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Abstract: In this paper, difference squeezing in the degenerate 

three-photon absorption six-wave interaction process is 

examined. The difference squeezing in fields between the 

pump and Stokes modes can be converted to normal squeezing 

in the signal mode, and vice versa. It is demonstrated that in 

the pump mode, amplitude-cubed squeezing is directly turned 

into normal squeezing in the signal mode. The squeezing in the 

stimulated interaction, which reduces the depth of classicality 

of the field amplitude, is seen to be larger than the 

corresponding squeezing in the spontaneous interaction, 

despite having the same number of pump photons. Difference 

squeezing is observable only in certain domain values of pump 

photons. It is deduced that the multi-photon absorption 

nonlinear optical approach is the best way to generate optimal 

squeezed laser light in any optical system. 

Keywords: Amplitude-cubed Squeezing, Difference Squeezing, 

Photon Number Operator, Six-Wave Interaction Process, 

Squeezed States. 

I. INTRODUCTION 

Squeezed states of light (Walls, 1983; Loudon & Knight, 

1987; Henry & Glotzer, 1988; Teich & Saleh, 1989) are one 

of the intrinsic examples of nonclassical states of light 

(Mandel, 1986; Dodonov, 2002; Wódkiewicz, 1987). It may 

be expressed using complex amplitude, which represents 

both the amplitude and phase of the field. The amplitude of 

the electromagnetic field is never constant; there are always 

quantum residual fluctuations (Slusher et. al., 1985; Bachor, 

1998; Vogel et.al., 2001), called zero-point fluctuations. 

The fluctuations in the quadrature components are equal 

and randomly distributed in the field quadrature 

components in a coherent condition (Perina, 1991). On the 

other hand, it is feasible to minimize fluctuations in one 

quadrature component while increasing fluctuations in the 

other quadrature component when compared to a coherent 

state. These states are called squeezed states (Loudon, 2000; 

Dodonov, 2007), in which quantum noise (or fluctuations) 

in field quadrature components is not randomly distributed. 

Quantum low-noise exists in all electromagnetic field states, 

including the field vacuum state. Its low-noise fluctuation in 

any quantum state (Special issue on squeezed states, 1987, 

p. 707; 1987, p. 1450) has piqued the interest of the 

community, with potential applications in optical 

telecommunication (Saleh & Teich, 1987; Yuen & Shapiro, 

1978), quantum cryptography (Bennett et. al., 1992; 

Kempe, 1999), an interferometric approach to detect 

gravitational waves (Caves, 1981), signal amplification 

(Wong, 1991), and so on. Squeezed states are a novel sort 

of quantum state in the electromagnetic field, and study into 

them should yield new basic insights. Further, the concept 

of higher-order squeezing of the quantized electromagnetic 

field was introduced by Hong et al. (Hong & Mandel, 1985, 

p. 323; 1985, p. 974) and Hillery (Hillery, 1987, p. 3796; 

1987, p. 135). Based on theoretical and experimental 

evidence, several researchers have reported the 

development of techniques for measuring higher-order 

correlations in quantum optics in various nonlinear optical 

processes such as parametric amplification (Wu et. al., 

1986; Fernee et. al., 1995), harmonic generations (Mandel, 

1982; Kielich et. al., 1987; Zhan, 1991; Pratap et. al., 2014, 
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p.1065; Pratap et. al. 2014, p. 1126), multi-photon processes  

(Reid & Walls, 1984, p. 406; 1985, p. 1622; Perina et. al., 

1984; Razmi & Eberly, 1990; Tanas et. al., 1991; Hillery, 

1992; Giri & Gupta, 2003, p. 135; 2008, 219; Choudhary & 

Giri, 2018), and Raman processes (Perina & Krepelka, 

1991; Kumar & Gupta, 1995, p. 835; 1996, p. 1053; Giri & 

Gupta, 2005). In their recent research, Prakash and Mishra 

have recently looked into higher-order squeezing as a way 

to improve the performance of a number of optical devices 

and networks (Prakash & Mishra, 2005, p. 665; 2010, p. 

