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Abstract: Rice bean acid phosphatase dialyzed against 

ethylenediaminetetracetic acid (1 mM), yielded no loss in activity at 

0.5 mM p-nitrophenylphosphate. It had a mild activating effect at 

0.1 mM p-nitrophenylphosphate. Divalent cations belonging to 

group II of Periodic Table like Mg2+, Ca2+, Sr2+, and Ba2+ at 0.5 mM 

concentration p-nitrophenylphosphate did not affect the enzyme 

activity. At 0.1 mM p-nitrophenylphosphate, however, only Mg2+ 

ions showed little inhibition. The transition metal ions viz. Zn2+, 

Cu2+, Co2+, Mn2+ and Fe3+ showed inhibition at both p-

nitrophenylphosphate concentrations. Na+, K+, and NH4
+ ions did 

not influence the enzyme activity, but Li+ inhibited the activity at 

0.1 and 0.5 mM p-nitrophenylphosphate concentrations, 

respectively. Molybdate and phosphate anions proved to be strong 

inhibitors, but vanadate, a moderate inhibitor. Tartrate anion did 

not exhibit an effect on rice bean acid phosphatase. Sugars, plant 

hormones, medicines, vitamins, and amino acids at 1.0 mM 

concentration did not affect the enzyme activity. NADH exhibited 

the maximum activation, followed by citric acid, isocitrate, and 

oxaloacetate. Caffeine showed activation in the enzyme activity. 

Phosphate esters (1-Naphthylphosphate, phenylphosphate, PEP, 

and ADP) exhibited competitive inhibition when p-

nitrophenylphosphate was used as a substrate. Non-ionic detergents 

Triton X-100 and Tween-20 brought activation to the enzyme. The 

ionic detergent SDS brought complete loss to the enzyme activity. 

Dithiothreitol brought inhibition to the enzyme activity. The 

presence of β-mercaptoethanol did not influence the enzyme 

activity. 

Index terms: Acid phosphatase, Metabolites, Metal ions, 

Phosphate, Rice bean.  

I. INTRODUCTION 

Acid phosphatase (EC 3.1.3.2) (APase) catalyzes the 

hydrolysis of phosphate esters to yield alcohol and inorganic 

phosphate at pH below 7.0 (Duff et al., 1994). APase got 

isolated and characterized from different plant sources 

(Roknabadi et al., 1999; Turner & Plaxton, 2001; Koffi et 

al., 2010; Anand & Srivastava, 2013; Tagad & Sabharwal, 2018; 

Zaman et al., 2020; Chafik et al., 2020; Nongpiur et al., 2021). 

Reports are there on the influence of ions (cations and anions) 

and metabolites (effectors) on the acid phosphatase activity (Guo 

& Roux, 1995; Turner & Plaxton, 2001; Coello, 2002; Greiner & 

Jany, 2003; Koffi et al., 2010; Nadir et al., 2012; Khan et al., 

2016; Chafik, 2020).  

EDTA demonstrated differential effects on APase from 

different plant tissues. Most APases did not exhibit an effect 

with EDTA, indicating that divalent cations were not essential 

for catalytic activity (De-Kundu & Banerjee, 1990; Miernyk, 

1992; Kawarasaki et al., 1996; Nakazato et al., 1997; Granjeiro 

et al., 1999; Cirkovic et al., 2002; Greiner & Jany, 2003; Senna 

et al., 2006). In the presence of EDTA, inhibition in the enzyme 

activity was observed in some APases, suggesting that there is 

an obligate requirement of divalent cations (Gellatly et al., 1994; 

Asaduzzaman et al., 2011). EDTA brought a 2.5 fold stimulating 

effect on tyrosine phosphatase from pea nuclei (Guo & Roux, 

1995). A similar activation effect was noticed in the coleoptiles 

and seeds of barley and Lagenaria siceraria APase (Pasqualini 

et al., 1992; Koffi et al., 2010). Among the metal ions, a study 

was on the use of Zn2+, Cu2+, Fe3+, Mg2+, Mn2+, and Ca2+ 

(Biswas & Cundiff, 1991; Kawarasaki et al., 1996; Garcia et al., 

2004; Senna et al., 2006; Asaduzzaman et al., 2011; Anand & 

Srivastava, 2013; Khan et al., 2016).  

The effect of anions such as phosphate, molybdate, and 

vanadate has been extensively studied (Biswas & Cundiff, 1991; 

Guo & Roux, 1995; Cirkovic et al., 2002; Garcia et al., 2004; 

Hoehamer et al., 2005; Nadir et al., 2012; Khan et al., 2016). 

