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Abstract. Allocation of parallel load in multicore systems has 

become a challenging task for high performance computing 

system. There are several parameters to evaluate the perfor-

mance of a scheduling algorithm such as task imbalance and 

execution time. This paper proposes a task scheduling approach 

that targets multiple cores connected through appropriate in-

terconnection network. The proposed approach utilizes the 

computing resources effectively by assigning the tasks dynami-

cally among different cores of the system in a realistic time. 

Each task has its own timeline and multiple sequence of tasks 

are mapped on different cores of the system. In particular, per-

formance is evaluated on n x n Mesh, DMesh, ZMesh and Torus 

networks. The load imbalance and execution times are consid-

ered as metrics to evaluate the performance of the proposed 

algorithm. Simulation results are obtained and compared with 

well-known minimum distance scheduling algorithm which 

shows reduction in execution time while maintaining the load 

imbalance. An improvement of 20-30% is obtained in load im-

balance for considered multicore systems with improved execu-

tion time. The simulation study reveals that the proposed algo-

rithm is best suited to take architectural benefits for mesh-based 

multicore systems.  

Keywords: Multicore, Scheduling Algorithm, Load Imbalance, 

Execution Time. 

1 Introduction 

Multicore systems are found in variety of computing systems 

from high-performance servers to special purpose embedded 

systems. The industrial applications are utilizing embedded 

systems with more cores in processors [1]. The performance 

of these systems depends upon how extensively the parallel-

ism is exploited among different cores in the system. In order 

to address the problem of parallelism in a multicore system, 

the load is partitioned into small independent tasks and are 

mapped onto different available cores in the systems. The 

problem of efficient allocation of a group of tasks to carry out 

parallel execution in multicore systems has drawn attention of 

researchers.   

Designing an efficient communication network and apply-

ing efficient scheduling algorithm for utilizing computing 

resources is critical for achieving high performance in multi-

processor multicore systems. There is a number of studies 

related to simulation on mesh-based topologies that empha-

sizes on modeling and analyzing on chip interconnect [2] [3] 

[4]. Metrics such as packet delay, load imbalance factor have 

been used as a function of the communication load, speedup 

and utilization factor. Some networks are designed specifical-

ly with customized application in order to achieve better per-

formance. The main objective behind customization is to fit 

the requirements of specific applications under certain condi-

tions [5]. However, a generalized task-based programming 

model is inevitable solution for multicore architectures. 

In this paper, we explore the interplay between architec-

tures and algorithm design in the context of dynamic task 

allocation. A dynamic scheduling algorithm is designed and 

evaluated by mapping tasks on a number of mesh-based mul-

ticore architectures. The proposed approach is based on 

standard minimum distance scheduling approach that has 

been used extensively for conventional parallel systems in a 

variety of ways [6]. For better analysis of results different 

data sets are applied to similar architectures for the perfor-

mance evaluation of the proposed algorithm. 

The rest of the paper is organized as follows. In section 2, 

various approaches related with scheduling of tasks on Ho-

mogeneous/heterogeneous multicore system are presented. 

Section 3 describes the problem formation and the target 

systems considered for study. The proposed algorithm is ex-

plained in section 4. Based on the experimental results, the 

performance evaluation is carried out and presented in section 

5. Concluding remarks are presented in section 6. 

2 Related Work 

A programming model schedule tasks dynamically according 

to the availability of computing resources. Mapping of ready 

to execute tasks to different cores of the system requires criti-

cally task aware schedular [7]. The efficient scheduling prob-

lem has been extensively studied for asymmetric multicore 

systems. Some of them are based on dividing the tasks into 

groups of critical and non-critical tasks and mapping each 

group to one core type. In this method deciding which task is 

critical is a major issue [8]. Task prioritization is another 
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approach which assigns priority to different tasks based on 

information discoverable at run-time [9]. 

 A number of programming models have been developed 

for high-performance computing such as task parallelism 

[10], data parallelism for example OpenMp loops [11] to 

exploit parallelism in multicore systems architectures. These 

models support both inter-task parallelism as well as intra-

task parallelism. In general, the sequence of tasks is mapped 

as a group of parallel sub tasks that are allowed to execute in 

parallel on multiple cores. The directed acyclic graph (DAG) 

is one of the most famous parallel task models used in multi-

core architectures [12]. A DAG consists of directed edges 

between a set of nodes in which each node is a sequential 

sub-task that are allowed to execute on any core using di-

rected edges. Subtasks are allowed to execute on different 

cores that can significantly improve resource utilization. On a 

multicore system meeting deadlines of parallel tasks is more 

complex due to possible interleaving of threads across the 

cores. Therefore, to incorporate full speed up there is a great 

challenge to maximize the utilization of parallel multicore 

architectures which meet the deadlines of application cores. 

