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Abstract. TB infection is a global problem, especially in Yemen. 

Early detection is critical to reducing TB deaths. As a result, 

accurate tuberculosis diagnosis takes time due to numerous clinical 

examinations. This problem requires a new diagnosis schema. In 

this study, we proposed classification models based on Efficient 

Machine Learning Techniques (EMLT), which predict whether the 

patient is TB-positive or TB-negative. Nine Different Efficient 

Machine learning models were trained and tested in two imbalance 

dataset cases using Stratified 10-Fold Cross-Validation and 

Holdout Cross-Validation and balanced dataset case using Holdout 

Cross-Validation with Synthetic Minority Oversampling 

Technique (SMOTE). The best model was evaluated on a test set 

using F1-score measure in imbalanced dataset case and accuracy 

measure in balanced dataset case. Based on the obtained results, the 

models that achieved the highest value of the F1-Score measure in 

the imbalanced dataset were LR and GBC with 99.826% value in 

Stratified Cross-Validation approach and GBC with 86.0334 in the 

Holdout Cross-Validation approach. And the models that achieved 

the highest value of the accuracy measure in the balanced dataset 

case (SMOTE) and Holdout Cross-Validation, were LR and GBC 

with a 99.725% value. 
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1 Introduction  

According to a recent report of the National Tuberculosis 

Control Program  in Taiz Governorate in 2020, the prevalence of 

Tuberculosis (TB) has increased in Taiz city between 2017–

2020. The report showed that 495 TB  cases in 2017  compared 

to 900 TB cases from 2018 to 2020 However, TB death rates in 

Taiz decreased over the four years from 2017 to 2020 [1]. 

Early detection of tuberculosis (TB) is critical in reducing the 

death rate associated with the disease. However, early detection 

of tuberculosis has some limitations, such as the fact that it takes 

a long time to correctly diagnose tuberculosis [2] because it 

necessitates a large number of clinical examinations. As a result, 

accurate and rapid early detection of tuberculosis is required to 

assist clinicians in selecting the most appropriate treatment for 

their patients. Effective machine learning techniques have 

recently developed several widely used techniques for 

diagnosing diseases that are widely used to identify diseases. 

This approach uses a set of clinical data to develop a model that 

can be used to detect tuberculosis (TB) on its own. Several 

studies have been conducted to detect tuberculosis (TB) using a 

variety of features. 

Olatunji et al. [3] used a genetic neuro-fuzzy inferential 

model-based neural network for the diagnosis of tuberculosis 

(TB).  

Bobak et al. [4] used machine learning techniques that are 

commonly used for TB classification based on transcriptional 

biomarkers, such as Support Vector Machine (SVM), Partial 

Least Squares (PLS), and Random Forest (RF). 

A Gaussian Fuzzy Neural Network has been proposed by 

Mithra and Emmanuel [5] to diagnose tuberculosis (TB) based 

on microscopic images of sputum smear. To detect 

mycobacterium TB in patients, Uçar and Karahoca [2] proposed 

the Adaptive Neuro-Fuzzy Inference System (ANFIS). 

However, the challenges still faced by them, it a challenge 

remains in using machine learning techniques to classify TB 

based on clinical data which are mostly imbalanced and also the 

importance of features selection were used which affect the 

accuracy of this classification.  This was accomplished in this 

study. 

The purpose of this study is to evaluate the performance of 

efficient machine learning techniques for tuberculosis (TB) 

classification based on clinical data, specifically classification 

techniques. The primary contribution of this study is:  

• Developing efficient machine learning techniques as soft 

diagnostic for the classification of tuberculosis disease based 

on clinical balanced and imbalanced data. 

• Comparing different efficient machine learning techniques 

based on clinical balanced and imbalanced datasets.  

• Identifying the best-performing model for the classification of 

TB disease in balanced and imbalanced datasets. 