Phosphate and vanadate ions are structurally similar. Phosphorus 
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and vanadium are located centrally with four oxygen attached in 

a tetrahedral arrangement. Three oxygen are in the ionic form. 

Inorganic phosphate (Pi), a product of APase catalyzed 

hydrolysis, whatever the substrate may be, is a potent 

competitive inhibitor (Kaneko et al., 1990; Biswas & Cundiff, 

1991; Miernyk, 1992; Granjeiro et al., 1999; Roknabadi et 

al., 1999; Turner & Plaxton, 2001; Cirkovic et al., 2002; Coello, 

2002; Greiner & Jany, 2003; Andriotis & Ross, 2004; Hoehamer 

et al., 2005; Nadir et al., 2012). It is agreed upon that Pi could 

play a physiological role in sustaining a stable phosphate level in 

the cell through feedback regulation of enzyme activity. 

Vanadate is also one of the anions that show inhibition in most 

cases (Gellatly et al., 1994; Granjeiro et al., 1999; Roknabadi et 

al., 1999; Turner & Plaxton, 2001; Coello, 2002; Greiner & 

Jany, 2003; Andriotis & Ross, 2004; Senna et al., 2006; Nadir et 

al., 2012). 

Molybdate anion has a central Mo with four oxygen 

attached, of which only two are in the ionic form. Molybdate is 

also a potent inhibitor to almost all APase tested so far (De-

Kundu & Banerjee, 1990; Kaneko et al., 1990; Miernyk, 1992; 

Gellatly et al., 1994; Olczak et al., 1997; Tso & Chen, 1997; 

Granjeiro et al., 1999; Zhang & McManus, 2000; Turner & 

Plaxton, 2001; Cirkovic et al., 2002; Coello, 2002; Greiner & 

Jany, 2003; Senna et al., 2006; Nadir et al., 2012). Tartrate had 

no significant effect on APase activity of hazel seeds (Andriotis 

& Ross, 2004), potato tuber (Gellatly et al., 1994), lupin seeds 

(Olczak et al., 1997), buckwheat (Greiner & Jany, 2003), 

and Vigna radiata (Nadir et al., 2012) and this is a typical 

feature of the purple APases. Animal purple APases got reported 

to be resistant to tartrate inhibition, while most plant purple 

APases are either slightly inhibited or did not show an effect 

(De-Kundu & Banerjee, 1990; Roknabadi et al., 1999). 

 

Literature is also available on the effect of metabolites 

on acid phosphatase activity. The presence of citrate, oxalate, 

DTT, SDS, Triton X-100, β-mercaptoethanol on the enzyme 

activity got tested (Sugiura et al., 1981; De Kundu & Banerjee, 

1990; Roknabadi et al., 1999; Greiner & Jany, 2003; Nadir et al., 

2012; Chafik, 2020). 

Non-ionic detergent like Triton X-100 brought 

activation in most cases. This detergent has a strong affinity for 

hydrophobic side chains, and its interaction with a hydrophobic 

domain is responsible for activation. Further, its effect on 

different isozymes varies. It stimulated the activities of AP-I, 

AP-II, and AP-III but did not change AP-IV activity (Biswas & 

Cundiff, 1991). AP-1 was activated, while AP-2 showed 

inhibition in the presence of Triton X-100 (Koffi et al., 2010). 

SDS being an anionic detergent brings inhibition in activity 

only. Its effect on two isozymes AP-I and AP-II from Vigna 

radiata showed a marked difference. AP-I was severely affected, 

whereas much less inhibition got observed for AP-II.  

Recently a report on the purification of acid 

phosphatase from rice bean (Vigna umbellata Thunb.) has come 

from our laboratory (Nongpiur et al., 2021). In the present paper, 

we put forward the results of the effect of cations, anions, and 

metabolites on the acid phosphatase activity and analyze the 

results in the light of available literature. 

II. RESULTS AND DISCUSSION 

A. Effect of cations 

The enzyme dialyzed against EDTA showed no loss in 

the specific activity. The result suggests that none of the divalent 

cations are bound to the enzyme. The effect of divalent and 

monovalent cations on the APase activity were tested at 1.0 mM 

concentration at two different p-NPP concentrations (0.1 and 0.5 

mM). The results got summarized in Table I.  