2212; Mishra, 2010). Garcia Fernandez et al. (Garcia et. al., 

1986) as well as Mishra et al. (Prakash & Mishra, 2006; 

Mishra & Singh, 2020) investigated higher-order 

nonclassical states in single-mode and their utility in 

detecting nonclassical light. Hillery  (Hillery, 1989) 

proposed a two-mode sum and difference squeezing that 

was later expanded to three modes  (Kumar & Gupta, 1998) 

and an arbitrary number of modes  (Giri & Gupta, 2005; 

Olsen & Horowicz, 2007; Ba & Tinh, 2000). Prakash et al. 

(Prakash & Mishra, 2007) investigated the production of 

sum squeezing in two-mode light when mixed with 

coherent light using a beam splitter. Truong et al. (Truong 

et. al., 2014) and Wang et al. (Wang & Xu, 2015) have 

investigated the precise behaviour of higher-order 

nonclassical effects and entanglements as a function of the 

parameters involved. Mukherjee et al. (Mukherjee et. al., 

2016) discussed the possibilities of sum-and-difference 

squeezing in harmonic generating techniques. Giri et al. 

(Giri & Choudhary, 2020) investigated the possibility of 

generating sum squeezing in the frequency up-conversion 

process, and more recently, Mishra et al. (Mishra et. al., 

2020) described how a beam splitter with third-order 

nonlinear material could generate sum-and difference-

squeezing that is relevant for applications to efficient 

quantum computation, quantum teleportation, and other 

quantum communication and information problems. As a 

result, it opens up new possibilities for exploring higher 

order nonclassical effects.  

In the present paper, we examine the squeezing of 

differences between the pump and Stokes modes in a 

degenerate three-photon absorption six-wave interaction 

process, in which three pump photons interact with a 

nonlinear medium, resulting in the emission of two probe 

(Stokes) photons and the subsequent emission of one signal 

photon to the initial state. The format of the paper is as 

follows: Higher-order squeezing is defined in Section II. 

Section III establishes the analytic equation for difference 

squeezing in the six-wave difference-frequency of the two 

modes. The results and discussion are presented in Section 

IV. Finally, the paper is summarized and concluded in 

section V. 

II. DEFINITION OF HIGHER-ORDER 

SQUEEZING 

Higher-order squeezing is the higher powers of the 

field amplitude (Hillery, 1987), which is illustrated in the 

following two sections. 

A. AMPLITUDE-CUBED SQUEEZING OF SINGLE 

MODE 

The real and imaginary portions with frequency  and 

creation (annihilation) operators )ˆ(ˆ † aa of the 

amplitude-cubed squeezing (Zhan, 1991) for a single 

mode of an optical field can be defined as follows: 

 
 )ÂÂ(1/2)(Ẑ †33

1 +=                  (1) 

And )ÂÂ()2/1(Ẑ †33

2 −= i
.
                           (2) 

where Â  and 
†Â  are the gradually varying operators, 

they are given by 

t)(-i exp  
†

ˆ  
†

Â and t)(i exp  ˆ    Â   aa ==            (3) 

The commutation relation is followed by equations (1) 

and (2),  

  ( )6ˆ9ˆ9
2

ˆ,ˆ
ˆ

2
ˆ21 ++=

AA
NN

i
ZZ

.

                (4) 

where
A

NAA ˆ
† ˆˆˆ =  is the number operator.   

Equation (4) yields the uncertainty relation (ħ = 1), as 

 6ˆ9ˆ9
4

1ˆˆ
ˆ

2
ˆ21 ++

AA
NNZZ

.

  (5) 

where
1Ẑ  and 

2Ẑ  are the uncertainties in the 

quadrature. 

Amplitude-cubed squeezed state in iẐ  exists if     

( ) 6ˆ9ˆ9
4

1ˆ
ˆ

2
ˆ

2

++
AAi NNZ  where i = 1 or 2.  (6) 

The nature of these states is completely quantum 

mechanical. Traditionally, the variance ( )2ˆ
iZ is 

expressed in the state's P-representation as 

( ) ( )

 2†3333*

2
ˆ

2
ˆ

2

ÂÂ)3exp()3exp(

4

1
6ˆ9ˆ9

4

1ˆ

+−+−

+++= 
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

titi

PdNNZ
AAi

        

(7) 

where P() is the quasi-probability function for coherent 

states. 
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A classical state whose P-representation is non-negative 

definite, as in equation (7), satisfies the connection,  

 ( ) 6ˆ9ˆ9
4

1ˆ
ˆ

2
ˆ

2

++
AAi NNZ    (8) 

This means that a state satisfying equation (6) has non-

classical characteristics. 

