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Abstract: With the increasing use of synthetic dyes in textile 

industries, there has been a simultaneous increase in the levels of 

water pollution, as a result of release of effluents from these textile 

industries. The effluents constitute majorly of synthetic dyes which 

are toxic and harm aquatic organisms. Thus, we need to treat the 

effluents prior to release into the environment. The available 

physio-chemical methods have limitations when applied at large 

scale, and thus biological methods are the most suitable. Biological 

agents may be biomass or purified enzymes. Dye decolorization is 

achieved mostly by either/both biodegradation and biosorption. In 

biodegradation, the dye is converted to a less toxic product by 

microbial enzymes, and in biosorption the dye particles are 

adsorbed on the surface of the microbial cells. In this review, there 

is a compilation of the efficiency of dye decolorization by enzymatic 

degradation of various azo and anthraquinone dyes by microbial 

enzymes. 

Index Terms: Decolorization of Synthetic Dyes, Dye 

Bioremediation, Textile Effluents, Microbial Enzymes, Peroxidases 

 

 
Fig. 1. Microbial Enzymes involved in Dye Decolorization 

I. INTRODUCTION 

A dye is a synthetic colored chemical substance, which when 

applied to fibers, colors them permanently. This color does not 
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fade even upon microbial attack, exposure to light, salts, sweat, 

water and most of the chemicals (Rai et al, 2005). Due to the 

expansion of the global textile industry, a peak in usage of 

synthetic dyes has been observed (Sen et al, 2021a), and this has 

also resulted in increased pollution because of wastewater 

containing dye contaminants (Pandey et al, 2007). Treating these 

volumes of wastewater is needed; else the water bodies into 

which they are released will be rendered unusable due to 

presence of dyes. Based on processing stages, there are different 

wastewater characteristics, like dissolved oxygen (DO), pH, 

inorganic and organic chemical contents, etc (Saratale et al, 

2009). Careless release of these effluents into the aqueous 

ecosystems harms the aquatic life. Moreover, many synthetic 

dyes are toxic, carcinogenic, and mutagenic (Dawkar et al, 

2010).  

There are many physical and chemical methods for the 

removal of synthetic dyes from effluents of textile industries 

(Gupta, 2009). These techniques produce large amounts of 

sludge which too requires further safe disposal, thus slowing 

down efforts to eradicate water pollution, particularly in 

developing countries (Khandare et al, 2013). Thus, economical 

and ecofriendly alternatives are required. The biological 

alternatives have many advantageous characteristics. (Jadhav et 

al, 2009). This technique of using living organisms like bacteria, 

algae, fungi, actinomycetes, yeasts or dead biomass for the 

biodegradation/biosorption of textile dyes and other xenobiotics 

is called BIOREMEDIATION. 

Removal of color by either conversion of a chromophore to a 

non-chromophore is termed as “decolorization”. While 

biodegradation is the breakdown of the dye molecule by 

enzymes, adsorption of the dye on the surface of the support also 

causes decolorization. The latter does not cause a change in the 

composition of a dye. Decolorization by degradation, however, 
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always results into the formation of a new product (Gao et al, 

2010). A number of advanced and developed instrumental 

techniques are available for verification of Decolorization by 

degradation including Atmospheric pressure chemical ionization 

(APCI), Gas Chromatography/Mass Spectrometry (GC/MS), 

High-Performance Liquid Chromatography (HPLC), and Fourier 

Transform Infra-Red spectroscopy (FTIR) (Jadhav et al, 2010). 

These techniques have revolutionized the chemical analysis 

procedures and give accurate information about the structure, 

molecular orientation and functions of the dye molecule, which 

plays a key role in the verification and predictions of steps that 

are associated with decolorization (Gao et al, 2010). 

II. MICROBIAL DYE DECOLORIZATION 

Most microbes are able to produce large amounts of enzymes 

like peroxidases, laccases, azoreductases, etc, as shown in Fig. 1. 