 

Table I: Effect of cations (1mM) on (EDTA dialyzed) APase 

activity 

[Cation] (1.0 mM) Activity (%) 

[p-NPP] 

(0.1mM) 

 

Activity (%) 

[p-NPP] 

(0.5mM) 

 

Control 100 100 

EDTA 112.3 ±1.69 107.2 ±4.72 

MgCl2 86.5 ± 2.6 97.5 ± 5.2 

MnCl2 72.7 ± 0.7 76.9 ± 2.2 

CaCl2 94.3 ± 2.0 101.4 ± 1.0 

SrCl2 93.2 ± 1.8 96.9 ± 3.5 

FeCl3 42.3 ± 2.3 59.6 ± 2.9 

BaCl2 94.3 ± 6.0 102.5 ± 1.7 

CoCl2 66.9 ± 0.2 86.6 ± 0.9 

ZnCl2 0.0 ND* 

CuSO4 0.0 ND* 

NaCl 95.4  ± 3.2 97.8 ± 2.1 

KCl 95 ± 4.0 99.7 ± 2.3 

LiCl 45.8 ± 3.1 61.5 ± 2.2 

NH4Cl 95.7 ± 1.7 110.1 ± 1.1 

 

The transition metal ions viz. Co2+, Mn2+, Fe3+, and 

Cu2+ inhibited the enzyme at the two p-NPP concentrations (0.1 

and 0.5 mM). Mn2+ ions inhibited some APases (Sugiura et al., 

1981; Guo & Pesacreta, 1997; Yenigun & Guvenilir, 2003; 

Garcia et al., 2004; Anand & Srivastava, 2013). Fe3+ also 

inhibited APase isoforms from Vigna species (V. sinensis and V. 

aconitifolia) and Opuntia (Biswas & Cundiff, 1991; Biswas et 

al., 1996; Anand & Srivastava, 2013; Chafik, 2020). Co2+ 

inhibited some APases (Turner & Plaxton, 2001; Garcia et al., 

2004). The effects of Zn2+ and Cu2+ got tested on APase activity 

at 0.1 mM p-NPP. A complete loss in the enzyme activity was 

observed. Inhibition of APase activity in the presence of Zn2+ is 

consistent with other APases (Sugiura et al., 1981; Kruzel & 

Morawiecka, 1982; Pan et al.. 1987; Gellatly et al., 1994; Olczak 

et al., 1997; Cashikar et al., 1997; Granjeiro et al., 1999; 
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Roknabadi et al., 1999; Turner & Plaxton, 2001; Koffi et al., 

2010; Asaduzzaman et al., 2011; Anand & Srivastava, 2013; 

Khan et al., 2016).  Inhibition in the presence of Cu2+ ions got 

observed in some APases (Sugiura et al., 1981; Waymack & 

Van Etten, 1991; Tso & Chen, 1997; Granjeiro et al., 1999; 

Yenigun & Guvenilir, 2003; Garcia et al., 2004; Singh & Luthra, 

2011; Anand & Srivastava, 2013; Chafik, 2020).  

Na+, K+, and NH4
+ ions do not influence APase activity. 

Na+ and K+ ions did not affect other APases (Sugiura et al., 

1981; Tagad & Sabharwal, 2018). Li+ inhibited the rice bean 

APase in the present study. APase from Phaseolus vulgaris leaf 

got inhibited by Li+. The latter ions did not influence APase 

from P. vulgaris nodule (Garcia et al., 2004). Other enzymes 

also did not show an effect in the presence of Li+ (Guo & 

Pescareta, 1997; Khan et al., 2016).  

B. Effect of anions 

The results of effect of anions (1 mM) on APase activity is 

shown in Fig. 1. 

 

 

Fig. 1: Effect of anions (1 mM) on APase activity at [p-NPP] 0.1 

mM. 

Molybdate and phosphate anions proved stronger 

inhibitors to the vanadate anion. Inhibition in the enzyme 

activity got reported in the presence of phosphate in different 

APases (Sugiura et al., 1981; Ching et al., 1987; Gellatly et al., 

1994; Olczak et al., 1997; Granjeiro et al., 1999; Turner & 

Plaxton, 2001; Cirkovic et al., 2002; Singh & Luthra, 2011). 

Phosphate is one of the products of the APase catalyzed reaction. 