List scheduling has been used in variety of ways to obtain 

optimal/sub-optimal solutions [13]. List scheduling is de-

signed on the basis of assigning priorities to the tasks of DAG 

and arranging the tasks in the form of list which are config-

ured in descending order of priorities. Task having higher 

priority is allowed to execute first. The algorithm performs 

better with small heterogeneity factor for randomly generated 

applications. However, to reduce task execution time a dupli-

cation approach to identify heavily communicating tasks is 

applied. 

 In heterogeneous computing system the cost of executing a 

task may vary from one core to another. The priority of tasks 

is not fixed rather change when migrated between different 

cores. To handle this problem, Heterogenous Earliest Finish 

Time Schedular (HEFT) [14] and Heterogeneity through 

Limited Duplicated [HLD] approach [15] are used in order to 

get a single computation cost of a task. However, perfor-

mance of these algorithms is limited with the significant vari-

ations in the execution makespan.  

 System performance can also be improved by non-

contiguous allocation of parallel jobs in multicomputer sys-

tems [16]. In this approach the author claimed better perfor-

mance in terms of execution time for different traffic pattern 

particularly with uniform-decreasing job size distribution. 

The algorithm, however, is not tested for Torus type architec-

ture. 

3 Problem Formation and Target Systems 

3.1 Task Scheduling Model 

The task scheduling problem has been widely studied for 

both homogeneous and heterogeneous multicore systems. The 

implementation of these algorithms performs action on the 

state of tasks depending upon the architecture of the target 

system. The main objective is to map the ready tasks onto 

available cores until all the ready tasks are assigned evenly. 

Task dependency is another factor that effect the performance 

of the scheduling policy. However, for simplicity we consid-

ered all tasks as independent tasks. Tasks are submitted uni-

formly and assigned to a particular core depending upon the 

active load or when the core becomes idle. At a particular 

point of time the system manages a uniform distribution of 

tasks. The resource utilization and uniform allocation of tasks 

are carried out dynamically in parallel among different avail-

able cores of the system. If tasks in an application are unbal-

anced, the overloaded and underloaded cores are identified 

and tasks migration take place until the system obtain an even 

distribution of tasks. Therefore, in application of wide range 

graph such as Zmesh and higher-level mesh having large 

number of cores or with large volume of tasks the task sched-

ular reconfigures the tasks dynamically based on the value of 

ideal load and load imbalance factor (LIF).  

The minimum distance scheduling (MDS) is considered 

suitable for parallel interconnection networks in traditional 

parallel systems [17]. The algorithm relies on minimum dis-

tance property in which only adjacent cores are allowed to 

migrate the tasks. This is followed in order to reduce 

makespan and complexity of scheduling algorithm. Several 

variations of MDS have been proposed and found suitable for 

a particular class of architectures. The performance of these 

algorithms has not been studied for multicore systems. The 

proposed algorithm is an effort to extend the concept of min-

imum distance property with some alteration and tested for 

considered multicore systems.  

 3.2 The Target Architectures 

To evaluate the performance of proposed scheduling algo-

rithm the topology of target system is a modeled un-directed 

graph G (Ci, Ei) where C is a finite set of cores/vertices and E 

is a finite set connected edges. A vertex Ci represents the 

processor core i and Ei represents a bidirectional communica-

tion link between adjacent cores. The resource graph is a 

complete graph consisting of n fully connected cores. We 

assume contention free communication between cores. 

For the purpose of simulation four similar topologies 

namely Mesh, Dmesh, Zmesh and Torus networks are con-

sidered [18]. The system consists of a set of homogeneous 

cores and all considered topologies are modeled as 4 x 4 net-

works shown in Fig. 1. Task-to-core assignment is identical 

in all the considered topologies. 

 

  

(a) 4 x4 Mesh network (b) 4 x4 DMesh network 

  

(c) 4 x4 ZMesh network (d) 4 x4 Torus network 

Fig.1. Target Systems 
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4 Proposed Algorithm 

As discussed in section 3 we propose a dynamic task schedul-

ing algorithm that detects the load imbalance among different 

available cores and map the tasks accordingly during runtime. 