These enzymes play a role in degrading most azo and 

anthraquinone dyes to colorless and less toxic compounds by 

various mechanisms, as has been discussed in Section 2. Many 

white rot fungi, like Phanerochaetae chrysosporium and 

Trametes versicolor can degrade synthetic dyes (Sharma et al, 

2009; Bibi & Bhatti, 2012). Some bacteria that possess this 

capability are Serratia marcescens (Gusmanizar et al, 2016), 

Serratia liquefaciens (Haq & Raj, 2018), Pseudomonas 

aeruginosa (Phugare et al, 2011), Acinetobacter radioresistens 

(Ramya et al, 2010), Brevibacterium (Franciscon et al, 2012), 

Aeromonas hydrophila (Thanavel et al, 2019), Bacillus subtilis 

(Barathi et al, 2020), Bacillus cereus (Sheela & Sadasivam, 

2020), Anoxybacillus (Wang et al, 2020) etc. Sporulating fungi 

like Aspergillus (Asses et al, 2018), Geotrichum sp. (Rajhans et 

al, 2020) and Penicillium (Ayla et al, 2018) have also been 

reported for the decolorization of synthetic dyes. Actinomycetes 

like Streptomyces chromofuscus can also decolorize synthetic 

dyes (Dong et al, 2019). 

There are many parameters that affect the efficiency of dye 

decolorization, such as properties of the microbes, whether the 

inoculum is of a pure culture, mixed culture, or a consortium, 

whether the microbes are aerobic, anaerobic, or both. Properties 

of the dye, such as structure, concentration and toxicity also 

determine decolorization efficiency. Apart from these, efficiency 

of dye decolorization is also influenced by physiological 

conditions, such as temperature, pH, inoculum concentration, 

dissolved oxygen, incubation time etc (Garg & Tripathi, 2017). 

III. ADVANTAGES OF MICROBIAL METHODS OF DYE 

DECOLORIZATION OVER OTHER METHODS 

Advantages of bioremediation include conversion of the 

organic compounds to non-toxic products (carbon dioxide and 

water), sustainability, low cost and the ease of operation (Al-

Tohamy et al, 2020). These techniques are also environment 

friendly, and do not produce sludge, unlike as in the case of the 

physiochemical methods (Khandare et al, 2013). Microbes are 

also easier and faster to grow, and are less likely to cause much 

technical difficulties during the decolorization process (Karim et 

al, 2018).  

Physiochemical methods have shortcomings such as high 

operating cost, large quantities of sludge and interferences from 

the other constituents of the wastewater. Biological methods, 

however, are economic and have stable effects. Thus, biological 

methods have been widely used, and more specifically, 

microbial methods are the most suitable (Holkar et al, 2016; 

Nouren et al, 2017). 

The available physicochemical methods, such as 

flocculation/coagulation, adsorption, precipitation, oxidation, 

membrane extraction, electrolysis and advanced oxidation 

processes (Imran et al, 2015). These methods are effective, but 

also very chemical/energy intensive. Moreover, chemical 

methods introduce further chemicals which may be toxic 

themselves. Most physical methods concentrate pollutants, 

which need further safe disposal or treatment, further increasing 

the cost of treatment. Microbes, on the other hand, can 

completely degrade the dyes instead of concentrating, and thus 

reduce the time, labor and cost required (Sandhya et al, 2007). 

Due to these drawbacks, microbial methods are considered more 

specific, effective and safe, as they completely convert the 

organic pollutants to non toxic stable end products. Some 

microbes also can adsorb the pollutants, and thus are the greener 

alternatives (Wariishi et al, 2002). 

IV. ENZYMATIC DEGRADATION OF SYNTHETIC 

TEXTILE DYES 

Dyes can be decolorized by either reductive enzymes such as 

azoreductases, or oxidative enzymes like peroxidases and 

laccase (Singh et al, 2015; Sheela & Sadasivam, 2020). 

A. Azoreductases 

 Azoreductases are flavoproteins that use electron donors 

(NADH/ NADPH/ FADH) to reduce the azo bond of azo dyes 

(Russ et al, 2000) and convert them into their corresponding 

colorless aromatic amines. The breakdown of the azo bond 

occurs at the bacterial cell membrane, either intracellularly or 

extracellularly. Thus these enzymes are potent decolorization 

agents of textile effluents (Ramya et al, 2010; Dong et al, 2019; 

Sheela & Sadasivam, 2020). 

Azoreductases are produced by a wide variety of 

microorganisms, such as Pigmentiphaga kullae K24 (Blumel & 

Stolz, 2003), Xenophilus azovorans KF46F (Blumel et al, 2002), 

Enterococcus faecalis (Chen et al, 2004), Staphylococcus aureus 

(Chen et al, 2005), Bacillus sp. OY1-2 (Suzuki et al, 2001), and 

Rhodobacter sphaeroides (Bin et al, 2004). It was reported that a 

recombinant strain of Escherichia coli expressing the X. 

azovorans KF46F azo B gene showed around 50X higher 

azoreductase activity than by X. azovorans KF46F (Blumel et al, 

2002). Azoreductase is expressed by many microbes that are a 
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part of the human gut microbiota, such as Clostridium, 

Pseudomonas, Bacillus, Geobacillus, Lysinibacillus, 

Enterococcus and Eubacterium (Zahran et al, 2019). 