There are reports of inhibition of APase activity in the presence 

of molybdate (Sugiura et al., 1981; Kruzel & Morawiecka, 1982; 

Ching et al., 1987; Miernyk, 1992; Pasqualini et al., 1992; 

Gellatly et al., 1994; Olczak et al., 1997; Tso & Chen, 1997; 

Cashikar et al., 1997; Granjeiro et al., 1999; Ferreira et al., 2000; 

Turner & Plaxton, 2001; Coello, 2002; Senna et al., 2006; Singh 

& Luthra, 2011; Khan et al., 2016). Phosphate and molybdate 

are most often inhibitors of APase did not affect the APase from 

tomato leaves (Tanaka et al., 1990).  

 

APase also got inhibited in the presence of vanadate 

(Waymack & Van Etten, 1991; Gellatly et al., 1994; Granjeiro et 

al., 1999; Roknabadi et al., 1999; Ferreira et al., 2000; Turner & 

Plaxton, 2001; Coello, 2002; Cirkovic et al., 2002; Senna et al., 

2006). Tartrate anion did not affect the rice bean APase like 

other APases (Sugiura et al., 1981; Vincent & Averill, 1990; 

Olczak et al., 1997; Granjeiro et al., 1999; Turner & Plaxton, 

2001; Coello, 2002; Andriotis & Ross, 2004).  

C. Effect of metabolites 

The result of sugars influence on the APase activity is 

in Table II. 

The influence of effectors on the APase catalyzed 

reaction got tested; the p-NPP concentration kept 0.1 mM which 

is close to the Km value (0.108 mM) (Nongpiur et al. 2021). In 

these conditions, the enzyme is 50% saturated, and therefore 

effectors are more likely to exert their effects (Ambasht et al., 

1997). In some experiments, however, the p-NPP concentration 

was kept 0.5 mM.  

Disaccharides do not significantly affect APase catalyzed 

reaction. Sucrose did not affect APase activity from ripened 

banana fruit (Turner & Plaxton, 2001). Glucose and fructose 

exhibited mild activating effects. However, the above sugars did 

not demonstrate any effect on APase from banana fruit (Turner 

& Plaxton, 2001).  

Table II: Effect of biomolecules (sugars) on rice bean APase 

activity 

 

[Biomolecule]  1mM; 

 [p-NPP] 0.1 mM 
Activity (%) 

Sugars  

Control 100 

Glucose 111.2 ± 2.5 

Sucrose 106.4 ± 4.3 

Galactose 108.3 ± 7.5 

Lactose 106.9 ±8.8 

Maltose 106.9 ±1.0 

Fructose 111.7 ± 6.8 

 

 All 20 amino acids tested had no effect on APase 

activity (data not shown). Asp and Glu did not demonstrate any 

end-result on APase from ripened banana fruit (Turner & 

Plaxton, 2001). 

The outcome of effects of some plant hormones like 

indole-3-acetic acid, gibberellic acid, abscisic acid, salicylic acid 

and some medicines like acetaminophen, aspirin, ibuprofen, etc. 

at 1.0 mM got tested on APase activity. None of them exert any 

effect on APase activity (data not shown). 

 

The effects of some metabolites of at 1.0 mM got tested on 

APase activity ([p-NPP] 0.5 mM). Results are displayed 

in Table III. 
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Amongst the metabolites, NADH showed maximum 

activation. Intermediates of the TCA cycle like citrate, isocitrate, 

and oxaloacetate mildly activated the APase activity. Citrate 

activated different APases (Guo & Roux, 1995; Kawaraski et al., 

1998). Citrate in some other APases did not show any effect 

(Cirkovic et al., 2002; Greiner & Jany, 2003; Nadir et al., 2012). 

 

Table III: Effect of metabolites and phosphate esters (1mM) on 

APase activity 

Metabolites and Phosphate esters  Activity (%) 

 Control [p-NPP] 0.5 mM 100 

Metabolites (1 mM)  

Citrate 121.9 ± 1.2 

Isocitrate 116 ± 3.1 

Oxalic Acid 113 ± 3.8 

Oxaloacetic acid 118.1 ± 2.2 

Fumaric acid 112.7 ± 5.2 

α Ketoglutaric acid 109.8 ± 5.2 

Pyruvic acid 112.7 ± 2.2 

Urea 107.9 ± 3.8 

NADH 127.4 ± 2.0 

Glycolic acid 109.2 ± 3.1 

Gluconic acid 103.8 ± 1.3 

Caffeine 116.3 ± 4.6 

Phosphate esters (1mM)  

