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Abstract—The aim of this paper is parametric and reliability
estimation for the two parameter length biased log-logistic
distribution under squared error, generalized exponential, linear
exponential and precautionary loss functions. Bayes estimates
obtained under non informative priors through Lindleys ap-
proximation and through Markov Chain Monte Carlo are then
compared with the classical parametric estimates. Bayesian risk
analysis based on a simulated and a real data set are used to
demonstrate application of the theoretic results.

Index Terms—Length biased Log logistic Distribution, Lind-
leys approximation, Markov Chain Monte Carlo, Bayesian risk
analysis.

I. INTRODUCTION

Weighted distributions arise when the observed values of
a stochastic phenomenon are not representative of a ran-
dom sample from the event. This may happen due to non-
observance of certain events such as in biomedical and actu-
arial studies where only those subjects which have survived till
the time of induction into the cross section study are included
as part of the study (left truncated). This sample group is
further reduced due to loss of follow-up units as well as the
units which do not fail till the end point of the study period.
Thus to make the effective sample observations representative
of the real event situation the concept of weighted random
variable has been proposed by Fisher (1934). A probability
density function (pdf) is classified as a weighted pdf when it
is defined as,

w(x)f(x)
Jo w(x)f (x)dx

such that %F (x) = f(x) is another pdf and F(x) is defined on
the positive half line.

gx) = x>0 ()
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Its length biased (LB) version arises when the non-negative
weight function w(x) = x. Hence pdf of the corresponding LB
version is defined as

xf(x)
Jo xf(x)dx

Patil and Ord (1976) emphasize that the x-value of the
unit is not the well-known ancillary variable of the proba-
bility proportional to size (pps) sampling, but is itself the
variable observed and recorded. Such refinements in model
selection for data analytics prevent the modelling error (Gupta
and Tripathi, 1990). Vardi (1982, 1985, 1989) explored a
novel unconditional likelihood approach and pioneered Non-
parametric Maximum Likelihood Estimate(NPMLE) for the
LB data. Wang (1996) studied hazard regression for the LB
data. Asgharian et al. (2002) provide a detailed review of
parametric and nonparametric research work within classical
framework on LB distributions. Some recent researches on
Bayes parametric estimation of LB version of Weibull (Pandya
et al., 2013; Rao and Pandey, 2021), weighted exponential
(Das and Kundu, 2016), Maxwell (Saghir et al, 2016),
Nakagami (Mudasir and Ahmad, 2018), Inverted exponential
Pareto (Maurya et al., 2019) and Inverse Rayleigh (Pandey and
Kumari, 2016, 2018) have been undertaken among others.

Reliability of a component is judged by the length of
its survival time. Competing products claim to have longer
functional lifetime. Failure time modellers often employ heavy
tailed distributions (HTD) for reliability and industrial data.
HTD reflect larger probability of getting higher values or
longer lifetimes thus yielding heavy tail region. Since reli-
able products record more failures towards far-end of their
lifetimes, therefore HTD (which have more outliers) need to
be explored further. In pursuance of this objective, Pandey et
al. (2020) introduced Length Biased Log Logistic Distribution
(LBLL(B,)) as a lifetime model. In the present paper, we

glx)= a<x>bh )



propose Bayes estimator as a more efficient alternative to the
Maximum Likelihood Estimate (mle) studied by them.

The rest of the paper is organised as follows: LBLL model is
defined in section II. Section III describes classical estimation
of unknown parameters alongwith its asymptotic confidence
interval (ACI). Bayesian estimation of unknown parameters
has been carried out in Section IV. Section V-VI describes
the construction of Bayes estimates under two approximation
techniques respectively. Results based on simulated data is
discussed in Section VII. Section VIII delas with findings
based on real data.