There have been lots of applications of azoreductases in 

textile dye decolorization which have been reported by various 

researchers. In all the cases, various azo and anthraquinone dyes 

were decolorized up to 64-100%, which is significant for the 

treatment of textile effluents. Some such data has been 

summarized in Table I. 

 

Table I. Decolorization of various azo dyes by microbial Azoreductases 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized* 

Reference 

Acinetobacter 

radioresistens 

Acid Red >70 Ramya et al 

(2010) 

Aeromonas 

hydrophila SK 

16 

Acid Fast 

Yellow MR 

91.25 Thanavel et al 

(2019) 

Alcaligenes sp. 

AA09 

Reactive 

Red BL 

100 Pandey & 

Dubey (2012) 

Bacillus cereus 

SKB12 

Reactive 

Black 5 

88.7 Sheela & 

Sadasivam 

(2020) 

Bacillus lentus 

BI377 

Reactive 

Red 141 

99.11 Oturkar et al 

(2013) 

Bacillus 

megaterium 

Red 2G 64.89 Khan (2011) 

Bacillus strain 

SF 

 

Reactive 

Black 5 

86 Maier et al 

(2004) 

 Mordant 

Black 9 

38 

Bacillus 

subtilis 

ORB7106 

Methyl Red 98 Leelakriangsak  

& Borisut 

(2012) 

Brevibacterium 

sp. strain VN-

15 

RY107 98 Franciscon et 

al (2012) 

Consortium of 

Providencia 

sp. SDS and 

Pseudomonas 

aeuroginosa 

BCH 

Red HE3B 100 Phugare et al 

(2011) 

Enterococcus 

faecalis 

Methyl Red 100 Chen & Ting 

(2015) 

Enterococcus 

gallinarum 

Direct 

Black 38 

100 Bafana et al 

(2009) 

Escherichia 

coli JM109 

(pGEX-AZR) 

Direct Blue 

71 

100 Jin et al (2009) 

Mutant 

Bacillus sp. 

ACT2 

Congo Red 30 Gopinath et al 

(2009) 

Proteus sp. Congo Red 67 Perumal et al 

(2012) 

Pseudomonas 

aeruginosa 

Remazol 

Orange 

94 Sarayu & 

Sandhya 

(2010) 

Staphylococcus 

aureus 

Methyl Red 100 Chen et al 

(2005) 

Streptomyces 

sp. S27 

Methyl Red 99 Dong et al 

(2019) 

Xenophilus 

azovorans 

KF46F 

Acid 

Orange 7 

100 Blumel et al 

(2002) 

*Under Optimal Conditions 

B. NADH-DCIP Reductase 

NADH-DCIP Reductase is a part of the multifunctional 

oxidase system of bacteria, and is involved in the bioremediation 

of xenobiotics (Salokhe & Govindwar, 1999). Using NADH, it 

reduces DCIP (2,6-dichloroindophenol), turning its blue color to 

colorless. The nonspecific reductase which was induced 

significantly during biodegradation of Malachite Green was 

called MG Reductase. It uses NADH and reduces Malachite 

Green to Leucomalachite Green (Parshetti et al, 2006).  

This enzyme is produced by many bacteria like Pseudomonas 

aeuroginosa BCH (Jadhav et al, 2009), Bacillus subtilis (Barathi 

et al, 2020) etc., and fungi like Penicillium sp. YW 01 (Yang et 

al, 2011), Sterigmatomyces halophilus SSA1575 (Al-Tohamy et 

al, 2020), Achaetomium strumarium (Bankole et al, 2018), 

Perenniporia subacida (Si et al, 2014) etc. Many consortia have 

proven to be better in decolorizing textile dyes than the 

individual microbial strains. For example, a consortium 

consisting of Micrococcus glutamicus NCIM-2168 and Proteus 

vulgaris NCIM-2027 could decolorize Green HE4BD by 86% 

(Saratale et al, 2010). A consortium of Pseudomonas 

aeuroginosa BCH and Providencia sp. SDS decolorized Red 

HE3B completely (Phugare et al, 2011). A consortium of 

Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 

decolorized Direct Red 81 by 99% (Lade et al, 2015). 