This paper is structured as follows. Section 2 describes the 

dataset and methods. Section 3 contains the findings and 

discussion. Section 4 contains the conclusion and 

recommendations for future work. 
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2 Dataset and Methods 

2.1 Dataset 

The National Tuberculosis Control Program (NTCP) in Taiz, 

Yemen, provided the datasets for this study. The clinical data 

were collected during three years, from 2017 to 2020. The 

dataset contains 1395 samples, which are divided into two 

categories: positive and negative. The patient with a tuberculosis 

diagnosis (referred to like 1 in the data set) is of a positive class 

(TB Positive). The negative class (as 0 in the dataset) refers to 

patients who are tuberculosis free (TB Negative). There are 938 

samples in the positive class and 457 samples in the negative 

class. Each sample has ten clinical features, all of which are 

binary. Sex, year, and cough in two weeks, bleeding cough, 

sweating at night, fever at night, easily tired, weight loss, 

dyspnea, and decreased appetite are the binary features in the 

dataset used in this study. The distribution of clinical features are 

listed in Table 1. 

Table 1. TB dataset format; 1: positive; 0: negative 

No Feature name Values Data 

type 

1 sex {M,F} C 

2 cough in two 

weeks 

{1, 0} C 

3 bleeding cough {1, 0} C 

4 sweating at 

night 

{1, 0} C 

5 fever at nigh {1, 0} C 

6 Easily tired {1, 0} C 

7 Weight Loss {1, 0} C 

8 Dyspnea {1, 0} C 

9 Decrease 

appetite 

{1, 0} C 

10 Class {TB Positive, TB 

Negative} 

C 

 

Table 1. In the distribution of the binary values. For a sex 

feature, value 1 denotes a male whereas value 0 denotes a 

female, and about all features values, the value 1 represents the 

positive case, and the value 0 represents the negative case. 

2.2 Experiment Design  

The proposed framework for designing the experiments used in 

this study is illustrated in (see Fig. 2) to benchmark the machine 

learning models. The goal was to find the most effective model 

for TB prognosis. The framework utilized in this work included 

pre-processing is applied to the TB clinical data, and features 

selection, shown in (see Fig. 1) that represented the Two-

dimensional ranking of TB dataset features that use Pearson rank 

correlation to demonstrate how well the features correlated with 

the results of the diagnosis. The color in darker red shows that 

the features are highly correlated and to the diagnostic results, 

for example easily tired, weight loss variables, fever at night, and 

sweating at night. Training and testing models were used in two 

cases of dataset: an imbalanced dataset case and a balanced data 

set case. This study used two scenarios designed for experiment 

and evaluation: (1) using the imbalanced dataset, and (2) using a 

balanced dataset. The first scenario is the original data set. The 

pre-processed data set was imbalanced (939 positive class and 

475 negative class), as shown in (see Fig.3 (a)). The imbalance 

dataset case used two ways to split the dataset for training and 

testing for all models. The first way is stratified k-fold cross-

validation, and the second way is Holdout cross-validation. 10-

fold cross-validation is the first way. This means the clinical 

imbalanced data set are divided into 10 times, with two separate 

sets for every number of each fold (training and testing sets). The 

second way is Holdout cross-validation, which is used to split 

the imbalance dataset into training and testing datasets, where 

70% of data is for training and 30% for testing. The second 

scenario in this study was designed for this experiment and 

evaluation. The balanced dataset was generated by resampling 

the imbalance dataset using Synthetic Minority Oversampling 

Technique (SMOTE), comprising (939 positive class and 939 

negative classes), and (see Fig. 3 (b). This scenario used the 

Holdout cross-validation way to split the balanced dataset into 

training and testing datasets, where 70% of data is used for 

training, and 30% is used for testing.  During the training phase, 

every classification model was evaluated using evaluation 

metrics. As a trained model, the best classification method with 

the highest accuracy was selected. The trained models were then 

used to predict the "unseen" clinical data in the testing data. In 

all different scenarios, the prediction results of the test data sets 

were evaluated using the same methods as in the training phase. 