II. THE MODEL
The probability density function of (LBLL(f,)) is given

() @° sn(3)
B z
{1+(2) } (%)
corresponding cumulative distribution function (cdf) is

=20 o e 2) 2,
([ E ] @

as

flxa,p)=

forx,a, B >0 (3)

r=1 1+}"ﬁ)

The expected lifetime for model (3) is asec (%) Reliability
and hazard functions at time ¢ are given as

=AY [y 5 @)™
+(5 )[(a)izl ra+rg) | ©
o) =4 ®)

III. CLASSICAL POINT AND INTERVAL ESTIMATION
MLE of LBLL(f, ) alongwith its aymptotic confidence
interval (ACI) have been studied by Pandey er al. (2020).
For a random sample of size n, x = (x1,x2, - ,X,), likelihhod
function for Eq. (3) is stated as under,

i (5) @) sin(3)

exp lB ilnxinﬁln(x2iln{1+ ();)ﬁ}]

i=1 i=1
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corresponding log-likelihood function is written as,
logL—nln( +nln<sin | — —nln| =
B B
X; u xi\B
In(—)—2) Inq1+(— 7
spEm(E)-2Em{i+(2)'} o

On differentiating Eq. (7) with respect to o and 8 and equating
it to zero respectively, we obtain a pair of normal equations.

2B ()P _

o & o + ()P —E(H‘ﬁ)—o ®)
%_mcotc)ilog(%) ’Z’Wlog(x) .
BB B) & o 111+(x’)ﬁ

9

MLEs of unknown parameters now can be obtained on solving
the above pair of normal equations. Solutions of these equa-
tions cannot be otained explicitly as these equations are system
of non-linear equations. Therefore, any numerical method like
Newton-Raphson method can be used.

Asymptotic normality result is used to obtain confidence
interval of the unknown parameters which is given as

Va(k— 1) — N (0,17'(1))

Let A = (a,ﬁ) denote the mle of A = (o,) and I(A)
is Fisher’s Information matrix. Since A is unknown, using
uniqueness property of mle, we could estimate I"'(4) by
I7'(A) and this provides ACIs for the unknown parameters

&—Z%m (X—I—Zu var(&))
(ﬁ—z;zt var(ﬁ),ﬁ+z% var(ﬁ)) where var (&), and

var (B ) are the estimated variances of &, B respectively and
zurepresents the right tail probability for standard normal
distribution.

o and B, as under and

IV. POSTERIOR ANALYSIS

Likelihood function of LBLL (3, @) can be re-written as

L(x|o, B) xexp[ Zlnx, 221{ ( )ﬁ}] (10,

Savage (1962) advocates Principle of Stable Estimation in
prior elicitation. Choosing a pre-sample or prior distribution
for the random model parameters is totally subjective. If proper
information is available about the concerned parameters, then
informative prior should be used (Berger, 1985). However, the
present paper assumes availability of no or little information.
Assuming independent non-informative invariant Jeffreys prior
(Jeffreys, 1967) based on Fishers information criterion for the
scale parameter o and non-informative improper prior for the
shape parameter 3

<
2
|

1
o
c where ¢ is a constant
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the joint prior distribution is obtained as

1
p(a,B)=a (11)

Using Bayes principle, joint posterior distribution of the un-
known parameters & and f3 is given as

FIOISIONE

P =g\
B

exp [ﬁ glnxi—zgln{w (’;)ﬁ}] (12)

where the normalizing constant
L (%) {gi“)(’ﬁ”)} n
0o Jo « z
B

exp lﬁi}lnxi—2lﬁ}ln{l + (;)ﬁ}] dadﬁ}
Marginal posterior distribution of the parameter o is
[ (@) {m(E))
L)
exp [ﬁ ,i‘f Inx; — Zii’ln {1 + (%)ﬁ }1 dp (13)

Marginal posterior distribution of the parameter f is

-1

plalep) = [ &

oo B Lsin (2 "
pBa) = [k <){()(ﬁ>}
B
exp [ﬁiIHXI_Ziln{]—i_(fx’)ﬁ}}da (14)

Next, we consider four different forms of loss function and
subsquently conduct risk analysis for the different estimation
strategies. For the density function f(x|®), loss function
L(T,®) represents the magnitude of loss in estimation of the
unknown true parameter ® assuming that the parameter ® is
estimated with the statistic 7'(x) =T.

Various types of loss functions have been used in literature.
We use the following four kinds in the present work for the
parametric estimation:

1) Quadratic loss function
L(T,0) = k(T —6)?

If K =1, then this loss function is known as Squared
Error Loss Function (SELF) Under SELF, the posterior
mean or expectation is Bayes estimator. SELF is a
symmetric loss function which assigns equal weights to
both the underestimation and to the overestimation.

We consider Bayes estimation under the following three
asymmetric loss forms which are suited for specific
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asymmetries as explained below. Asymmetric loss func-
tion indicates that overestimation and underestimation
of any parametric function fetch different economic
differentials.