Among different models the tasks are first created and then 

made ready after certain level of input. In the proposed ap-

proach we assume that the ready tasks are available and at a 

given point of time tasks are assigned to different cores based 

on the scheduling policy. Overloaded cores receive the tasks 

from underloaded cores based on the value of ideal load and 

LIF.  

The load Imbalance Factor (LIF) at a particular stage of 

task (k) structure is calculated as. 

LIF = [max{loadk(Ci)}-(ideal_load)k] / (ideal_load)k (1) 

The ideal load is calculated by the ratio of the total number 

of tasks and the number of available cores (N). 

(ideal_load)i =[loadk(C0)+loadk(C1)+…+loadk(CN--1)] / N (2) 

Maximum load denoted as max(loadk(Ci)) is the value of 

maximum load on a particular core Ci ,where, Ci ,0≤i≤N-1. 

For the same stage of task structure, the execution time is 

evaluated which is the total time the schedule algorithm takes 

to produce LIF after the balancing process is complete. 

 However, task migration is allowed only after examine the 

connectivity of cores. Selecting the communicating core di-

rectly affects the complexity of algorithm and leads larger 

execution time. The five steps of the proposed algorithms are 

as follows. 

1. A valid taskset is generated to map on available 

number of cores connected through bi-directional 

links. 

2. The adjacency matrix is scanned to examine the di-

rect connectivity of cores. 

3. The connected cores are identified and tasks are as-

signed from one core to another until the value 

reaches to ideal load. 

4. The LIF is evaluated and allocation of tasks is con-

tinued. To maintain the integrity of MDS only di-

rectly connected cores are allowed to migrate the 

tasks. 

5. For optimum results step 4 is repeated for non-

adjacent cores to migrate the tasks between over-

loaded or underloaded cores. 

The outline of the given algorithm is illustrated in Fig. 2. It is 

clearly shown that allocation of tasks always succeeds if the 

underloaded cores with direct connectivity exist.  The pro-

posed algorithm and the well-known MDS algorithm were 

implemented in Java with Windows 10 on 2.60 GHz Intel(R) 

Core (TM) i7 x64 base processor and 16.0 GB of RAM. 

Many different graphs were drawn by varying the task struc-

ture for input into the proposed algorithm and discussed in 

the next section.  

 

 

Void TaskMigration (int overloaded_Nodes, int under-

loaded_Nodes) 

{ 

     Int p=0, Idealload, q=0,Max= underloaded_Nodes; 

     for(p=0;p<=overloaded_Nodes;p++) 

       {     

          While(value[p]>Idealload) 

         { 

            for(q=0;q<=underloaded_Nodes;q++) 

               shift(Task[p],Task[p][q]); 

                     }} 

return   overloaded_Nodes; 

} 

int TaskAllocation(int n) 

{  int totaltask,i,n; 

   Generate_Random_Task(n); 

for(i=1;i<=n;i++) 

  totalTask+=Task(n); 

return Totaltask; 

} 

Int maximu(int nodes) 

{  

  int i; 

   for(i=0;i<nodes;i++) 

     compare(max_value,node_value); 

     return(max_value); 

} 

float  lif(int max, int idealload) 

{  

load_imbalance=(float)(max-idealload)*100/idealload; 

return load_imbalance; 

} 

 

Fig. 2. Pseudo-Code for task allocation and migration    

5 Simulation Experiment Results 

In this section, we evaluate the performance of the proposed 

algorithm by carrying out experiments on different multicore 

architectures in a wide spectrum of input types. We have 

measured load imbalance and execution time for three sets of 

task structures. To show how well the proposed algorithm is 

contributed the results obtained are compared with standard 

minimum distance scheduling (MDS) algorithm in terms of 

LIF and execution time by implementing both the algorithms 

on same architectures under same environment. Fig. 3 shows 

the performance of proposed algorithm by comparing against 

the MDS algorithm when applied on 16-cores mesh network. 
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The results show that initial value of LIF in case of MDS 

algorithm is much larger than the value obtained by imple-

menting the proposed algorithm. The best-case performance 

for average load is improved by 20% throughout the genera-

tion of tasks. The changing behavior of LIF, however, similar 

for both the scheduling algorithms. 