A coherent state is one in which the field quadrature 

variances fulfil the following equation:  

 ( ) 6ˆ9ˆ9
4

1ˆ
ˆ

2
ˆ

2

++=
AAi NNZ

.

      (9) 

B. DIFFERENCE SQUEEZING OF TWO MODES 

Difference squeezing may be defined through 

variables 
1Ŵ  and 

2Ŵ
 
in two modes having frequency 1 

and 2 with creation (annihilation) operators )a(a ˆˆ †
 and 

)b(b ˆˆ†

 
respectively, as 

( )2†3†23

1
ˆˆˆˆ

2
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




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and      ( )2†3†23

2
ˆˆˆˆ

2

1ˆ BABA
i

W −







=               (11) 

The operators 
1Ŵ  and 

2Ŵ  yield the commutation 

relation as 

 
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and leads to uncertainty relation (ħ = 1) 
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.                                           (13) 

where AAN
A

ˆˆˆ †
ˆ =  and BBN

B
ˆˆˆ †

ˆ = are the photon 

number operators. 

Difference squeezing in jŴ  direction exists if 

( )

BABABABA

j

NNNNNNNN

W

ˆ
3
ˆ

2
ˆ

3
ˆ

2
ˆˆ

2
ˆ

2
ˆ
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4
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ˆ
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where j = 1 or 2 .                                                       

 (14) 

For two-mode state, the P-representation P(,) may be 

expressed as,  

( )

BABABABA

j

NNNNNNNN

W

ˆ
3
ˆ

2
ˆ

3
ˆ

2
ˆˆ

2
ˆ

2
ˆ
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4

1
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−+−+
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 +
4

1
d2d2P(,)[{exp(2i2t)3*2   

                      exp(-2i2t)*32}- jŴ ]2   .                            (15)                  

where j = 1 or 2 signifies for   respectively. 

III. DIFFERENCE SQUEEZING IN 

DEGENERATE THREE-PHOTON ABSORPTION 

SIX-WAVE INTERACTION PROCESS 

The nonlinear interaction in this model  (Ducloy, 

1985), shown in Figure 1, occurs when three pump 

photons of frequency 1 each interact with a nonlinear 

medium, resulting in the emission of two probe (Stokes) 

photons of frequency 2 and the subsequent emission of 

one signal photon of frequency 3 to the initial state. 

The theoretical predictions of the present study in 

six-wave interaction process can be experimentally 

verified and measured easily by using homodyne photon 

counting experiments (Bachor, 1998; Vogel et. al., 

2001).  In essence, the simple physical model (Ducloy, 

1985) is experimentally attainable and readily visible in 

any nonlinear optics laboratory. 

From figure 1, the corresponding interaction Hamiltonian 

is  

)ˆˆˆˆˆˆ(ˆˆˆˆˆˆˆ 23†††23†

3

†

2

†

1 cbacbagccbbaaH ++++= 

 .                              (16)
 

where )a(a ˆˆ †
, )b(b ˆˆ†

 and )c(c ˆˆ†
 are the creation 

(annihilation) operators, g is the coupling interaction 

constant per second between the modes and slowly 

varying operators )exp(ˆˆ
1tiaA = , )exp(ˆˆ

2tibB =
 

and )exp(ˆˆ
3ticC =  with the relation 31 = 22 + 3 . 

                                                        

                                                                           |2> 

                                                           ω2  

                     ω1                                                               

       ω2 

                                                                         |3> 

              

             ω1                                

      

                      

                                       ω3 

                                          

             ω1 
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Figure 1: Degenerate six-wave interaction model 

Using equation (16) in Heisenberg equation of motion  

        Â ,Ĥ  i  
t

Â
  

.

Â +



=  .(ħ = 1)              (17) 

we obtain  

   
CBAig ˆˆˆ3 2†2

.

Â −=  .              (18)                          

Analogously, we arrive at 

†
Ĉ

†
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3
Â2ig -  

.
B̂ =  .              (19) 

and         
†2
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3

Âig -  

.

Ĉ =
.
               (20) 

Using equations (18) and (19) equation (20) we obtain 

 CNNNNNNNNg

C
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 .                  
                             (21)

 

The coupling constant (g) between the modes is 

employed |g|2 instead of g2 (Perina, 1991; Tanas et. al., 

1991) in the interaction Hamiltonian.  