Finally, in the testing phase, the best models were selected 

based on the accuracy measure in the balanced dataset case and 

the f1-score measure in the imbalanced dataset case. 

 

Fig. 1. Pearson-ranking visualization of the TB dataset. 
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Fig. 2. Proposed framework 

 

 

 

Fig. 3. (a) Imbalanced data set and (b) Balanced data set. 

2.3 Classification Methods 

In this study, nine efficient machine learning models for 

classification are used, including Logistic Regression (LR), 

Naive Bayes (NB), K-Nearest Neighbors (KNN), Support 

Vector Machine, Decision Tree (DT), Random-Forest, 

Multilayer Perceptron (MLP), Linear Discriminant Analysis 

(LDA), and Gradient Boosting classifier (GBC). Various models 

used in this study are made available in the Python-based scikit-

learn package, providing a set of efficient machine learning and 

modelling tools, including classification, regression, and 

clustering. The training methods accompanying the package 

enable users to fine-tune classification parameter settings to 

achieve maximum accuracy [6]. 

Table 2 lists the Hyper-parameters settings for each 

classification model in detail. 

Table 2. Hyper-parameters settings of classification methods 

N

o. 

Mo

del 

Hyper-parameters settings setting 

1 LR penalty='l2',solver='sag', 

C=1.0,random_state=33 

2 NB priors=None, var_smoothing=1e-09 

3 KN

N 

n_neighbors= 10,weights ='uniform', 

algorithm='auto' 

4 SV

C 

kernel= 'rbf', max_iter=100,C=2.0, gamma=1 

5 DT criterion='entropy',max_depth=3,random_state=

33 

6 RF criterion = 

'gini',n_estimators=25,max_depth=5,random_sta

te=33 

7 MP

L 

activation='relu',solver='adam',learning_rate='co

nstant',early_stopping= True,alpha=0.0001 

,hidden_layer_sizes=(100, 4),random_state=33 

8 LD

A 

n_components=1,solver='svd',tol=0.00001 

9 GB

C  

reg_param=0.1,tol=0.0001 
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2.4 Evaluation metrics 

There are several methods for evaluating the performance of 

learning models in Supervised Machine Learning (SML). This 

study uses four metrics to compare the models: accuracy, 

sensitivity, specificity, F1-score. To understand these metrics, a 

confusion matrix, which is commonly used to determine the 

performance of a classified as in Table 3. In a confusion matrix, 

TN represents the number of negative instances correctly 

classified (True Negatives), FP represents the number of 

negative instances incorrectly classified as positive (False 

Positive), FN represents the number of positive instances 

incorrectly classified as negative (False Negatives), and TP 

represents the number of positive instances incorrectly classified 

as negative (False Positives) (True Positives). Many standard 

evaluation metrics can be defined using the confusion matrix. 

Table 3. Confusion matrix 

 Predicted 

negative 

Predicted 

positive 

Actual 

negative 
TN FP 

Actual 

positive 
FN TP 

 

• Accuracy. Accuracy is the number of correctly classified 

samples to the total number of samples [7]. The following 

equation represents it mathematically as a ratio between the 

sum of TP and TN and the sum of all samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                        (1) 

This measure works well when the number of samples belonging 

to each class is equal (Balanced). 

 

• Sensitivity (Also known as Recall). This measure is used to 

measure completeness. It gives the number of correctly 

labelled reviews in the test set as positive out of the total 

number of truly positive reviews [8]. The recall  can be 

written as the following equation: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                              (2) 

 

• Specificity. is the complement to sensitivity or the true 

negative rate, and summaries how well the negative class was 

predicted [9], it can be defined as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                          (3) 

• Precision. This metric is used to measure the precision of the 

reviews. It indicates whether all positive reviews have been 

correctly labelled as positive to the total number of positive 

reviews [10]. The precision is calculated using the following 

equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                    (4) 

 

• F1-score. Measures the recall and precision. It combines the 

values of recall and precision measures. If F-score is high,  the 

system architecture is reasonable and the proposed techniques 

are effective [11]. F1- score is measured by the following 

equation: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
)                    (5) 