Linear exponential loss function (LINEX) introduced
by Varian (1975) for assessing loss estimate of location
parameter was not suited for application to the scale
parameter. Hence, the following modified form was
given by Basu and Ebrahimi (1991) without changing
characteristics of the former:

L(A) = bexp(aA)cAb

where A=T —0,a,c # 0,b > 0. The parameter b serves
to scale loss function while parameter a serves to assess
its shape. For a = 1, overestimation is more risky than
underestimation. While for a < 0, the loss is exponential
for underestimation and almost linear for overestimation.
For very small values of |a|, LINEX behaves almost
similar to SELF. LINEX weighs risk of underestimation
as well as overestimation unequally.

General Entropy loss function (GELF) was given by
Calabria and Pulcini (1994) as

I(T,0) = (g)q—qlog<g>—l q+#1

Shape parameter ¢ > 0(g < 0) indicates that overesti-
mation (underestimation) is more serious than underes-
timation (overestimation). Obviously, minimum loss is
observed at T = 6.

o Case 1. g =1 is same as PLF with & fixed at 1.
o Case 2. g = —1 is same as SELF.

In risk analysis, both the potentiality of an undesired
event and its consequences are investigated. Precaution-
ary loss function (PLF) (Norstrom , 1996) is used when
underestimation of the potentiality of an event is more
risky. If risk is low, it would imply that any risk reducing
initiative is unnecessary. However, a near-zero failure
probability is serious in aerospace, nuclear/chemical,
radioactive and medical fields, to mention a few. It is
therefore reasonable to use a loss function that allows
one to estimate the smallest failure probability. Hence,
Bayes estimate under PLF is sensitive to the choice of
the loss function when very uncertain conditions occur
or when estimating low probabilities.

PLF is given as

(6 1)

0T.0) = 0

w(®)  0<k<2,w(6)>0

where w(6) is arbitrary weight function. Upper bound
restriction on k implies increase in the cost as 7 moves
away from 6. PLF assigns higher costs for underesti-

mation vis-a-vis QLF. PLF tends to become very large
when the estimate T is close to 0.

Bayes Estimation under SELF
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1) for parameter o

o [ [+{ ) sm(%)} "

exp lﬁ glnxi2;1n{l+ (2)13}] dBda  (15)

2) for parameter B

ﬁBS_// (5)1 ““(%)} n

exp lﬁ Zlnxi—ZZIn{l+ (z)ﬁ}] dadB  (16)
=1 =1

Bayes Estimation under GELF
1) for parameter o

o oo g in(Z !
e[ [ 2220
B
exp lﬁ ilnxi—Ziln{l—i— (x)ﬁ}] dBde (17)
i=1 i=1 o
2) for parameter 8
[ g @) ()
(%)
exp[Bglnxi—2gln{l+(§>ﬁ}]dadﬁ (18)

where g > 0 represents overestimation and g < O repre-
sents underestimation.

Bayes Estimation under LINEX
1) for parameter o

e (@)
b [ { B
exp[ Zlnx, 22111{ +(2 )ﬁ}]dﬁd(x (19)

2) for parameter B

- E sin ( !
Bos = ¥ m/ [ o | (& {()(B>}
B
exp [ﬁizn%lnx,-—2iillln{l+ (’;)ﬁ}] dadf  (20)

where g > 0 represents overestimation and g < O repre-
sents underestimation.

Bayes Estimation under PLF

Institute of Science, BHU Varanasi, India

Journal of Scientific Research, Volume 66, Issue 3, 2022

1) for parameter o

@GN
L)
exp [Bi;lnxi—zi;m{w (’;)ﬁ}] dBda (21)

2) for parameter B

() = [ [ 4 () {51
(7)
exp [B;lnxi2gln{l+ (;)ﬁ}] dadB  (22)

V. LINDLEY’S APPROXIMATION METHOD

Complicated integral forms obtained under Bayesian ap-
proximation require numerical analysis procedure for their
evaluation. Some alternative approximations reduce intensive
computational efforts of numerical approximation strategies.
Lindley’s approximation (LA) is applicable for the cases
where ratio of two integrals is obtained in the following form
(Lindley, 1980),

Ju Jp (e, B) e *PRn@ ) goap
josz el(a.Blx)+n(a.B) dadﬁ

1(x) = (23)

Notation used

p(a,B) is arbitrary function of parameters o and f3,

I (a,Blx)is log likelihood function

n(a,B) =logg(a,p) is the log joint prior of theunknown
parameters o and 3.