Many researchers have reported the role of NADH-DCIP 

reductases in textile dye decolorization. Percentage 

decolorization ranged from 86-100%, demonstrating the 

possibility of use of this enzyme more widely for effluent 

treatment. Some such examples have been compiled in Table II. 

 

Table II. Decolorization of dyes by microbial NADH-DCIP Reductase 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized* 

Reference 

Achaetomium 

strumarium 

Acid red 88 99 Bankole et 

al (2018) 

Bacillus 

circulans  BWL1

061 

Methyl 

Orange 

99.22 Liu et al 

(2017) 

Bacillus subtilis Reactive 

Blue 160 

100 Barathi et 

al (2020) 

Proteus vulgaris 

NCIM-2027 and 

Micrococcus 

glutamicus 

NCIM-2168 

Green 

HE4BD 

86 Saratale et 

al (2010) 

Providencia 

rettgeri strain 

HSL1 and 

Pseudomonas sp. 

SUK1 

Direct Red 

81 

98-99 Lade et al 

(2015) 

Consortium of 

Providencia sp. 

Red HE3B 100 Phugare et 

al (2010) 
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SDS and 

Pseudomonas 

aeuroginosa 

BCH 

Penicillium sp. 

YW 01 

Malachite 

Green 

98.23 Yang et al 

(2011) 

Perenniporia 

subacida 

Neutral Red 96.56 Si et al 

(2014) 

Pseudomonas 

aeuroginosa 

BCH 

Orange 39 93.06 Jadhav et 

al (2010) 

Pseudomonas 

monteilii ANK 

Scarlet RR 97 Kabra et al 

(2013) 

Sterigmatomyces 

halophilus SSA1

575 

Reactive 

Black 5 

(RB5) 

100 Al-

Tohamy et 

al (2020) 

*Under Optimal Conditions 

C. Lignin Peroxidase (LiP) 

LiP is an oxidoreductase, and specifically acts on peroxide as 

an electron acceptor, and thus is called as peroxidase. It is a part 

of the broad category of ligninases. LiP catalyzes multiple 

oxidations in the lignin (or lignin-related compounds) side 

chains by removal of one electron at a time, to form reactive 

radicals (A•+), where A is the substrate, or dye to be decolorized 

(Tien & Kirk, 1983; Kersten et al, 1990).  

LiP is produced by microbes like Providencia sp. SRS82 

(Agrawal et al, 2014), Serratia liquefaciens (Haq & Raj, 2018), 

Bacillus cereus SKB12, Phanerochate chrysosporium and other 

white-rot fungi such as Trametes maxima, Phanerochaete 

sordida, Phlebia radiata and Phlebia tremellosa (Harazono et al, 

2003). Some other fungi that use LiP for decolorizing dyes are 

Aspergillus niger (Asses et al, 2018), Ganoderma lucidum 

(Shaheen et al, 2017), Stereum ostrea (Usha et al, 2014) etc. 

There are many reported uses of bacterial as well as fungal 

LiP in dye decolorization, showing 61-100% decolorization of 

many azo dyes. Some of such reports have been summarized in 

Table III. 

 

Table III. Decolorization of dyes by microbial Lignin Peroxidase 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized* 

Reference 

Acinetobacter 

calcoaceticus 

NCIM 2890 

Methyl Red 98 Godhake et al 

(2009) 

Aspergillus 

niger 

Congo Red >97 Asses et al 

(2018) 

Bacillus 

cereus SKB12 

Reactive 

Black 5 

88.7 Sheela & 

Sadasivam 

(2020) 

Ganoderma 

lucidum IBL-

05 

Red C4BLN 93 Shaheen et al 

(2017) 

Kocuria rosea 

MTCC 1532 

Methyl 

Orange 

100 Parshetti et al 

(2006) 

Phanerochaete 

chrysosporum 

Ranocid Fast 

Blue 

83 Verma & 

Madamwar 

(2002) 

Phanerochate 

chrysosporium 

Rhodamine 

B 

91 Lan et al 

(2006) 

F. F. Lombard 

ME446 

Phanerochaete 

sordida 

Reactive 

Red 120 

90.6 Harazono et al 

(2003) 

Phlebia 

tremellosa 

Remazol 

Red 

100 Kirby et al 

(2000) 

Polyporus 

ostreiformis 

Congo Red 99 Dey et al 

(1994) 

Providencia 

sp. SRS82 

Acid Black 

210 

90 Agrawal et al 

(2014) 

