

Volume 66, Issue 2, 2022

Journal of Scientific Research

of

The Banaras Hindu University

46

DOI: 10.37398/JSR.2022.660207

Improving system performance in Homogeneous Multicore Systems

Savita Gautam1, Abdus Samad2 and M. Sarosh Umar3

1 University Women’s Polytechnic
2 Z. H. College of Engg. & Technology

3 Aligarh Muslim University, Aligarh, India
1savvin2003@yahoo.co.in
2abdussamad@zhcet.ac.in
3saroshumar@zhcet.ac.in

Abstract. Allocation of parallel load in multicore systems has

become a challenging task for high performance computing

system. There are several parameters to evaluate the perfor-

mance of a scheduling algorithm such as task imbalance and

execution time. This paper proposes a task scheduling approach

that targets multiple cores connected through appropriate in-

terconnection network. The proposed approach utilizes the

computing resources effectively by assigning the tasks dynami-

cally among different cores of the system in a realistic time.

Each task has its own timeline and multiple sequence of tasks

are mapped on different cores of the system. In particular, per-

formance is evaluated on n x n Mesh, DMesh, ZMesh and Torus

networks. The load imbalance and execution times are consid-

ered as metrics to evaluate the performance of the proposed

algorithm. Simulation results are obtained and compared with

well-known minimum distance scheduling algorithm which

shows reduction in execution time while maintaining the load

imbalance. An improvement of 20-30% is obtained in load im-

balance for considered multicore systems with improved execu-

tion time. The simulation study reveals that the proposed algo-

rithm is best suited to take architectural benefits for mesh-based

multicore systems.

Keywords: Multicore, Scheduling Algorithm, Load Imbalance,

Execution Time.

1 Introduction

Multicore systems are found in variety of computing systems

from high-performance servers to special purpose embedded

systems. The industrial applications are utilizing embedded

systems with more cores in processors [1]. The performance

of these systems depends upon how extensively the parallel-

ism is exploited among different cores in the system. In order

to address the problem of parallelism in a multicore system,

the load is partitioned into small independent tasks and are

mapped onto different available cores in the systems. The

problem of efficient allocation of a group of tasks to carry out

parallel execution in multicore systems has drawn attention of

researchers.

Designing an efficient communication network and apply-

ing efficient scheduling algorithm for utilizing computing

resources is critical for achieving high performance in multi-

processor multicore systems. There is a number of studies

related to simulation on mesh-based topologies that empha-

sizes on modeling and analyzing on chip interconnect [2] [3]

[4]. Metrics such as packet delay, load imbalance factor have

been used as a function of the communication load, speedup

and utilization factor. Some networks are designed specifical-

ly with customized application in order to achieve better per-

formance. The main objective behind customization is to fit

the requirements of specific applications under certain condi-

tions [5]. However, a generalized task-based programming

model is inevitable solution for multicore architectures.

In this paper, we explore the interplay between architec-

tures and algorithm design in the context of dynamic task

allocation. A dynamic scheduling algorithm is designed and

evaluated by mapping tasks on a number of mesh-based mul-

ticore architectures. The proposed approach is based on

standard minimum distance scheduling approach that has

been used extensively for conventional parallel systems in a

variety of ways [6]. For better analysis of results different

data sets are applied to similar architectures for the perfor-

mance evaluation of the proposed algorithm.

The rest of the paper is organized as follows. In section 2,

various approaches related with scheduling of tasks on Ho-

mogeneous/heterogeneous multicore system are presented.

Section 3 describes the problem formation and the target

systems considered for study. The proposed algorithm is ex-

plained in section 4. Based on the experimental results, the

performance evaluation is carried out and presented in section

5. Concluding remarks are presented in section 6.

2 Related Work

A programming model schedule tasks dynamically according

to the availability of computing resources. Mapping of ready

to execute tasks to different cores of the system requires criti-

cally task aware schedular [7]. The efficient scheduling prob-

lem has been extensively studied for asymmetric multicore

systems. Some of them are based on dividing the tasks into

groups of critical and non-critical tasks and mapping each

group to one core type. In this method deciding which task is

critical is a major issue [8]. Task prioritization is another

mailto:1savvin2003@yahoo.co.in

Journal of Scientific Research, Volume 66, Issue 2, 2022

47

Institute of Science, BHU Varanasi, India

approach which assigns priority to different tasks based on

information discoverable at run-time [9].

