765 1.6439 2.2114 1.9461 1.8493 2.1926 2.0114
CP 0.2792 0.492 0.9444 0.9418 0.8102 0.989 0.9638 0.8778 0.8722 0.9392

40

Shape 0.9992 2.1328 1.0035 2.4595 1 1 1 1.3911 1.7594 1.7221

AL 0.8593 1.1883 1.474 1.5333 1.3195 1.7743 1.5507 1.4545 1.7036 1.5649
CP 0.1668 0.3802 0.944 0.9462 0.8002 0.966 0.9612 0.8748 0.8316 0.9344λ1

Shape 1 1.5862 1 1.7153 1 1 1 1.4793 1.5528 1.5335

λ2

AL 0.8666 1.1912 1.4803 1.5323 1.3232 1.7752 1.5517 1.4621 1.7003 1.5658
CP 0.1754 0.3492 0.9362 0.9336 0.789 0.9664 0.9644 0.8652 0.8236 0.9422

60

Shape 1 1.5915 1 1.7192 1 1 1 1.4819 1.5548 1.5328

AL 0.7417 1.0189 1.2646 1.2983 1.1246 1.5139 1.3325 1.2276 1.4314 1.3294
CP 0.1028 0.2738 0.9462 0.947 0.775 0.9436 0.9672 0.8498 0.7878 0.9402λ1

Shape 1 1.3585 1 1.4313 1 1 1 1.394 1.4522 1.4354

λ2

AL 0.7487 1.0267 1.2798 1.31 1.1358 1.5392 1.3478 1.2385 1.4477 1.3377
CP 0.1068 0.2516 0.942 0.9396 0.7778 0.9464 0.965 0.8612 0.7864 0.9422

80

Shape 1 1.3636 1 1.4342 1 1 1 1.3994 1.4562 1.4371

AL 0.6589 0.9026 1.133 1.1572 1.0026 1.3503 1.19 1.0883 1.2674 1.1778
CP 0.0684 0.174 0.9478 0.944 0.76 0.9126 0.9668 0.8376 0.7476 0.9406λ1

Shape 1 1.3136 1 1.3775 1 1 1 1.3418 1.3908 1.3776

λ2

AL 0.6677 0.9087 1.1269 1.1536 1.0126 1.3612 1.1862 1.0966 1.2718 1.1764
CP 0.0668 0.1738 0.9432 0.941 0.769 0.9154 0.9676 0.8482 0.7448 0.9438

100

Shape 1 1.3171 1 1.3743 1 1 1 1.3451 1.3929 1.3764

Institute of Science, BHU Varanasi, India 308



Journal of Scientific Research, Volume 65, Issue 5, 2021

Table III: Average lengths of credible and HPD interval estimates of λ1 and λ2 with their respective coverage
probabilities and shapes for different sample sizes when λ1 = 2.0 and λ2 = 2.005.

n Parameter

Crisp Actual Fuzzy

Credible HPD Credible HPD
Credible HPD

µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x) µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

AL 1.7138 1.6196 2.2294 2.1303 2.1133 2.4389 2.3003 2.015 2.3381 2.2005
CP 0.732 0.6606 0.9812 0.9746 0.9542 0.9724 0.9834 0.9316 0.9868 0.9834λ1

Shape 1.6185 1.1986 1.5287 1.1681 1.5465 1.5007 1.673 1.1735 1.1572 1.3359

λ2

AL 1.7008 1.6071 2.2434 2.144 2.1313 2.4187 2.3001 2.0321 2.3188 2.2
CP 0.7292 0.6508 0.979 0.9726 0.954 0.9754 0.9848 0.9334 0.9896 0.9858

20

Shape 1.6171 1.1993 1.5276 1.1668 1.5453 1.5012 1.6018 1.1738 1.1571 1.2821

AL 1.1683 1.1231 1.7031 1.6471 1.5826 1.9179 1.7616 1.528 1.858 1.7042
CP 0.4788 0.4106 0.9708 0.9694 0.9264 0.927 0.9738 0.8958 0.9594 0.978λ1

Shape 1.4768 1.1472 1.4259 1.1311 1.4379 1.4073 1.2781 1.1345 1.123 1.0908

λ2

AL 1.1752 1.1293 1.7123 1.6556 1.582 1.9233 1.7654 1.5277 1.8634 1.708
CP 0.488 0.4228 0.9698 0.9712 0.9288 0.9332 0.9698 0.8986 0.96 0.9738

40

Shape 1.4784 1.1477 1.4259 1.1301 1.4371 1.4077 1.295 1.133 1.1239 1.1062

AL 0.9248 0.8973 1.4179 1.3801 1.3068 1.6281 1.474 1.2691 1.5861 1.435
CP 0.3098 0.257 0.9648 0.9658 0.9026 0.8834 0.9664 0.874 0.924 0.9654λ1