LA of I(x) is expressed as the following expansion,

I(x)= (0‘ B) [(Paa +2pafa) Gaa + (Pﬁa +2Pﬁno¢) Gpat
+ (Pap +2Poﬂ7ﬁ) Sup + (Ppp +20p1p) Opp]
+5 [(Pacaa +P/3 Gaﬁ) (iaaaéaa + iaﬁaéaﬁ =+ iﬁaaaﬁa + iﬁﬁaaﬁﬁ)
(P

«Opa+PpSpp) (lpaaGaa +luppSap +IpapOpa +Ispp0pp)]

(24)
such that
_9p(a,B) _9p(a,p) __p(aB)
Pa = aa ) pﬁf aﬁ ’ paﬁ*pﬁa* aaaﬁ
9*p(a,B) 9*p(a,B)

Paa = aaQ ’ pﬁﬁ aﬁz

6 and ﬁ are MLEs of o and 3 respectively.
Pae 18 the second derivative of the function p(a,f) with
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2) for parameter 8

respect to
Pac is the same expression evaluated atp(éc,ﬁ). p(a,B) = B9, then pg = —qo= D poy =
q(q+1) a9 pg = ppg = pgo = pap =0.
L N popo 9 . ,1
*~ Ja’ Tk *B =B 5008 Beor = [Eg (B~|x)] ¢
i :Lzl i :3721 i :ﬂ where
oo Dol BB 8B2’ oo Dal
_ g Laa A A R PR
TP A S i Y SO Eg (B~|x) =B+ [2PpMaGpa+ hpp + 25715 Spp]
BBB B3’ aaf da2dp’ afp dadp? 1 R A R A A A R )
+5P6ap (lnaaGaa +lapaSap +paaSpa+1ppadpp)
. dlogg(a,B) 1, o /0 A 7 A h A A
[ T F +50p6pp (lpaaSaa +lappOup +IpapOpa+1ppp0pp)
a=ao,f=
5 Alozg(@p) @9
b B la—app LA under LINEX

1) for parameter o

6;j = (i,j)"™ element of matrix [—faﬁ]fl :i,j = 1,2 with the pla,B) = e 9% then py = —qe 9% poy =
above defined notational representation. gre 9%, PB =PBB = PBa = Pap = 0.
Next, we derive LA estimates of the unknown parameters.

1
LA under SELF Bpr = —— InEy ( e—qa)
1) for parameter o q
(a B) = then = 1 = = = — 1 _a& 1 R A RN
P&, ) Pa yPaow = PB = PBB = PBa = In|e 90 L — [(Paa+2l7ana)6aa
Pap =0. q 2
_ X o + (Pap +2Paflp) 6ap)
Opsy = E (a]x) = Oy + [naGaa +nﬁ0aﬁ] 1 (A b R P R g R )
1. A R ~ R A . A . +5 Pabaa (laaabaa + lapaCup + paabpa +ppad
Jricococ (lococacoca+laﬁa(7aﬁ +180a0pa Jrlﬁﬁacﬁ/i) % g P g ppocip
+5PaBa (lpaabun +lappOap +1papSpa +Ipp0pp)

[\

L. s 4 PN PN f
+ 5680 (lpaaGaa +lappOap +lpapOpa+pppSpp)
25) (29)
2) for parameter B 2) fo(r(fag?rzeteirqﬁﬁ then pe — b I R
p(a,B) =B, then pg = 1,ppp = pa = Paa = Ppa = PA&P) =€ T TER Pp=qe ", Ppp = 4¢P =
Pao = PBa = PaB = 0.

paB =0.
Bas. = E (BIx) = Bur + (Rlabpa + MpSpp)
| P A P P P
+ Ecocﬁ (locaocaaa +lapaGap T lpaaOpa+ lﬁﬁoco-ﬁﬁ>

_ 1
__ —aqp
BsLL qlnEI; (e )
| O S B \ o
- In {e Py 5 25pM1a6pa + Ppp + 25575 5pp)

A . ) .
+ =880 (I3aeGuc + luppOap + IpapOpa +I3pp, R
560 (lpaaGaa +lappSup +IpapSpa+Ipps Spp) L 336 (oo + Tupadis + Ipaapa+ Iapadpp)