Serratia 

liquefaciens 

Azure B 90 Haq & Raj 

(2018) 

Stereum ostrea Crystal 

Violet 

90 Usha et al 

(2014) 

Trametes 

maxima 

LE130 

Reactive 

Black 5 

61 Levin et al 

(2019) 

*Under Optimal Conditions 

D. Manganese Peroxidase (MnP) 

MnP is another peroxidase that can be broadly classified as a 

ligninase. The glycoprotein consists of heme, and oxidizes Mn2+ 

to Mn3+, which is an electron donor. Mn3+, in turn, can oxidize 

many phenolic substrates. The reaction it catalyzes has A as the 

substrate, or dye to be decolorized, and A•+ is the oxidized 

reactive radical (Eibes et al, 2006). 

MnP is produced by many white-rot fungi like Phanerochaete 

chrysosporium, Phanerochaete sordida, Trametes polyzona etc 

(Sharma et al, 2009; Lueangjaroenkit et al, 2019). There are 

eleven different isoforms of MnP in Ceriporiopsis 

subvermispora (Chmelová & Ondrejovič, 2016). Bacteria like 

Bacillus cereus SKB12 also produce MnP (Sheela & Sadasivam, 

2020). 

There have been many reports of the role of MnP in 

decolorization of textile dyes, showing 63-100% decolorization 

of several azo dyes. Some such reports have been summarized in 

Table IV. 

 

Table IV. Decolorization of dyes by microbial Manganese Peroxidase 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized

* 

Reference 

Bacillus cereus 

SKB12 

Reactive 

Black 5 dye 

88.7 Sheela & 

Sadasivam 

(2020) 

Bjerkandera adusta Reactive 

Violet 5 

87 Heinfling et 

al (1998) 

Bjerkandera sp. 

strain BOS55 

Orange II >85 López et al 

(2004) 

Ceriporiopsis 

subvermispora  ATC

C 90467 

Malachite 

Green 

87.8 Chmelová & 

Ondrejovič 

(2016) 

Daedaleopsis 

confragosa 

Green 

HE4BD 

90.08 Manawadi et 

al (2019) 

Ganoderma lucidum 

IBL-05 

Sandal-fix 

Black CKF 

95.7 Bilal & 

Asgher (2015) 

Irpex lacteus Remazol 

Brilliant 

Blue R 

(RBBR) 

100 Svobodová et 

al (2006) 
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Irpex lacteus F17 Direct Sky 

Blue 5B 

63.75 Duan et al 

(2018) 

Phanerochaete 

chrysosporium 

Bromopheno

l blue 

99.3 Svobodová et 

al (2006) 

Phanerochaete 

chrysosporium 

Orange II 85 Sharma et al 

(2009) 

Phanerochaete 

sordida 

Reactive 

Red 120 

90.6 Harazono et 

al (2003) 

Schizophyllum sp. 

F17 

Orange IV 76 Yao et al 

(2013) 

Strain L-25 (white rot 

fungus) 

Reactive 

Orange 16 

99.6 Kariminiaae-

Hamedaani et 

al (2007) 

Trametes polyzona 

KU-RNW027 

Remazol 

Brilliant 

Blue 

100 Lueangjaroenki

t et al (2019) 

*Under Optimal Conditions 

E. Dye Degrading Peroxidase (DyP) 

The DyP is a new class of heme peroxidases which show no 

homology in structure or sequence to other microbial 

peroxidases. They have wide substrate specificity. They can 

function optimally in low pH conditions, and oxidize the typical 

substrates of peroxidases, in addition to other synthetic high 

redox potential anthraquinone dyes, which cannot be converted 

by the other peroxidases (Min et al, 2015). 

DyP is produced by fungi like Auricularia auricula-judae 

(Liers et al, 2013), Geotrichum candidum (Rajhans et al, 2020), 

Irpex lacteus (Duan et al, 2018), Pleurotus ostreatus (Cuamatzi-

Flores et al, 2019) etc., and bacteria like Pseudomonas putida 

and Bacillus subtilis (Santos et al, 2014) etc. Some studies 

reporting the role of DyP in dye decolorization have been 

summarized in Table V. 