Shape 1.3939 1.1182 1.3617 1.1089 1.3695 1.3491 1.3595 1.1111 1.1036 1.1077

λ2

AL 0.9295 0.9017 1.4199 1.3825 1.3047 1.6269 1.4737 1.271 1.5873 1.4356
CP 0.3164 0.2644 0.9588 0.9586 0.9066 0.8856 0.959 0.8724 0.9282 0.9714

60

Shape 1.3942 1.1193 1.3609 1.1087 1.3700 1.3499 1.3588 1.1102 1.1048 1.1086

AL 0.7881 0.7689 1.2346 1.2074 1.1297 1.438 1.2966 1.0976 1.3954 1.2593
CP 0.2028 0.1588 0.9598 0.959 0.8804 0.8474 0.9596 0.8424 0.8964 0.9678λ1

Shape 1.3393 1.1003 1.3184 1.0957 1.3233 1.3098 1.3162 1.096 1.0921 1.0929

λ2

AL 0.7924 0.7731 1.2431 1.2149 1.1232 1.426 1.2879 1.1037 1.407 1.268
CP 0.2052 0.166 0.9552 0.954 0.8794 0.8468 0.96 0.8496 0.8936 0.9666

80

Shape 1.3403 1.1023 1.3195 1.0944 1.3234 1.3096 1.3161 1.0947 1.0917 1.0946

AL 0.6938 0.6792 1.1135 1.092 1.0099 1.2951 1.1593 0.9848 1.2653 1.1386
CP 0.1244 0.0982 0.9574 0.9616 0.8668 0.8068 0.9568 0.8272 0.862 0.9638λ1

Shape 1.3029 1.0897 1.2866 1.0844 1.2908 1.2802 1.2845 1.0865 1.0817 1.0838

λ2

AL 0.6989 0.6844 1.1107 1.0892 1.0045 1.2898 1.1611 0.9901 1.2705 1.1368
CP 0.129 0.103 0.9566 0.9542 0.8608 0.809 0.957 0.8356 0.8636 0.9662

100

Shape 1.303 1.0899 1.2865 1.0851 1.2912 1.2802 1.2846 1.0885 1.0808 1.0837
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Table IV: Average values of point estimates of component reliabilities (at time=1.5) when λ1 = 2.0 and λ2 = 2.005

n Parameter

Crisp Actual Fuzzy

MLE Bayes MLE Bayes
MLE Bayes

µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x) µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

AV 0.2757 0.3252 0.4667 0.4684 0.4159 0.5296 0.4831 0.4333 0.5077 0.4798
MSE 0.0591 0.0347 0.0124 0.0058 0.019 0.0127 0.0122 0.0091 0.0055 0.0052λ1
Bias -0.1966 -0.1472 -0.0056 -0.004 -0.0565 0.0572 0.0107 -0.0391 0.0353 0.0074

λ2

AV 0.274 0.3249 0.4692 0.4681 0.4168 0.5279 0.4818 0.4311 0.5088 0.477
MSE 0.06 0.0351 0.013 0.0059 0.0186 0.0129 0.0115 0.0094 0.0056 0.0054

20

Bias -0.1992 -0.1483 -0.004 -0.0051 -0.0565 0.0546 0.0086 -0.0422 0.0356 0.0037

AV 0.2736 0.3069 0.4697 0.4725 0.4412 0.5309 0.4844 0.4292 0.5198 0.4827
MSE 0.0502 0.0363 0.0063 0.0042 0.0064 0.0081 0.0058 0.0071 0.0052 0.0039λ1

Bias -0.1987 -0.1655 -0.0026 0.0001 -0.0312 0.0585 0.012 -0.0431 0.0474 0.0103

λ2

AV 0.2759 0.3072 0.4717 0.4729 0.4408 0.53 0.4857 0.4327 0.5203 0.4812
MSE 0.0497 0.0364 0.006 0.0041 0.0067 0.0081 0.0058 0.007 0.0053 0.0039

40

Bias -0.1974 -0.1661 -0.0015 -0.0004 -0.0324 0.0568 0.0124 -0.0406 0.0471 0.0079

AV 0.2746 0.2989 0.4703 0.4736 0.4237 0.5303 0.4843 0.4306 0.5238 0.486
MSE 0.0463 0.0368 0.004 0.0033 0.0076 0.0066 0.0042 0.0058 0.005 0.0032λ1
Bias -0.1977 -0.1735 -0.0021 0.0012 -0.0487 0.0579 0.0119 -0.0418 0.0514 0.0136

λ2

AV 0.2766 0.2993 0.4704 0.4741 0.4243 0.5309 0.4843 0.4313 0.5229 0.4856
MSE 0.046 0.0368 0.0043 0.0032 0.0077 0.0066 0.0039 0.0058 0.0048 0.0031