Using Taylor’s series up to second-order in ‘gt’ (gt <<1) 

with short- time scale (≈10-10sec) (Perina, 1991), we get 

( ) ......)0(ˆ
!2

)0(ˆ)0(ˆ)(ˆ 2

+++= CtCtCtC


           (22) 

Inserting equations (20) and (21) in equation (22), gives 
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where the operators at  t = 0 represents CC ˆ)0(ˆ =  

throughout the paper.  

We define two general quadrature components to 

investigate the squeezing in the signal mode 

    

)]t(Ĉ(t)Ĉ[
2

1
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1
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Ĉ2
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i
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Using equations (23) and (24) in equations (25) and (26) 

we obtain 

( )
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and
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Equations (27) and (28) becomes when at t = 0 the 

modes Â  and B̂  are uncorrelated, as   
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and  
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If the Ĉ  mode is in a coherent state at the start, then  
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Using equation (31) in equations (29) and (30), we have 
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Equations (32) and (33) show that difference-

frequency generation will yield an output that is 

squeezed in the
C

X ˆ1
ˆ

 or 
C

X ˆ2
ˆ

 direction if the input state 

is difference squeezing in the 
2Ŵ  or 

1Ŵ  direction 

respectively. As a result, difference squeezing in the 

pump and Stokes modes for the uncorrelated mode can 

be converted to normal squeezing in the signal mode and 

vice versa. This finding provides a link between 

difference and normal squeezing, as well as a way for 

detecting difference squeezing in the six-wave 

difference-frequency production process. 

Furthermore, we assume that the change in the Stokes 

mode i.e. the B̂ -mode remains constant. Equation (20) 

is obtained by associating a constant term m for B̂ and 

†B̂ in the signal mode, then we have  

23ˆˆ
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then    ( )CNNmgC
AA

ˆ6ˆ9ˆ9
ˆ

ˆ
2
ˆ

42
++−=              (35) 

Hence, the corresponding results in the amplitude signal 
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Use of equations (36) and (37) in equations (25) and 

(26), we get 
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where 
A
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 and 
A

Z ˆ2
ˆ define in equation (6). 

Equations (38) and (39) becomes when the modes are 

uncorrelated at t = 0, then  
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Using the condition of equation (31) in equations (40) 

and (41), then yields 
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and  
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Equations (42) and (43) indicate that the signal mode 

is squeezed in the 
C

X ˆ1
ˆ  direction if the pump mode is 

amplitude-cubed squeezed (third-order squeezing) in the 

A
Z ˆ2
ˆ  direction, and the signal mode is squeezed in the 

C
X ˆ2
ˆ  direction if the pump mode is amplitude-cubed 

squeezing in the 
A

Z ˆ1
ˆ  direction. A squeezed signal mode 

(normal squeezing) is generated when a pump mode with 

amplitude-cubed squeezing (third-order squeezing) 

propagates across a nonlinear medium. The findings 

suggest a mechanism for detecting amplitude-cubed 

squeezing in degenerate six-wave interactions. 

 The following are the results of third-order 

squeezing of the fundamental mode in spontaneous and 

stimulated interaction on a short-time scale in a six-wave 

mixing process, as reported by another author (Rani et. 

al., 2011): 
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and
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where AA ˆˆ †2
= , BB ˆˆ †2

=  and  is the 

phase angle.   

Using equations (44) and (45) in equation (43), we 

obtain respectively as   
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The nonlinear factor 2)
2

β44|β| ( ++ in equation 

(47) is due to the effect of stimulated interaction. This 

demonstrates that typical squeezing occurs in the signal 

mode. The findings also show that the squeezing in the 

stimulated process is larger than the corresponding 

squeezing in the spontaneous process. The maximum 

squeezing occurs when the value is  → 0 and the 

minimum when the value is  → /6.   

According to equations (44-47), it is inferred that 

squeezing in the signal mode is more than the 

fundamental mode if g2 t2 m4  1 and if g2 t2 m4 < 1, then 

corresponding squeezing is greater in the fundamental 

mode.  