 A number of programming models have been developed

for high-performance computing such as task parallelism

[10], data parallelism for example OpenMp loops [11] to

exploit parallelism in multicore systems architectures. These

models support both inter-task parallelism as well as intra-

task parallelism. In general, the sequence of tasks is mapped

as a group of parallel sub tasks that are allowed to execute in

parallel on multiple cores. The directed acyclic graph (DAG)

is one of the most famous parallel task models used in multi-

core architectures [12]. A DAG consists of directed edges

between a set of nodes in which each node is a sequential

sub-task that are allowed to execute on any core using di-

rected edges. Subtasks are allowed to execute on different

cores that can significantly improve resource utilization. On a

multicore system meeting deadlines of parallel tasks is more

complex due to possible interleaving of threads across the

cores. Therefore, to incorporate full speed up there is a great

challenge to maximize the utilization of parallel multicore

architectures which meet the deadlines of application cores.

List scheduling has been used in variety of ways to obtain

optimal/sub-optimal solutions [13]. List scheduling is de-

signed on the basis of assigning priorities to the tasks of DAG

and arranging the tasks in the form of list which are config-

ured in descending order of priorities. Task having higher

priority is allowed to execute first. The algorithm performs

better with small heterogeneity factor for randomly generated

applications. However, to reduce task execution time a dupli-

cation approach to identify heavily communicating tasks is

applied.

 In heterogeneous computing system the cost of executing a

task may vary from one core to another. The priority of tasks

is not fixed rather change when migrated between different

cores. To handle this problem, Heterogenous Earliest Finish

Time Schedular (HEFT) [14] and Heterogeneity through

Limited Duplicated [HLD] approach [15] are used in order to

get a single computation cost of a task. However, perfor-

mance of these algorithms is limited with the significant vari-

ations in the execution makespan.

 System performance can also be improved by non-

contiguous allocation of parallel jobs in multicomputer sys-

tems [16]. In this approach the author claimed better perfor-

mance in terms of execution time for different traffic pattern

particularly with uniform-decreasing job size distribution.

The algorithm, however, is not tested for Torus type architec-

ture.

3 Problem Formation and Target Systems

3.1 Task Scheduling Model

The task scheduling problem has been widely studied for

both homogeneous and heterogeneous multicore systems. The

implementation of these algorithms performs action on the

state of tasks depending upon the architecture of the target

system. The main objective is to map the ready tasks onto

available cores until all the ready tasks are assigned evenly.

Task dependency is another factor that effect the performance

of the scheduling policy. However, for simplicity we consid-

ered all tasks as independent tasks. Tasks are submitted uni-

formly and assigned to a particular core depending upon the

active load or when the core becomes idle. At a particular

point of time the system manages a uniform distribution of

tasks. The resource utilization and uniform allocation of tasks

are carried out dynamically in parallel among different avail-

able cores of the system. If tasks in an application are unbal-

anced, the overloaded and underloaded cores are identified

and tasks migration take place until the system obtain an even

distribution of tasks. Therefore, in application of wide range

graph such as Zmesh and higher-level mesh having large

number of cores or with large volume of tasks the task sched-

ular reconfigures the tasks dynamically based on the value of

ideal load and load imbalance factor (LIF).

The minimum distance scheduling (MDS) is considered

suitable for parallel interconnection networks in traditional

parallel systems [17]. The algorithm relies on minimum dis-

tance property in which only adjacent cores are allowed to

migrate the tasks. This is followed in order to reduce

makespan and complexity of scheduling algorithm. Several

variations of MDS have been proposed and found suitable for

a particular class of architectures. The performance of these

algorithms has not been studied for multicore systems. The

proposed algorithm is an effort to extend the concept of min-

imum distance property with some alteration and tested for

considered multicore systems.

 3.2 The Target Architectures

To evaluate the performance of proposed scheduling algo-

rithm the topology of target system is a modeled un-directed

graph G (Ci, Ei) where C is a finite set of cores/vertices and E

is a finite set connected edges. A vertex Ci represents the

processor core i and Ei represents a bidirectional communica-

tion link between adjacent cores. The resource graph is a

complete graph consisting of n fully connected cores. We

assume contention free communication between cores.

For the purpose of simulation four similar topologies

namely Mesh, Dmesh, Zmesh and Torus networks are con-

sidered [18]. The system consists of a set of homogeneous

cores and all considered topologies are modeled as 4 x 4 net-

works shown in Fig. 1. Task-to-core assignment is identical

in all the considered topologies.