(26)
Lo A P A
LA under GELF +5p6p (IpacGua +lapp Gap +IpapSpa +sps Spp)
1) for parameter o " (30)
p(a7B) = aiq7 then Pa = 7qa7 a sPaa =
q(q+1) a9 pg = pgg = ppo = pap =0. LA under PLF
| 1) for parameter o
OpGrL = [Ea (aiqh)}ia p(a,B) = o2, then pg = 20, pag = 2,pp = ppp =
where Ppa = Pap =0.
_ NP B NN app =/ E (a?|x)
Eq (a™x) = &7+ = [(Paa +2PaNe) Gaa
. 2 A where
+ (Pap +2Paflp) 6ap]
1. . .~ . N A . E(a2lx) = 62 14267.) 6 An A
+§Pa0aa (laaacaa+laﬁa6aﬁ+lﬁaa6ﬁa ‘Hﬁﬁacﬁﬁ) A((jc |)£)A aA:IL+ [(A - Aana)?aafanﬁ?aﬁl
I . . . . +060a (laaoGua + lupaup + lpaubpa+IpaSpp)
+ 5 PaBpa (IpaaGaa + lappGup +IpapOpa + lpppSpp) + 864 (Ipaabaa + luppGup +IpapGpa + I35 Opp)
(27 (€29)
283
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2) for parameter 8

p(a7ﬁ) = ﬁ27 then pﬁ = 2ﬁ?pﬁ[3 = 2;17(1 = Paa =
PBa = Pap =0

Bro=\/E (B|x)
where

E (B*x) = B+ (zﬁﬁaaﬁa + (1 +23f7/3) 3/5/3)
+ﬁo-a ( aaaGaa +ia[3a6'aﬁ +iﬁaa6ﬁa +iﬁﬁa6ﬁﬁ)
+B6po (IpaaSac +lupp Sap + IpapSpa+Ippp Spp)
(32)

VI. MARKOV CHAIN MONTE CARLO APPROXIMATION

Meteropolis-Hastings algorithm nested in the iterative Gibbs
sampler is employed for producing samples from full con-
ditional posterior distributions and subsquently to determine
Bayes estimates of the unknown parameters (., 3).

To generate N pairs (a“),ﬁ(l)) NN
the following iterative algorithm is implemented:
1) Seti=0 and set an arbitrary initial value (a(o) , ﬁ(0)> €
(0,1)
2) Do while i = 10% or a similar large number.
3) Candidate points a*and B* from the respective proposal

distributions a* ~ N (&,17' (®)), B* ~N (B,I‘1 ((I)))
and a point u from U (0,1) are simulated.

4)
sy | @ with probabiliy (a*, oc@) if ki < u
] a® with probability 1 — K (Oc*, Ot<i>)
and
p B* with probability K (ﬁ*, [30')) if ko <u

5) iis incremented as i =i+ 1.

6) Go to Step 3.

Convergence of the above algorithm is faster when the
starting value is in the neighbourhood of the true value. Thus,
a good judgement which is based on past records, experience
or notions/intutions of the engineer or the data handler may
increase the efficiency of the computer program (with respect
to time).

To nullify the influence of arbitrary initial values, first M
simulated variate pairs are discarded. The remaining residual
set corresponding to position i,i =M +1,...N, for sufficiently
large N, is taken as the approximate posterior sample for
further Bayesian estimation process. Hence approximate Bayes
estimates under various loss schemes are given as under:

1) SELF

Opsyc = o
N 1 §+1 l

Besuc = ——— Bi (33)
N — Ml ;Jrl l
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), ,_(aw),gw)),

if ki >u
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2) GELF
v\
OBGMC = o; !
N Mz ;4»1 l
v\
— q 4
Brove = | = Ml_%lﬁl (34)
3) LINEX
OCBLMC——*log L Z e 1%
N— Ml =M+1
§ Liog [ i “abi)(35)
BLMC = —— Y e ™
4q N—-M 57
4) PLF
1 N :
2
oagomc = | v, (0%
(N_M i=§'+1 )
N 1
2
= 36
Beomc = (N Ml—g'ﬂﬁl ) (36)

VII. SIMULATION

Comparison of Bayes estimates obtained under four differ-

ent loss functions based on five simulated random samples of
sizes n=10,20,30,40,50 have been generated from LBLL (3, )
under assumption o = 1.5 and 8 = 3.2. MLEs based on these
samples are evaluated using numerical integration which is
executed through R program.
Bayes LA estimates are evaluated through (25)-(32) and
MCMC estimates are evaluated through (33)-(36). OpenBUGS
is used for generating posterior samples from MCMC. 10*
samples are produced out of which the initial 2000 samples
are delegated to burn-in phase.