Table V. Decolorization of dyes by microbial Dye Peroxidase 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized* 

Reference 

Auricularia 

auricula-

judae 

Azure B 100 Liers et al 

(2013) 

Geotrichum 

candidum 

Methyl 

Orange 

94.6 Rajhans et 

al (2020) 

Irpex 

lacteus F17 

Reactive 

violet 5 

92.16 Duan et al 

(2018) 

Pleurotus 

ostreatus 

Acid Blue 

129 

77 Cuamatzi-

Flores et al 

(2019) 

Pseudomonas 

putida 

Direct Red 

5B 

81 Khandare 

et al (2013) 

*Under Optimal Conditions 

F. Laccases 

Laccases or multicopper oxidases (MCO) are Polyphenol 

Oxidases (Birhanli & Yesilada, 2006; Giardina et al, 2010; 

Arora & Sharma, 2010), which can degrade and decolorize 

phenolic compounds as well as aromatic azo dyes. They can 

oxidize aromatic amines using Copper (II) as the mediator 

(Sudha et al, 2014; Singh et al, 2015; Mehta et al, 2016). 

Laccase is mainly produced by wood-degrading fungi such as 

Tinea versicolor (Mostafa et al, 2019), Trametes hirsuta (Yanto 

et al, 2019), Cerrena unicolor (Michniewicz et al, 2008), 

Ceriporiopsis subvermispora (Chmelová & Ondrejovič, 2016) 

etc. Bacterial laccase was first reported in a bacterium called 

Azospirillum lipoferum (Singh et al, 2007). Since then, laccase 

activity has also been demonstrated in other bacteria such as 

Bacillus subtilis, Streptomyces griseus, and Thermus 

thermophilus etc (Kumari et al, 2018). 

Laccases are the most efficient and most applied enzymes in 

bioremediation of textile dyes. There are many applications of 

laccases in the decolorization of dyes, resulting in 75-100% 

decolorization in most cases. Some of such studies have been 

compiled in Table VI. 

 

Table VI. Decolorization of dyes by microbial Laccases 

Producer 

Microbe 

Dye 

Decolorized 

% 

Decolorized* 

Reference 

Aeromonas sp. 

DH-6 

Methyl 

Orange 

100 Du et al (2015) 

Anoxybacillus 

ayderensis 

SK3-4 

Direct green 

6 

100 Wang et al 

(2020) 

Aspergillus 

oryzae 

Drimaren 

Blue 

80-90 Teixeira et al 

(2010) 

Armillaria sp. 

F022 

Reactive 

Black 5 

80 Hadibarata et al 

(2012) 

Bacillus cereus 

SKB12 

Reactive 

Black 5 

88.7 Sheela & 

Sadasivam 

(2020) 

Ceriporiopsis 

subvermispora 

ATCC 90467 

Malachite 

Green 

87.8 Chmelová & 

Ondrejovič 

(2016) 

Cerrena 

unicolor 

Acid Red 27 100 Michniewicz et 

al (2008) 

Coprinopsis 

cineria 

Methyl 

Orange 

47.6 Tian et al 

(2013) 

Coprinus 

plicatilis 

Turquoise 

Blue HFG 

100 Akdogan et al 

(2014) 

Coriolopsis sp. 

(1c3) 

 

Crystal 

Violet, 

Methyl 

Violet, 

Cotton Blue, 

Malachite 

Green 

94, 97, 91 and 

52 

respectively 

Chen & Ting 

(2015) 

Curvularia sp. Congo Red 100 Senthilkumar et 

al (2015) 

Dichomitus 

squalens 

Orange G, 

Remazol 

Brilliant 

Blue R 

(RBBR) 

100 and 92 

respectively 

Eichlerová et al 

(2007) 

Funalia trogii 

ATCC 200800 

Crystal 

Violet 

38 Yesilada et al 

(1995) 

Ganoderma 

lucidum E47 

strain 

Bromocresol 

purple 

56 Palazzolo et al 

(2019) 

Ganoderma sp. Methyl 

Orange 

>90 Sun et al (2012) 

Ganoderma sp. 

En3 

RBBR, 

Indigo 

Carmine, 

Methyl 

66-82, >93.4, 

>83 

respectively 

Lu et al (2016) 
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Green 

Ganoderma sp. 