 

 
  

Fig. 3. Performance of proposed scheduling on 16-core mesh 

network 

Another important parameter to evaluate the performance is 

execution time. The total time to make the network fully bal-

anced after generation a finite number of tasks is evaluated 

and shown in Fig. 4. The results of the effect of enhancing 

task migrations by considering non-adjacent cores in the pro-

posed algorithm are undoubtedly depicted in Fig. 4 which 

shows an increasing trend as compared to when MDS is ap-

plied on the same network. This is due to the fact that the 

proportion of task migration on cores other than adjacent 

cores increases to obtain the desirable value of LIF. If we 

consider conventionally acceptable value of average LIF 

between 30-40%, then the increase in execution time will be 

insignificant. 

 

 
 

Fig. 4. Performance of proposed scheduling on 16-core mesh 

network 

 Motivated form the results obtained for 4 x 4 mesh net-

work and to test the actual performance of the proposed algo-

rithm the same is also applied on 16-cores Dmesh, Zmesh and 

Torus networks with three data sets. Each data set consists of 

finite range of task structure. The first set of experiment is 

carried out with data set having tasks ranging from 1000 to 

4,00,000 tasks, second data set covers tasks up to 16,00,000 

and the third data set may go up to 50,00,000. The simulation 

results obtained for all four considered networks using LIF 

and execution time as metrices are shown in the form of 

graphs and are presented in Fig. 5 to Fig. 7. 

 

 

Fig. 5 (a). Performance of proposed algorithm with low task 

structure (LIF) 

 

 
 

Fig. 5 (b). Performance of proposed algorithm with low task 

structure (Execution Time) 

 
 

Fig. 6 (a). Performance of proposed algorithm with medium 

task structure (LIF) 

 

Fig. 6 (b). Performance of proposed algorithm with low me-

dium structure (Exec. Time) 

 

Fig. 7 (a). Performance of proposed algorithm with high task 

structure (LIF) 
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Fig. 7 (b). Performance of proposed algorithm with high task 

structure (Exec. Time) 

 In all the graphs shown from Fig. 5 to Fig. 7, it is clearly 

observed that with the proposed algorithm the initial value of 

LIF is improved for all the considered topologies. In particu-

lar, there is an improvement of approximately 20% for 

Dmesh and Torus networks. It is because that Dmesh and 

Torus both are having extra links that constitutes alternative 

path for task migration. Due to this reason, the execution time 

also has no significant increment for these networks. Perfor-

mance with other networks is also comparable. Figures also 

show that the performance of proposed algorithm is approxi-

mately same for different types of task structures. This is 

because most of the tasks are having similar execution times. 

The schedular dynamically select the best available path 

when the application has a large number of tasks.  

 In Fig. 5(b), Fig. 6(b) and Fig. 7(b), the execution times for 

minimum value of LIF obtained by the proposed algorithm 

are plotted for all the considered networks with different vol-

ume of system loads. The results reveal that there is small 

increment in execution times with the proposed algorithm, 

however, the performance is similar for all the considered 

networks. This is due to the fact that we considered networks 

in which each core is connected by bidirectional communi-

cating links to its neighbor cores, as depicted in Fig.1. The 

minor increment in execution time is tolerable with highly 

reduced value of LIF which ultimately improve the system 

utilization. The main attraction of the proposed algorithm is 

the independent load which does not have impact on the effi-

cacy of selected architecture.         

6 Conclusion and Future Work 

In this paper, we have incorporated an enhancement to the 

minimum distance scheduling (MDS) algorithm to obtain a 

suboptimal solution for task scheduling on multicore systems. 

The performance of proposed algorithm is tested for 4x4 

mesh-based networks i.e., Mesh, DMesh, ZMesh and Torus 

networks. The main objective is to schedule the independent 

tasks on 16-cores systems uniformly with minimum 

makespan of execution.   

 The performance is measured by considering homogene-

ous cores of the system. The load imbalance and execution 

times are considered as metrics to evaluate the performance 

of the proposed algorithm. The makespan is minimized by 

exploiting duplication approach in which non-adjacent cores 

of the system are effectively utilized for computations. 

Curves are drawn and comparative analysis is carried out.  

Simulation results show an improvement of 20-30% in load 

imbalance while maintaining an overall execution makespan.  

 A promising future direction in this area is to consider the 

performance of proposed scheduling approach on heteroge-

neous computing systems. We plan to extend the presented 

algorithm to the dynamic environment where process load, 

computing resources and network conditions during the exe-

cution of varying input applications. Apart from LIF and 

execution time, other performance metrics such as Computa-

tion-To-Communication Ratio (CCR), Normalized Schedule 

Length (NSL), Speedup Rate (SR), etc. will be considered for 

performance evaluation. 
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