60

Bias -0.1967 -0.1739 -0.0028 0.0008 -0.049 0.0577 0.0111 -0.042 0.0496 0.0123

AV 0.2758 0.2914 0.4704 0.4723 0.4222 0.5294 0.4852 0.4291 0.5259 0.4862
MSE 0.0443 0.038 0.0031 0.0026 0.0064 0.0057 0.0031 0.005 0.0047 0.0025λ1
Bias -0.1965 -0.1809 -0.002 0 -0.0502 0.057 0.0128 -0.0432 0.0536 0.0138

λ2

AV 0.2774 0.2915 0.4718 0.4725 0.4237 0.5318 0.487 0.4311 0.5264 0.4859
MSE 0.0439 0.0383 0.0032 0.0026 0.0064 0.0058 0.0031 0.005 0.0047 0.0025

80

Bias -0.1958 -0.1817 -0.0014 -0.0007 -0.0496 0.0585 0.0137 -0.0421 0.0531 0.0127

AV 0.2755 0.2915 0.472 0.4739 0.4231 0.53 0.4862 0.4298 0.5272 0.486
MSE 0.0434 0.037 0.0025 0.0021 0.0055 0.0052 0.0025 0.0045 0.0046 0.002λ1
Bias -0.1968 -0.1809 -0.0003 0.0016 -0.0493 0.0576 0.0138 -0.0426 0.0548 0.0136

λ2

AV 0.2775 0.2924 0.4712 0.4749 0.4246 0.531 0.4857 0.4304 0.5268 0.486
MSE 0.0429 0.0368 0.0026 0.002 0.0054 0.0053 0.0025 0.0045 0.0044 0.0021

100

Bias -0.1958 -0.1809 -0.0021 0.0016 -0.0486 0.0577 0.0124 -0.0429 0.0535 0.0127

Table V: Floored data of small electric appliances.

T 0 0 0 1 3 3 7 9 11 12 16 19 20 22 23 24 25 25
C 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 2 1 2

T 26 26 26 27 27 28 28 30 31 31 32 35 35 43 64 70 78 134
C 2 2 2 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2
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Table VI: ML Estimates, asymptotic and boot-p confidence intervals for real data.

Estimates

Crisp Actual Fuzzy

λ1 λ2 λ1 λ2
µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

λ1 λ2 λ1 λ2 λ1 λ2

MLE 61 48.8 62.03 49.62 61.78 49.43 62.46 49.97 62.12 49.7

ACI CI (31.11,90.89) (31.11,70.19) (31.63,92.42) (31.63,71.37) (31.51,92.06) (31.51,71.09) (31.85,93.06) (31.85,71.87) (31.68,92.56) (31.68,71.48)
Shape 1 1 1 1 1 1 1 1 1 1

Boot-P CI (35.27,113.73) (39.1,92) (35.4,115.47) (40.21,91.87) (35.37,115.35) (39.67,92.08) (35.89,116.71) (40.46,93.8) (35.57,114.35) (39.79,91.21)
Shape 2.09 4.55 2 4.64 1.97 4.3 2.08 4.53 1.96 4.66

Table VII: Bayes Estimates and credible intervals for real data.

Estimates

Crisp Actual Fuzzy

λ1 λ2 λ1 λ2
µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

λ1 λ2 λ1 λ2 λ1 λ2

Bayes Estimate 60.2 49.88 60.28 50.09 60.2 50 60.29 50.05 60.37 49.88

Credible Interval CI (50.71,70.62) (41.31,59.36) (50.58,70.65) (41.68,59.4) (50.43,70.43) (41.79,59.41) (50.27,71.1) (41.37,59.56) (50.62,71.07) (41.41,59.18)
Shape 1.09 1.09 1.11 1.13 1.09 1.12 1.12 1.13 1.11 1.12

HPD CI (50.63,70.41) (41.05,58.94) (50.44,70.47) (41.39,59.06) (50.1,70) (41.72,59.33) (50.08,70.55) (40.83,58.75) (50.26,70.57) (41.52,59.26)
Shape 0.86 0.96 1.04 1.09 0.96 1.08 0.99 1.08 1.1 1.11

Table VIII: ML and Bayes Estimates of reliability at T1 = 45 and T2 = 35 for real data.

Crisp Actual
Fuzzy

µ
(1)
x̃i

(x) µ
(2)
x̃i

(x) µ
(3)
x̃i

(x)

λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2

MLE 0.4782 0.4881 0.4841 0.4939 0.4827 0.4926 0.4865 0.4964 0.4846 0.4945
Bayes Estimate 0.4721 0.4936 0.4727 0.495 0.4722 0.4941 0.4731 0.4944 0.4716 0.4952
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Figure 3: Failure Pattern for 36 Small electric Appliances.
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Figure 4: Posterior Density Plot

Figure 5: Reliability Curve for 36 Small Electric Appliances with 95% confidence interval if only Component 1 or
Component 2 were present .
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