En3 

Reactive 

Orange 16 

95.1 Ma et al (2014) 

Ganoderma 

weberianum 

TZC1 

Indigo dye 

 

92 Tian et al 

(2013) 

 

Geobacillus 

catenulatus 

MS5 

Congo Red 99 Verma & 

Shirkot (2014) 

Geobacillus 

stearothermop

hilus 

Indigo 

carmine, 

Congo Red, 

Brilliant 

Green 

99, 98, 60 

respectively 

Mehta et al 

(2016) 

Immobilized 

Trametes 

pubescens, 

Pleurotus 

ostreatus 

Remazol 

Brilliant 

Blue R, 

Reactive 

Blue 49 

>95 Chen & Ting 

(2015) 

Irpex lacteus Black 

Dycem 

90 Baccar et al 

(2011) 

Lentinus 

polychrous 

Congo Red 75 Suwannawong 

et al (2010) 

Micrococcus 

luteus 

CI Acid 

Black 210 

96.4 Kanagaraj et al 

(2015) 

Oudemansiella 

canarii 

Congo Red 80 Iark et al (2019) 

Penicillium sp. Vat brown -

5 

75 Ayla et al 

(2018) 

Peniophora 

cinerea 

Textile 

Industry 

Effluent 

54.6 Moreira et al 

(2014) 

Pichia pastoris Crystal 

Violet 

90.7 Wang et al 

(2018) 

Pleurotus 

ostreatus 

Synazol Red 

HF6BN 

96 Ilyas et al 

(2012) 

Pleurotus 

ostreatus 

Remazol 

Brilliant 

Blue R 

80 Palmieri et al 

(2005) 

Pleurotus 

ostreatus 

MTCC 142 

Crystal 

Violet 

92 Kunjadia et al 

(2012) 

Pleurotus 

ostreatus URM 

4809 

Remazol 

brilliant blue 

R 

86 Simões et al 

(2019) 

Pleurotus 

ostreatus, P. 

sapidus, P. 

florida 

 

Coralene 

Golden 

Yellow, 

Coralene 

Navy Blue, 

Coralene 

Dark Red 

88, 92, 98 

respectively 

for all dyes 

Kunjadia et al 

(2016) 

Podoscypha 

elegans 

Rose Bengal 70.41 Pramanik & 

Chaudhari 

(2018) 

Providencia 

rettgeri strain 

HSL1 

C.I. Reactive 

Blue 172 

(RB 172) 

98-99 Lade et al 

(2015) 

Providencia sp. 

SRS82 

Acid Black 

210 

triazodye 

90 Agrawal et al 

(2014) 

Pseudomonas 

desmolyticum 

NCIM 2112 

Direct Blue 

6, Green 

HE4B and 

Red HE7B 

100 for all 

three 

Kalme et al 

(2009) 

Pycnoporus 

sanguineus 

Crystal 

Violet 

49.4 Sulaiman et al 

(2013) 

Pycnoporus 

sanguineus 

Trypan Blue 70 Annuar et al 

(2009) 

Serratia 

liquefaciens 

Azure B >90 Haq & Raj 

(2018) 

Shewanella 

oneidensis 

(MFC) 

Acid Orange 

7 

80.4 Mani et al 

(2019) 

Thelephora sp. Orange G 19 Selvam et al 

(2003) 

Trametes 

hirsuta 

EDN084 

Direct Blue 85 Yanto et al 

(2019) 

Trametes 

versicolor 

Reactive 

Black 5 

42.78 Bibi & Bhatti 

(2012) 

Trametes 

versicolor 

strain 1 

Reactive 

Blue 4 

90 Yemendzhiev 

et al (2009) 

Trametes trogii Textile 

Factory 

effluent 

81 Khlifi et al 

(2010) 

*Under Optimal Conditions 

G. Other Enzymes 

There are some enzymes which are not very common in 

decolorization of textile dyes. These include tyrosinases, which 

convert monophenols to o-diphenols, and further to o-quinones. 

Some microbes producing these enzymes, and aiding in 

bioremediation of textile effluents are Bacillus cereus SKB12 

(Sheela & Sadasivam, 2020), Providencia sp. SRS82 (Agrawal 

et al, 2014), Kurthia huakuii LAM0618 (Guo et al, 2016) etc. 

Veratryl Alcohol Oxidases are another class of such enzymes 

that oxidize veratryl alcohol to veratraldehyde, reducing O2 to 

H2O2, which is used by peroxidases to further degrade the dyes. 

Providencia rettgeri strain HSL1, Pseudomonas sp. SUK1 and 

Comamonas sp. UVS have been reported to decolorize dyes via 

production of Veratryl Alcohol Oxidases (Jadhav et al, 2009; 

Lade et al, 2015). Superoxide Dismutases and Catalases also 

play a minor role in dye decolorization, and have been reported 

in Lysinibacillus sp. by certain researchers (Bedekar et al, 2014). 