(a) 4 x4 Mesh network (b) 4 x4 DMesh network

(c) 4 x4 ZMesh network (d) 4 x4 Torus network

Fig.1. Target Systems

Journal of Scientific Research, Volume 66, Issue 2, 2022

48

Institute of Science, BHU Varanasi, India

4 Proposed Algorithm

As discussed in section 3 we propose a dynamic task schedul-

ing algorithm that detects the load imbalance among different

available cores and map the tasks accordingly during runtime.

Among different models the tasks are first created and then

made ready after certain level of input. In the proposed ap-

proach we assume that the ready tasks are available and at a

given point of time tasks are assigned to different cores based

on the scheduling policy. Overloaded cores receive the tasks

from underloaded cores based on the value of ideal load and

LIF.

The load Imbalance Factor (LIF) at a particular stage of

task (k) structure is calculated as.

LIF = [max{loadk(Ci)}-(ideal_load)k] / (ideal_load)k (1)

The ideal load is calculated by the ratio of the total number

of tasks and the number of available cores (N).

(ideal_load)i =[loadk(C0)+loadk(C1)+…+loadk(CN--1)] / N (2)

Maximum load denoted as max(loadk(Ci)) is the value of

maximum load on a particular core Ci ,where, Ci ,0≤i≤N-1.

For the same stage of task structure, the execution time is

evaluated which is the total time the schedule algorithm takes

to produce LIF after the balancing process is complete.

 However, task migration is allowed only after examine the

connectivity of cores. Selecting the communicating core di-

rectly affects the complexity of algorithm and leads larger

execution time. The five steps of the proposed algorithms are

as follows.

1. A valid taskset is generated to map on available

number of cores connected through bi-directional

links.

2. The adjacency matrix is scanned to examine the di-

rect connectivity of cores.

3. The connected cores are identified and tasks are as-

signed from one core to another until the value

reaches to ideal load.

4. The LIF is evaluated and allocation of tasks is con-

tinued. To maintain the integrity of MDS only di-

rectly connected cores are allowed to migrate the

tasks.

5. For optimum results step 4 is repeated for non-

adjacent cores to migrate the tasks between over-

loaded or underloaded cores.

The outline of the given algorithm is illustrated in Fig. 2. It is

clearly shown that allocation of tasks always succeeds if the

underloaded cores with direct connectivity exist. The pro-

posed algorithm and the well-known MDS algorithm were

implemented in Java with Windows 10 on 2.60 GHz Intel(R)

Core (TM) i7 x64 base processor and 16.0 GB of RAM.

Many different graphs were drawn by varying the task struc-

ture for input into the proposed algorithm and discussed in

the next section.

Void TaskMigration (int overloaded_Nodes, int under-

loaded_Nodes)

{

 Int p=0, Idealload, q=0,Max= underloaded_Nodes;

 for(p=0;p<=overloaded_Nodes;p++)

 {

 While(value[p]>Idealload)

 {

 for(q=0;q<=underloaded_Nodes;q++)

 shift(Task[p],Task[p][q]);

 }}

return overloaded_Nodes;

}

int TaskAllocation(int n)

{ int totaltask,i,n;

 Generate_Random_Task(n);

for(i=1;i<=n;i++)

 totalTask+=Task(n);

return Totaltask;

}

Int maximu(int nodes)

{

 int i;

 for(i=0;i<nodes;i++)

 compare(max_value,node_value);

 return(max_value);

}

float lif(int max, int idealload)

{

load_imbalance=(float)(max-idealload)*100/idealload;

return load_imbalance;

}

Fig. 2. Pseudo-Code for task allocation and migration

5 Simulation Experiment Results

In this section, we evaluate the performance of the proposed

algorithm by carrying out experiments on different multicore

architectures in a wide spectrum of input types. We have

measured load imbalance and execution time for three sets of

task structures. To show how well the proposed algorithm is

contributed the results obtained are compared with standard

minimum distance scheduling (MDS) algorithm in terms of

LIF and execution time by implementing both the algorithms

on same architectures under same environment. Fig. 3 shows

the performance of proposed algorithm by comparing against

the MDS algorithm when applied on 16-cores mesh network.

Journal of Scientific Research, Volume 66, Issue 2, 2022

49

Institute of Science, BHU Varanasi, India

The results show that initial value of LIF in case of MDS

algorithm is much larger than the value obtained by imple-

menting the proposed algorithm. The best-case performance

for average load is improved by 20% throughout the genera-

tion of tasks. The changing behavior of LIF, however, similar

for both the scheduling algorithms.