3 ‘Results and Discussion’ 

The experimental results of TB classification using nine 

classification models (Logistic Regression, Nave Bayes, K-

Nearest Neighbors, Support Vector Machine, Decision Tree, 

Random Forest, Multilayer Perceptron, LDA, and Gradient 

Boosting) are presented. All models are tested on the same 

dataset and evaluated using the same metrics. Tables 3, 4, and 5 

show the classification method evaluation results on the training 

and testing datasets.  This study used two metrics: accuracy and 

F1-Score, considered for comparison of classification models 

performance for imbalance and balanced dataset cases in the 

testing phase. In the imbalanced dataset case, we consider the 

F1-score measure with 10-Fold Stratified Cross-Validation and 

Holdout Cross-Validation because its value also accommodates 

the values of sensitivity and precision. In the balanced dataset 

case, we considered accuracy measure with Holdout Cross-

Validation (SMOTE). As shown in (see Fig. 4), the models that 

achieved the highest values based on the F1-Score measure were 

LR and GBC with 99.826% and 99.826 respectively in Stratified 

Cross-Validation cases. As shown in (see Fig. 5), the model that 

achieved the highest value based on the F1-Score measure was 

GBC with 86.0334% with Holdout cross-validation and in an 

imbalanced dataset case. Also, based on the obtained results 

shown in (see Fig. 6), the model that achieved the highest value 

based on the Accuracy measure were LR and GBC with 

99.725% in balanced dataset case (with SMOTE) and Holdout 

cross-validation. 

Finally, the LR and GBC models achieved the best models for 

TB classification based on clinical data with Stratified 10-Fold 

Cross-Validation in imbalanced data cases and with holdout 

cross-validation (SMOTE) in balanced data cases. Overall, all 

machine learning models performed well in the classification of 

two TB data categories, based on the results of the overall 

experiment. 

The samples in the training and testing datasets are very 

similar, which contributes to the high accuracy in all 

experiments. 

Because machine learning models lack interpretability, they 

cannot explain why a sample is classified into a class. The 

clinician, on the other hand, requires interpretability to make an 

accurate diagnosis. 

 

 

 

 

 



Journal of Scientific Research, Volume 66, Issue 2, 2022 

65 

Institute of Science, BHU Varanasi, India 

 

Table 4. Performance results in the classification models in training and testing phase in Stratified 10-Fold Cross-Validation with imbalanced data 

case. 

 Training phase Testing phase 

Model Accuracy sensitivity specificity  F1-score Accuracy sensitivity specificity  F1-score 

LR 99.761 100 99.386 99.769 99.692 100 99.236 99.826 

NB 99.045 99.846 99.693 99.846 99.793 98.958 99.236 99.303 

KNN 99.045 99.692 100 99.846 99.794 98.958 99.236 99.303 

SVC 99.045 99.846 99.693 99.692 99.589 98.958 99.236 99.303 

DT 99.045 99.692 100 99.692 99.589 98.958 99.236 99.303 

RF 99.045 99.846 99.693 99.692 99.589 98.9583 99.236 99.303 

MLP 99.045 99.692 100 99.844 99.794 98.958 99.236 99.303 

LDA 99.045 99.846 99.693 99.846 99.793 98.958 99.236 99.303 

 GBC 99.761 100 99.386 99.692 99.589 100 99.236 99.826 

Table 5. Performance results in the classification models in training and testing phase in Holdout Cross-Validation case with balanced data case 

(with SMOTE). 