These enzymes have been reported to decolorize various azo 

dyes by 88-100% in most cases. Some of such reports have been 

summarized in Table VII. 

 

Table VII. Decolorization of dyes by other microbial enzymes 
Enzyme Producer 

Microbe 

Mode of 

Action 

Dye 

Decolori-

zed 

% 

Decolori-

zed* 

Reference 

Polyphenol 

Oxidase/ 

Tyrosinase 

Bacillus 

cereus 

SKB12 

Catalyses o-

hydroxylation 

of monophenols 

to o-diphenol 

and oxidation 

of o-diphenols 

to o-quinones 

Reactive 

Black 5 

88.7 Sheela & 

Sadasivam 

(2020) 

Providencia 

sp. SRS82 

Acid 

Black 

210 

triazodye 

90 Agrawal 

et al 

(2014) 

Kurthia 

huakuii 

LAM0618 

Ethyl 

Violet 

94 Guo et al 

(2016) 

Veratryl 
Alcohol 

Oxidase 

Providencia 
rettgeri strain 

HSL1 

Oxidizes 
veratryl alcohol 

to 

Reactive 
Orange 

16 

98-99 Lade et al 
(2015) 
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Pseudomonas 

sp. SUK1 

veratraldehyde, 

reducing O2 to 

H2O2, which is 

used by 

peroxidases 

Direct 

Red 81 

99 Lade et al 

(2015) 

Comamonas 

sp. UVS 

Red 

HE7B 

57.5 Jadhav et 

al (2009) 

Superoxide 
dismutase 

Lysinibacillus 
sp. 

Protect the cell 
from oxidative 

stress and have 

a role in 

decolorization 

along with 

oxidoreductive 

enzymes 

Reactive 
Orange 

16 

100 Bedekar et 
al (2014) 

Catalase Lysinibacillus 

sp. 

Reactive 

Green 

19A 

95 Bedekar et 

al (2014) 

*Under Optimal Conditions 

FUTURE SCOPE 

One of the shortcomings of microbial dye decolorization is the 

limited capacity of adsorption by the biomass. Moreover, the 

type of microbes to be used depends on the pre-treatment and 

properties of the effluents and their constituent dyes (Srinivasan 

& Viraraghavan, 2010). Screening of microbes that decolorize 

specific dyes is time consuming and laborious. Also maintaining 

purity of strains is difficult due to high chances of contamination 

(Bharagava et al, 2017). Furthermore, most microbes do not 

produce enough enzymes to decolorize huge batches of dyes. In 

such cases, genetic engineering is required to produce 

overexpressing strains. However, when compared to the huge 

list of advantages, these limitations can easily be overlooked, 

making bioremediation the solution of choice (Azubuike et al, 

2016). 

A lot of work still remains to be done to overcome the above 

limitations. Testing dye decolorization under high acidity and 

alkalinity needs to be studied, as most dyes render the pH of the 

effluent very high or low. Also, immobilizing the microbes may 

aid in reuse and easy separation of the biomass from the effluent. 

Studying various methods of immobilization and optimizing 

conditions for the same are necessary for sustainable dye 

decolorization (Sen et al, 2021b). 

We also need to explore microbes that produce high yields of 

enzymes with unique and desirable properties, including 

resistance to extreme pH, temperature, dye toxicity etc. Thus, 

genetic engineering of such strains needs to be developed to 

produce strains that overexpress the dye decolorizing enzymes 

(Blumel et al, 2002), and also such that the enzymes are stable 

and resistant to extreme conditions. Furthermore, techniques on 

manipulation of enzyme activity need to be developed in order 

to obtain optimal decolorization. 

CONCLUSION 

In the present review, the role of all possible enzymes in 

biodegradation of dyes from the textile effluents were studied, 

along with the microbes that produce those enzymes, the dyes 

that are decolorized by them, and also the percentage of dye 

decolorization. It was observed that decolorization can be done 

by pure strains of bacteria, fungi, as well as consortia. It was also 

noted that most of the toxic azo and anthraquinone dyes were 

being decolorized by 80-100% under optimum conditions. Thus, 

it can be concluded that enzymes like azoreductase, NADH-

DCIP Reductase, LiP, MnP, DyP, Laccase, Veratryl Alcohol 

Oxidase, Tyrosinase, Superoxide Dismutase and Catalase are 

indeed very efficient in decolorizing  textile effluents with high 

concentrations of dyes, and demonstrated the possibilities of 

effective textile effluent treatment processes in the near future. 
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