Glucose-6-phosphate 97.4 ± 3.4 

Fructose-6-phosphate 83.6 ± 2.4 

PEP 58.4 ± 0.3 

ATP 59.6 ± 0.6 

ADP 64.1 ± 1.3 

AMP 101.5 ± 5.3 

NADP+ 116.5 ± 0.9 

1-Naphthyl phosphate 60.1 ± 1.3 

Phenyl phosphate 50.5 ± 1.7 

Phytic acid 89.2 ± 5.0 

 

 

Other dicarboxylic acids like oxalic acid and fumaric 

acid-activated rice bean APase marginally. The presence of 

oxalate did not manifest any effect on the APase activity 

(Olczack et al., 1997; Greiner & Jany, 2003). Caffeine brought 

activation to the APase. The role of fumaric acid, isocitrate, and 

oxaloacetate on APase activity is still not established. It is 

interesting to note that PEP, ADP, 1-naphthyl phosphate, and 

phenyl phosphate in presence of p-NPP as substrate inhibited 

strongly APase activity. ATP also strongly inhibited the enzyme 

activity. Fructose-6-phosphate moderately inhibited APase, but 

glucose-6-phosphate had no effect. NADP+ moderately activates 

APase activity. AMP has no effect on APase activity. 

 

For a better analysis of the data, the effect of such 

metabolites at 1.0 mM and 0.1 mM was tested keeping the p-

NPP concentration 0.1 mM. The result is presented in Table IV. 

The results are first compared when the metabolite concentration 

was kept 1.0 mM and [p-NPP] reduced from 0.5 mM and 0.1 

mM. The activation in the presence of tricarboxylic acids citrate 

and isocitrate was more pronounced. Oxaloacetate and caffeine 

which were moderately activating the enzyme, showed no effect. 

 

Table IV: Effect of selected metabolites on APase activity 

Metabolite Activity % 

[p-NPP]  

(0.1 mM) 

[Metabolite] 

(0.1mM)  

Activity % 

[p-NPP]  

(0.1 mM)  

[Metabolite] 

(1.0 mM) 

Control 100 100 

Citrate 122.5 ± 2.5 129.7 ± 3.9 

Isocitrate 117.7 ± 4.3 121.4 ± 2.8 

Oxaloacetic acid 97.9 ± 1.7 103.8 ± 0.7 

Caffeine 97.2 ± 3.4 94.0 ± 5.5 

NAD+ 84.28 ± 2.2 72.5 ± 3.3 

PEP 51.6 ± 0.8 24.5 ± 1.0 

ATP 53.3 ± 1.1 25.9 ± 0.7 

ADP 44.4 ± 1.7 18.5 ± 0.7 

1-Naphthyl phosphate 68.3 ± 2.7 25.37 ± 2.6 

Phenyl phosphate 49.46 ± 0.9 16.84 ± 0.7 

 

  It is interesting to note that PEP, ATP, ADP, 1-naphthyl 

phosphate and phenyl phosphate exerted a stronger inhibition of 

APase activity. The results are now compared when metabolite 

concentration was also reduced from 1.0 mM to 0.1 mM and 

reducing p-NPP from 0.5 mM to 0.1 mM.  Citrate and isocitrate 

show almost similar activation pattern.  Oxaloacetate and 

caffeine which had shown moderate activation earlier have no 

effect under present situation. Phenyl phosphate has practically 

no effect. PEP and ATP showed little more inhibition. In the 

presence of ADP, however, the inhibition was more pronounced. 

The inhibition in the presence of 1-naphthyl phosphate was 

lesser in comparison to others. 

Table V: Nature of inhibition and Ki of inhibitors with respect to 

[p-NPP] 

 

Inhibitor [Inhibitor] 

(mM) 

Nature of 

Inhibition 

Ki 

(mM) 

1-Naphthyl 

phosphate 

0.2 mM Competitive 0.228 

ADP 0.2 mM Competitive 0.109 

PEP 0.1 mM Competitive 0.1 

Phenyl 

phosphate 

0.2 mM Competitive 0.076 

 

In all the cases, competitive inhibition has been 

observed. The Ki values for PEP, ADP and phenyl phosphate are 

quite close to Km value of p-NPP, suggesting that the above 

organic phosphates have a strong affinity for the active site. In 

case of 1-naphthyl phosphate, Ki value is almost twice the Km 
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value of p-NPP, suggesting it to have a weaker affinity for active 

site. 

The effect of some compounds and detergents got 

tested on APase activity. Result is shown in Fig. 2. 