 Training phase Testing phase 

Model Accuracy sensitivity specificity  F1-score Accuracy sensitivity specificity  F1-score 

LR 99.923 99.846 100 99.923 99.725 98.606 99.637 99.424 

NB 99.923 100 99.848 99.923 99.165 98.606 99.637 99.124 

KNN 99.923 99.846 100 99.923 99.165 98.606 99.637 99.124 

SVC 99.923 100 99.848 99.923 99.165 98.606 99.637 99.124 

DT 99.795 99.692 100 99.845 99.165 98.958 99.236 99.124 

RF 99.923 100 99.848 99.923 99.165 98.606 99.637 99.124 

MLP 99.923 99.846 100 99.923 99.165 98.606 99.637 99.124 

LDA 99.923 100 99.848 99.923 99.165 98.606 99.637 99.124 

 GBC 99.923 99.846 100 99.923 99.572 98.606 99.637 99.324 

Table 6. Performance results in the classification models in training and testing phase in Holdout Cross-Validation case with imbalanced data. 

 Training phase Testing phase 

Model Accuracy sensitivity specificity  F1-score Accuracy sensitivity specificity  F1-score 

LR 74.232 31.280 96.997 83.109 74.552 30.113 98.4701 83.419 

NB 74.232 31.280 96.997 83.109 74.552 30.113 98.470 83.419 

KNN 74.232 31.280 96.997 83.109 74.552 30.113 98.470 83.419 

SVC 39.505 89.655 12.924 21.8302 40.159 92.045 12.232 20.997 

DT 74.402 28.325 98.825 83.46 73.757 27.272 98.776 83.033 

RF 74.402 28.325 98.825 83.461 73.757 27.272 98.776 83.033 

MLP 65.358 0 100 79.050 65.009 0 100 78.795 

LDA 74.232 31.280 96.997 83.109 74.552 30.113 98.470 83.419 

 GBC 74.402 28.325 98.825 83.46 76.757 27.272 98.776 86.033 
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Fig. 4. Comparison accuracy and F1-score of the best classifier in 

Stratified k-fold cross-validation in the testing phase and data case is 

imbalanced. 

 

Fig. 5.   Comparison accuracy and F1-score of the best classifier in the 

testing phase with Holdout cross-validation and data case is imbalanced. 

 

 

Fig. 6. Comparison accuracy and F1-score to specific of the best 

classifier in the testing phase with Holdout cross-validation and data 

case is balanced (with SMOTE). 

4 ‘Conclusion and Future Work’ 

Based on patient clinical data, this study evaluates the 

performance of machine learning models for classifying TB. 

Nine classification methods used in this study are LR, NB, KNN, 

SVM, DT, RF, MLP, GBC, and LDA. This study used two 

scenarios designed for experiment and evaluation:  (1) using the 

imbalanced dataset case, and (2) using a balanced dataset case. 

The first scenario is the original dataset that was imbalanced. 

The imbalance dataset used two ways to split the dataset to 

evaluate the performance in training and testing phases for all 

models. The first way is stratified k-fold cross-validation, and 

the second way is Holdout cross-validation. 

The second scenario was the balanced dataset that was 

generated by resampling the imbalance dataset using Synthetic 

Minority Oversampling Technique (SMOTE). To evaluate the 

performance of all models in the training and testing phases, we 

used accuracy, sensitivity, specificity, and F1-score measures.  

The best classification performance of models selected for the 

imbalance and balanced dataset case was in the testing phase by 

two metrics: accuracy and F1-Score. In the imbalanced dataset 

case, we consider the F1-score measure with 10-Fold Stratified 

Cross-Validation and Holdout Cross-Validation. In the balanced 

dataset case (with SMOTE) we consider accuracy with Holdout 

Cross-Validation. The best models that achieved the highest 

value based on the F1-score measure were LR and GBC with 

99.826% and 99.826 respectively in Stratified Cross-Validation 

cases. Moreover, the best model that achieved the highest value 

based on the F1-Score measure was GBC with 86.0334%, 

followed by LR, NB, KNN, and LDA with 83.419% in an 

imbalanced dataset case. Also, the best models that achieved the 

highest value based on the accuracy measure were LR and GBC 

with 99.725% in balanced dataset case. 

 Clinical data and images of TB patients will be used in 

the future to classify TB with multimodal features. Another 

direction in the future is to improve the interpretability of TB-

classification machine learning models.  
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