B(i) with probability 1 — & (ﬁ*ﬁ(i)) if k» >u Computed MLEs and Bayes estimates of the unknown

scale and shape parameters under different loss functions
corresponding to the two approximation methods are given
in Table I-II alongwith their respective mean square errors
(MSEs). Smaller MSEs imply higher precision. Hence, an
estimate with least MSE is preferred over its competitors.
ACI and BCI for different sample sizes are given in Table III.
HPD intervals for different sample sizes are given in Table I'V.
Corresponding risk functions of scale and shape parameters
under different loss functions for different sample sizes and
against different sets of values of parameters for the simulated
data are given in Table V-VI. Similarly, Bayes risk of scale and
shape parameters under different loss functions for different
sample sizes and for different sets of values of parameters are
given in Table VII-VIIIL.

VIII. REAL DATA STUDY

The data given in Table IX represent active repair times
(in hours) for 46 repair times of an airborne communication
transreceiver (Chhikara and Folks, 1977).

LBLL(f3,ct) model fit for the above data set is given
in Table X. Comparative goodness of fit for the selected
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TABLE I
MLE AND BAYES ESTIMATES OF o WITH RESPECTIVE MSEs IN BEACKETS UNDER DIFFERENT LOSS FUNCTIONS

n n=10 n=20 n=30 n=40 n=50
MLE & 1.5822 1.5543 1.5397 1.5367 1.5352
ML (0.1006) (0.0509) (0.0326) (0.0252) (0.0214)
N 1.5945 1.5738 1.5638 1.5637 1.5641
LINDLEY G (0.0993) (0.0508) (0.0331) (0.0263) (0.0228)
SELF
MCMC & 1.5347 1.4969 1.4988 1.4763 1.5947
BSMC (0.0016) (0.0003) (0.0002) (0.0006) (0.0091)
& 1.6053 1.5863 1.5768 1.5766 1.5766
BGIL (0.0983) (0.0513) (0.0340) (0.0273) (0.0239)
LINDLEY
& 1.5912 1.57 1.5598 1.5598 1.5603
BGL (0.0995) (0.0507) (0.0329) (0.0260) (0.0224)
ELF
G & 1.468 1.4624 1.4727 1.4592 1.5775
BGIMC —(0.0014) (0.0016) (0.0010) (0.0017) (0.0061)
MCMC
& 1.5576 1.5083 1.5075 1.4819 1.6004
BGMC (0.0038) (0.0004) (0.0002) (0.0003) (0.0102)
& 1.6044 1.5862 1.5767 1.5766 1.5767
BLIL (0.1001) (0.0521) (0.0345) (0.0277) (0.0243)
LINDLEY
& 1.5852 1.5626 1.5522 1.5523 1.5531
BLL (0.0986) (0.0498) (0.0320) (0.0252) (0.0216)
LINEX
& 1.4695 1.4635 1.4733 1.4598 1.5768
BLIMC—(0.0013) (0.0015) (0.0009) (0.0016) (0.0061)
MCMC
& 1.6117 1.5325 1.5255 1.4932 1.6129
BLMC (0.0132) (0.0016) (0.0008) (0.0001) (0.0129)
_ 1.5912 1.57 1.5598 1.5598 1.5603
LINDLEY " Ggee 0995y (0.0507)  (0.0329)  (0.0206)  (0.0224)
PLF
s 1.5576 1.4624 1.5075 1.4819 1.6004
MEMC GsPuc (0.0038) (0.0016) (0.0002) (0.0003) (0.0102)

data set based on negative log likelihood and three different
information criteria show the order of fit starting from the best
as LBLLD>Log-logistic>Logistic. Hence LBLLD is the most
suitable for the given data set. Risk function of scale and shape
parameters under different loss functions and for different sets
of values of parameters for real data are provided in Table
XI-XII. Similarly, Bayes risk of scale and shape parameters
under different loss functions for different sample sizes and
for different sets of values of parameters for real data given in
table XIII-XIV. MCMC iteration plots (Fig. 2) for the scale
and shape parameters are generated to study the convergence
behaviour of the chain for 10,000 posterior samples using the
initial 2000 generated samples as burn-in period.