Fig. 3. Performance of proposed scheduling on 16-core mesh

network

Another important parameter to evaluate the performance is

execution time. The total time to make the network fully bal-

anced after generation a finite number of tasks is evaluated

and shown in Fig. 4. The results of the effect of enhancing

task migrations by considering non-adjacent cores in the pro-

posed algorithm are undoubtedly depicted in Fig. 4 which

shows an increasing trend as compared to when MDS is ap-

plied on the same network. This is due to the fact that the

proportion of task migration on cores other than adjacent

cores increases to obtain the desirable value of LIF. If we

consider conventionally acceptable value of average LIF

between 30-40%, then the increase in execution time will be

insignificant.

Fig. 4. Performance of proposed scheduling on 16-core mesh

network

 Motivated form the results obtained for 4 x 4 mesh net-

work and to test the actual performance of the proposed algo-

rithm the same is also applied on 16-cores Dmesh, Zmesh and

Torus networks with three data sets. Each data set consists of

finite range of task structure. The first set of experiment is

carried out with data set having tasks ranging from 1000 to

4,00,000 tasks, second data set covers tasks up to 16,00,000

and the third data set may go up to 50,00,000. The simulation

results obtained for all four considered networks using LIF

and execution time as metrices are shown in the form of

graphs and are presented in Fig. 5 to Fig. 7.

Fig. 5 (a). Performance of proposed algorithm with low task

structure (LIF)

Fig. 5 (b). Performance of proposed algorithm with low task

structure (Execution Time)

Fig. 6 (a). Performance of proposed algorithm with medium

task structure (LIF)

Fig. 6 (b). Performance of proposed algorithm with low me-

dium structure (Exec. Time)

Fig. 7 (a). Performance of proposed algorithm with high task

structure (LIF)

Journal of Scientific Research, Volume 66, Issue 2, 2022

50

Institute of Science, BHU Varanasi, India

Fig. 7 (b). Performance of proposed algorithm with high task

structure (Exec. Time)

 In all the graphs shown from Fig. 5 to Fig. 7, it is clearly

observed that with the proposed algorithm the initial value of

LIF is improved for all the considered topologies. In particu-

lar, there is an improvement of approximately 20% for

Dmesh and Torus networks. It is because that Dmesh and

Torus both are having extra links that constitutes alternative

path for task migration. Due to this reason, the execution time

also has no significant increment for these networks. Perfor-

mance with other networks is also comparable. Figures also

show that the performance of proposed algorithm is approxi-

mately same for different types of task structures. This is

because most of the tasks are having similar execution times.

The schedular dynamically select the best available path

when the application has a large number of tasks.

 In Fig. 5(b), Fig. 6(b) and Fig. 7(b), the execution times for

minimum value of LIF obtained by the proposed algorithm

are plotted for all the considered networks with different vol-

ume of system loads. The results reveal that there is small

increment in execution times with the proposed algorithm,

however, the performance is similar for all the considered

networks. This is due to the fact that we considered networks

in which each core is connected by bidirectional communi-

cating links to its neighbor cores, as depicted in Fig.1. The

minor increment in execution time is tolerable with highly

reduced value of LIF which ultimately improve the system

utilization. The main attraction of the proposed algorithm is

the independent load which does not have impact on the effi-

cacy of selected architecture.

6 Conclusion and Future Work

In this paper, we have incorporated an enhancement to the

minimum distance scheduling (MDS) algorithm to obtain a

suboptimal solution for task scheduling on multicore systems.

The performance of proposed algorithm is tested for 4x4

mesh-based networks i.e., Mesh, DMesh, ZMesh and Torus

networks. The main objective is to schedule the independent

tasks on 16-cores systems uniformly with minimum

makespan of execution.

 The performance is measured by considering homogene-

ous cores of the system. The load imbalance and execution

times are considered as metrics to evaluate the performance

of the proposed algorithm. The makespan is minimized by

exploiting duplication approach in which non-adjacent cores

of the system are effectively utilized for computations.

Curves are drawn and comparative analysis is carried out.

Simulation results show an improvement of 20-30% in load

imbalance while maintaining an overall execution makespan.

 A promising future direction in this area is to consider the

performance of proposed scheduling approach on heteroge-

neous computing systems. We plan to extend the presented

algorithm to the dynamic environment where process load,

computing resources and network conditions during the exe-

cution of varying input applications. Apart from LIF and

execution time, other performance metrics such as Computa-

tion-To-Communication Ratio (CCR), Normalized Schedule

Length (NSL), Speedup Rate (SR), etc. will be considered for

performance evaluation.