Now, compare the results of this paper's equations 

(32) and (33) with the quoted results of the following 

equations from previously published work (Choudhary & 

Giri, 2018); 

  ( )

]ˆˆ4ˆ62ˆˆ18ˆˆ9

4

1ˆ[
4

1
)(ˆ

3
ˆˆ

2
ˆ

3
ˆˆ

2
ˆ

2
ˆ

2
ˆ

2

2

222

ˆ1

BAABBABA

C

NNNNNNNN

WtgtX

−+−+









−=








−

   

                                                                                     (48) 
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Similarly, compare the findings of equations (42) and 

(43) in this study with the results of the following 

equations from previously published work (Choudhary & 

Giri, 2018); 
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Due to the association with a large number of pump 

photons, the three-photon absorption six-wave 

interaction process produces more prominent squeezed 

laser light than the two-photon absorption six-wave 

interaction method (Choudhary & Giri, 2018). 

IV. RESULTS AND DISCUSSION 

We plot a graph (figure 2) between the left hand side 

of equation (32) or (33) say DSW versus 
2

 with typical 

values ( ) ( ) 







==

4

1ˆˆ
2

2

2

1 WW  to satisfy the 

equation (14).  

The curves (figure 2) indicate that difference 

squeezing is present and is nonlinearly proportional to 

the quantity of pump photons. The degree of difference 

squeezing grows increasingly negative as the number of 

pump photons 
2

  increases until a threshold value of
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pump photon is achieved, after which it diminishes and 

eventually vanishes. The results are consistent with those 

of Truong et al. (Truong et. al., 2014). Furthermore, 

difference squeezing increases with the number of Stokes 

photons
2

 . As a result, difference squeezing is found 

to be maximum at higher Stokes photon values, i.e., in 

stimulated emission rather than spontaneous emission. 

 

2 5

2 10

2 15

0 5 10 15 20 25 30

0.10

0.05

0.00

0.05

2

D
sw

Figure 2: Degree of difference squeezing (DSW) with 
2

 in degenerate three-photon absorption six-wave 

interaction process (when |gt|2 =10-6 and 
2

 = 5, 10, 15) 

To investigate higher-order squeezing, denote the right 

hand side of equations (42) or (43) by DSW′ and plot it 

2
gt as shown in figure 3. 

The constant decay of the curve (figure 3) suggests 

that the difference squeezing response is nonlinearly 

proportional to the quantity of pump photons. It indicates 

that difference squeezing increases as the number of 

pump photons increases. Additionally, difference 

squeezing grows as the number of pump photons 

2
 increases. As a result, it is noticed that difference 

squeezing is greatest when a high number of pump 

photons are assimilated. Thus, difference squeezing 

(higher-order squeezing) enables much more noise 

reduction than normal squeezing. 

As shown in figure 4, compare equations (46) and (47) 

and construct a graph between squeezing S and |α|2 with 

various values of |gt|2. As demonstrated in Figure 4, the 

squeezing in signal mode is stronger than the 

corresponding squeezing in pump mode (Rani et. al., 

2011). It also confirms that the coupling of the field 

amplitude and interaction duration is strongly related to 

higher-order squeezing. As a result, more squeezed laser 

light may be detected in less time. 

For arbitrary constant values of m2 (stokes mode), we 

represent the right-hand side of equations (46) and (47) 

respectively by Ss and S
s. and display the curve with |α|2 

as shown in figures 5 (a) and 5 (b).  

Figures 5 (a) and 5 (b) indicate that the squeezing rises 

nonlinearly with ||2 and is directly proportional to the 

number of photons. We observe that when the Stokes 

photon value increases, the squeezing increases and the 

depth of classicality of the field amplitude diminishes in 

the stimulated process. It demonstrates that squeezing in 

signal mode is precisely proportional to the photon 

number of both the fundamental and Stokes modes. It 

also infer that, despite having the same number of 

photons, squeezing is greater in stimulated interaction 

than in spontaneous interaction. 
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Figure 3: Degree of the squeezing DSW′ with |gt|2 (when m2 = 4 = Constant) in degenerate three-photon absorption 

six-wave interaction process 
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Figure 4: Degree of the squeezing (S) with |α|2 (when θ = 0, |β|2=0 & m2=1) in degenerate three-photon 

absorption six-wave interaction process 

We draw a graph (figure 6) connecting the left-hand 

side of equation (48) or (49) say DSW
2 with 

2
 having 

the same condition as in figure 2. Similarly, the right-

hand side of equation (50) or (51) is represented by DSW
3 

and plotted with 
2

gt as illustrated in figure 7.  