 

 
 

Fig.2: Effect of some compounds and detergents on APase 

activity 

 

It is interesting to note that non-ionic detergents Triton 

X-100 and Tween-20 brought activation to the enzyme-like 

some others (De-Kundu & Banerjee, 1990; Biswas & Cundiff, 

1991; Cirkovic et al., 2002; Nadir et al., 2012). APase isoforms 

of Vigna sinensis showed activation in the presence of non-ionic 

detergent Triton X-100 due to its strong affinity for hydrophobic 

side chains of enzymes. The interaction of the detergent with the 

hydrophobic domain of the enzyme may be the reason for the 

activation (Biswas & Cundiff, 1991). Peanut APase got 

stabilized in the presence of non-ionic detergent (Gonnety et al., 

2006). Ionic detergent SDS brought complete loss in activity of 

APase in the present study like in APase from the castor bean, 

bringing about modification of tertiary structure with exposure 

of hydrophobic side chain (Granjeiro et al., 1999). APases from 

other sources also got inhibited in the presence of SDS (De-

Kundu & Banerjee, 1990; Biswas & Cundiff, 1991; Chafik, 

2020).  

 

Dithiothreitol that usually stabilizes SH groups in a 

protein brought inhibition to APase in the present study. The 

presence of β-mercaptoethanol did not affect the APase activity. 

β-Mercaptoethanol also did not demonstrate any effect on other 

reported APases (Kruzel & Morawiecka, 1982; Anand & 

Srivastava, 2013). 

III. EXPERIMENTAL 

Rice bean APase used in the present study was as 

reported earlier (Nongpiur et al., 2021). The chemicals employed 

in the experiments were from Sigma Aldrich USA and Merck 

Germany. The other chemicals were AR Grade from Sisco 

Research Laboratory, HiMedia, Qualigens Fine Chemicals, and 

Sd. Fine Chemicals, India. De-ionized water was from the Milli-

Q system (Millipore, USA). The enzyme activity was assayed 

using p-nitrophenylphosphate (p-NPP) as the substrate described 

as described earlier (Nongpiur et al., 2021).  

 

The APase (80 U/mg) was dialyzed against in 50 mM 

Tris-HCl buffer, pH 7.5, containing 1.0 mM EDTA. The EDTA- 

dialyzed enzyme was used for the study for the effects of the 

divalent and the monovalent cations. The outcome of different 

divalent (calcium chloride, magnesium chloride, manganese 

chloride, cobalt chloride, strontium chloride, ferric chloride, 

barium chloride, zinc chloride, copper sulfate) and monovalent 

(potassium chloride, ammonium chloride, sodium chloride, and 

lithium chloride) cations got studied at 1.0 mM concentration on 

rice bean APase catalyzed reaction at two different 

concentrations of p-NPP (0.1 mM and 0.5 mM). Solutions of 

metal ion salt were prepared in the assay buffer. 

 

Several metabolites of the TCA cycle, nucleotides, 

sugars, amino acids, plant hormones, and organic phosphates got 

tested for their effects on APase catalyzed reaction at 1.0 mM 

concentration. A 10 mM stock solution of the metabolite got 

prepared in the assay buffer. The 2.0 mL test solution contained 

1.0 mL p-NPP, 0.75 mL assay buffer, and 0.2 mL of metabolite. 

The reaction got started by adding an enzyme aliquot (0.05 mL). 

The concentration of p-NPP in the assay mixture was 0.1 

mM.   In one set of experiments, a few selected metabolites were 

tested for their effects on APase activity at 1.0 mM and 0.1 mM 

while keeping the concentration of p-NPP in the assay mixture at 

0.1 mM. In another experiment, a few additives were tested for 

their effects at 1.0 mM or 1%, keeping the p-NPP concentration 

0.1 mM. 

 

CONCLUSION 

Rice bean acid phosphatase activity in the presence of 

divalent, monovalent, and trivalent cations were investigated.  

APase activity got inhibited in the presence of Zn2+, Cu2+, Co2+, 

Mn2+, Fe3+, and Li+, while Mg2+, Ca2+ did not impart any effect. 

Among anions phosphate, molybdate, and vanadate were 

inhibitors. Intermediates of TCA cycle like citrate, isocitrate, and 

oxaloacetate brought activation. Non-ionic detergents like Triton 

X-100 and Tween-20 exhibited activation. This is the first report 

on activation of the acid phosphatase in the presence of NADH 

and this behavior needs an investigation in future.  
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