References

[1] Geer, D.: Chip makers turn to multicore processors. Computer,

38, 11-13 (2005).

[2] Al-daloo, M., Soltan, A., Yakovlev, A.: Overview study of on-

chip interconnect modelling approaches and its trend. In: Pro-

ceedings of 7th International Conference on Modern Circuits

and Systems Technologies (MOCAST). pp. 1-5 (2018).

[3] Alimi, I., Patel, R., Aboderin, O., Abdalla, A.: Network-On-Chip

Topologies: Potentials, Technical Challenges, Recent Ad-

vances and Research Direction. Reviewed Chapter (2021).

10.5772/intechopen.97262.

[4] Ghosh., A., Sinha, A., Nancy, Chatterjee, A.: Exploring Network

on Chip Architectures Using GEM5. In: International Confer-

ence on Information Technology (ICIT), pp. 50-55, (2017).

[5] Augonnet. C., Thibault, S., Namyst, R., Wacrenier, P. StarPU: A

unified platform for task scheduling on heterogeneous multi-

core architectures. Concurr Comput Pract Exper. 23(2): 187-

198 (2011).

[6] Lakshmanan, K., Kato, S., Rajkumar, S.: Scheduling Parallel

Real-Time Tasks on Multi-core Processors. In: Proceedings of

31st IEEE Real-Time Systems Symposium, pp. 259-268,

(2010).

[7] Chronaki, K., Rico, A., Casas, M., Moretó, M., Badia, R.M.,

Ayguadé, E., Labarta, J., & Valero, M.: Task Scheduling

Techniques for Asymmetric Multi-Core Systems. IEEE

Transactions on Parallel and Distributed Systems, 28(7),

2074-2087 (2017).

[8] Chronaki, K., Rico, A., Badia, R.M., Ayguadé, E., Labarta, J., &

Valero, M.: Criticality-Aware Dynamic Task Scheduling for

Heterogeneous Architectures. In: Proceedings of the 29th

ACM on International Conference on Supercomputing, pp.

329-459, (2015).

[9] Yao, X., Geng, P., Du, X.: A Task Scheduling Algorithm for

Multi-core Processors. In proceedings: International Confer-

ence on Parallel and Distributed Computing, Applications and

Technologies. pp. 259-264 (2013).

[10] Zheng, Z., Chen, X., Wang, Z., Shen, Li., Li, J.: Performance

model for OpenMP parallelized loops. In: Proceedings 2011

International Conference on Transportation, Mechanical, and

Electrical Engineering (TMEE). pp. 383-387 (2011).

[11] Yuan, L., Jia, P., Yang, Y.: Efficient scheduling of DAG tasks

on multi-core processor based parallel systems. In: Proceed-

ings: IEEE Region Conference pp. 1-6 (2015).

[12] Wunderlich, S., Cabrera, J., Fitzek, F., Reisslein, M.: Network

Coding in Heterogeneous Multicore IoT Nodes with DAG

Scheduling of Parallel Matrix Block Operations. IEEE Inter-

net of Things Journal, 4(4) pp. 917-933 (2017).

[13] Tang, x., Li, K., Liao, G., Li, R.: List scheduling with duplica-

tion for heterogeneous computing systems. J. Parallel Distrb.

Computing. 70(4) pp. 322-329 (2010).

Journal of Scientific Research, Volume 66, Issue 2, 2022

51

Institute of Science, BHU Varanasi, India

[14] Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and

low-complexity task scheduling for heterogeneous computing.

IEEE Transactions on Parallel and Distributed Systems. 13 (3)

pp. 260-274 (2002).

[15] Bansal, S., Kumar, P., Singh, K.: Dealing with heterogeneity

through limited duplication for scheduling precedence con-

strained task graphs. J. Parallel Distrb. Computing. 70(4) pp.

479-491 (2005).

[16] Mohammad, S., Ababneh.: Improving system performance in

non-contiguous processor allocation for mesh interconnection

networks. J. Simulation Modelling Practice and Theory.

[17] Simulation Modelling Practice and Theory, 80, pp. 19-31

(2018).

[18] Manaullah.: Minimum Distance Scheduling Scheme on Line-

arly Extensible Multiprocessor Network. International Journal

of Emerging Technology and Advanced Engineering. 3 (10)

pp. 536- 541 (2013).

[19] Prasad, N., Mukherjee, P., Chattopadhyay, S., Chakrabarti, I.:

Design and Evaluation of ZMesh Topology for On-Chip In-

terconnection Networks. Journal of Parallel and Distributed

(5) pp. 17-36 (2018).