When comparing figures 2 and 6, it can be seen that 

when the Stokes photon value rises, the depth of 

classicality of the field amplitude decreases. When 

comparing figures 3 and 7, it is found that the difference 

squeezing rises as the number of pump photons 

increases. As a result, the difference squeezing in the 

three-photon absorption six-wave interaction process is 
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larger than the difference squeezing in the two-photon 

absorption six-wave interaction process (Choudhary & 

Giri, 2018). Therefore, the multi-photon absorption 

approach is superior for producing high-order squeezed 

light in an optical system. 

m2 1

m2 2
m2 3

0 10 20 30 40 50

1500

1000

500

0

2

S
s

 
Figure 5 (a): Degree of the squeezing (SS) in signal mode with |α|2 (|β|2=0) in spontaneous degenerate three-photon 

absorption six-wave interaction process (when |gt|2 = 10-6 and θ = 0) 
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Figure 5 (b): Degree of the squeezing (SSʹ) in signal mode with |α|2 (|β|2=4) in stimulated degenerate three-photon 

absorption six-wave interaction process (when |gt|2 = 10-6 and θ = 0) 
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Figure 6: Degree of difference squeezing (DSW
2) with 

2
 in degenerate two-photon absorption six-wave 

interaction process (when |gt|2 =10-6 and 
2

 = 5, 10, 15)  
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Figure 7: Degree of the squeezing (DSW

3) with |gt|2 (when m2 = 4 = Constant) in degenerate two-photon absorption 

six-wave interaction process  

 

V. SUMMARY AND CONCLUSIONS 
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In this paper, we have shown that difference 

squeezing for the uncorrelated mode between the pump 

and Stokes modes can be turned into normal squeezing in 

the signal mode and vice-versa. This result established 

the relationship between difference squeezing and 

normal squeezing and also suggests a method for 

detection of difference squeezing in the six-wave 

difference-frequency generation process. We confirmed 

that the squeezed states are associated with a large 

number of photons. It is found that when the number of 

photons is increasing, the degree of difference squeezing 

gets more negative until the critical value of the pump 

photon is reached, but subsequently, it decreases and 

finally disappears. As a result, difference squeezing 

occurs only in particular pump photon domain values. 

The results are consistent with those of Truong et al. 

(Truong et. al., 2014). The higher-order squeezing 

(difference squeezing) is found to be directly reliant on 

field amplitude coupling between modes and interaction 

time. Hillery's finding (Hillery, 1989) was confirmed. 

We discovered that a squeezed signal mode (normal 

squeezing) is produced when a fundamental mode with 

amplitude-cubed squeezing (third-order squeezing) 

propagates through a nonlinear medium. Higher-order 

squeezing is converted to normal squeezing through 

nonlinear interaction (signal mode). In degenerate six-

wave difference frequency generation, it proposes a 

method for detecting amplitude-cubed squeezing (third-

order squeezing). In the present research, the squeezing 

obtained in the signal mode is determined to be larger 

than the corresponding squeezing in the fundamental 

mode (Rani et. al., 2011). 

Furthermore, we discovered that when the value of 

Stokes photon grows, the squeezing increases and the 

depth of classicality of the field amplitude decreases in 

the stimulated process. Squeezing is observed to be 

greater in stimulated interaction than in spontaneous 

interaction, despite the fact that both have the same 

number of photons. The degree of squeezing in the signal 

mode is demonstrated to be exactly proportional to the 

photon number of both the fundamental and Stokes 

modes. We revealed that the difference squeezing is 

greater in the three-photon absorption six-wave 

interaction process than in the two-photon absorption 

six-wave interaction process (Choudhary & Giri, 2018). 

So, it can be concluded that the multi-photon absorption 

method is better for making high-order squeezed light in 

an optical system. 

The findings of this paper are simple to replicate in 

most physical systems laboratories, paving the path for 

higher-order squeezing to be observed experimentally. 

Finally, in addition to these critical conceptual and 

foundational aspects, realizing larger and better 

multiphoton nonclassical states should open up new 

possibilities and perspectives for quantum optical 

realizations of quantum information and communication 

processes, which are currently unexplored (Dell’Anno et. 

al., 2006). These findings with higher-order nonlinearity 

also point to approaches for selecting appropriate 

processes for achieving better noise reduction in optical 

systems, which could be important in high-quality 

optical telecommunication and quantum information 

(Giri et. al., 2014). 
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