IX. CONCLUSION

Risk assessment is aimed at estimating the probability
and consequences of failures for the process being studied.
Bayesian approach is deemed as the most precise approach to
estimation and analysis of low-probability failure events for
which few data are available. In the present paper, the problem
of parameter estimation for complete sample is undertaken
for the two parameter LBLL distribution. The mle and Bayes
estimates are developed for the unknown parameters. Bayes
estimates are approximated by using the Lindley’s expansion
algorithm and are further utilized for constructing the approxi-
mate confidence intervals. Simulated samples of different sizes
are studied with the objective to observe variation in estimation
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efficiency under different loss functions for various range of
shape and scale parameters.

Overall, MCMC estimates obtained under the SELF is
found to be most efficient for estimation of the parameter
a as compared to all other estimates. It is also observed
that for estimating the unknown parameter 8 the MCMC
estimate obtained under LINEX loss is the best in the sense
of maximum precision than all the other obtained estimates.
A numerical comparison is made between proposed estimates
in terms of their MSE values based on a simulated data set.
Inference obtained from simulated data study is supported by
the real data based findings.
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TABLE IX
AIRBORNE COMMUNICATION TRANSRECEIVER DATA

0.2, 03,05, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5,
1.5, 15, 15,20, 2.0, 22,25, 27, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 47, 5.0, 54, 5.4, 7.0,

7.5, 8.8, 9.0, 10.3, 22.0, 24.5

TABLE X
FITTING OF TRANSRECEIVER DATA TO THREE DIFFERENT DISTRIBUTIONS

Reliability

model -LogL

Sr no.

AIC

BIC AICC

Logistic
1 B=scale
a=location

128.48

260.96

264.61

261.23

Log logis-
2 tic

B=shape

o=scale

101.17

206.34

209.99

206.62

LBLL
3 B=shape
a=scale

100.96

205.93

209.59

206.21

TABLE XI
RISK FUNCTION FOR ¢ UNDER DIFFERENT LOSS FUNCTIONS FOR DIFFERENT SETS OF VALUES OF PARAMETERS FOR REAL DATA

n (a,B) SELF GELF1 GELF2 LINEX1 LINEX2 PLF
(1.5,3) 0.1611 0.1655 0.2372 0.257 0.4136 0.1059
46 (2,3.5) 0.8124 0.5093 1.1047 0.9768 3.2004 0.4038
(2.54) 1.9638 0.8484 2.5136 1.8738 12.4938 0.7825
TABLE XII

RISK FUNCTION FOR ﬁ UNDER DIFFERENT LOSS FUNCTIONS FOR DIFFERENT SETS OF VALUES OF PARAMETERS FOR REAL DATA

n (a,B) SELF GELF1 GELF2 LINEX1 LINEX2 PLF
(1.5,3) 0.0021 0.0004 0.0004 0.004 0.0044 0.0007
46 (2,3.5) 0.2062 0.0354 0.0424 0.3136 0.5659 0.0588
(2.54) 0.9103 0.1251 0.1794 1.0596 3.8105 0.2274
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TABLE XIII
BAYES RISK FOR ¢ UNDER DIFFERENT LOSS FUNCTIONS FOR DIFFERENT SETS OF VALUES OF PARAMETERS FOR REAL DATA
n (e, B) SELF GELF1 GELF2 LINEX1 LINEX2 PLF
(1.5,3) 0.1074 0.1103 0.1581 0.1713 0.2757 0.0706
46 (2,3.5) 0.4062 0.2546 0.5523 0.4884 1.6002 0.2019
(2.5,4) 0.7855 0.3393 1.0054 0.7495 4.9975 0.313
TABLE XIV

BAYES RISK FOR B UNDER DIFFERENT LOSS FUNCTIONS FOR DIFFERENT SETS OF VALUES OF PARAMETERS FOR REAL DATA

n (a,B) SELF GELF1 GELF2 LINEX1 LINEX2 PLF
(1.5,3) 0.0063 0.0013 0.0014 0.0121 0.0029 0.0021
46 (2,3.5) 0.7218 0.124 0.1484 1.0976 0.2829 0.2059
(2.54) 3.6414 0.5003 0.7178 4.2385 1.5242 0.9097
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Fig. 2. Histogram and scatter plot for the parameters o and f for real data
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