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Abstract:In various circumstances of stochastic regression 

analysis, one deals with a random vector (X, Y), where Y is 

an outcome of X but not vice-versa. In such situations, X has 

a non-normal distribution while the conditional distribution 

of (Y|X=x) may or may not be normal. In this paper, the 

distribution of X is assumed to be Extreme value distribution 

(Type I) and the conditional distribution of Y to be normal. 

Then Modified Maximum Likelihood (MML) estimators are 

derived. Hypothesis testing procedure is also developed. 

Index Terms:Extreme value, Maximum Likelihood, 

Modified Maximum Likelihood, Stochastic Regressor, 

Econometrics 

I. INTRODUCTION 

One of the important assumptions of regression model is that 

the explanatory variables are fixed in repeated samples. In many 

cases, the assumption of non-stochastic regressor is not always 

tenable (Judge et. al, 1988; Bharali and Hazarika, 2019). This is 

valid for experimental work, in which the experimenter has 

control over the explanatory variables and can repeatedly 

observe the outcome of the dependent variable with the same 

fixed values or some designated values of the explanatory 

variables. Thus, under a non-experimental or uncontrolled 

environment, the dependent variable is often under the influence 

of explanatory variables that are stochastic in nature.  This work 

is devoted to a condition where the both the variables X and Y in 

the regression model  ++= xy 10
follows particular 

distribution. Hooper and Zellner (1961), Kerridge (1967), 

Hartley (1973), Hwang (1980),Tiku (1980), Lai and Wei (1982), 

Kinal and Lahiri (1983), Lai and Wei (1985), Tiku and Suresh 

(1992), Lai (1994), Hu (1997), Magdalinos, and kandilorou 

(2001), Islam, Tiku and Yildirim (2001), Islam and Tiku (2005), 

Sazak et al. (2006), Islam and Tiku (2010), Tiku and Akkaya 

(2010) are some of the works related to stochastic regressor. In 

this paper distribution of independent variable X follows 

Extreme Value Distribution of Type I and the conditional 

distribution of (Y|X=x) follow the Normal Distribution. First, we 

estimate the parameters and then develop the hypothesis testing 

procedures based on Modified Maximum Likelihood (MML) 

estimators.After that, simulated values are compared to test the 

model efficiency. 

II. MARGINAL EXTREME VALUE DISTRIBUTION (TYPE I) AND 

CONDITIONAL NORMAL 

In certain instances of regression analysis, the dependent 

variable Y regresses on the independent variable X, howeverthis 

is not always the case. The distribution of the independent 

variables may be positively skewed in this case, and the 

conditional distribution of the dependent variable (Y|X=x) may 

or may not follow the Normal Distribution (Bowden and 

Turkington,1981; Ehrenberg,1963; Akkaya and Tiku, 2001). 

Assuming that the distribution of X is an Extreme Value 

Distribution (Type I), the density function is as follows: 
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and the conditional density function of (Y|X=x) is the normal 

distribution with density 
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Here, -∞ <y< ∞; µ1, µ2 ϵ R; σ1, σ2> 0 and -1 <ρ < 1 

Moreover, the assumption is that, in certain situations, the 

regression of Y on X is reasonable with
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There are no apparent solutions to the likelihood equations in 

equations (2.1) and (2.2) for parameter analysis. They can be a 

terrific problem to tackle via iteration because the characteristics 

of the resulting estimators are determined, especially for small 

samples. Because iterative approaches present numerous 

significant challenges, MML estimators are employed to 

estimate the parameter. 

III. ESTIMATION OF PARAMETERS 

Given the random sample (xi, yi), (1≤ i ≤ n) the likelihood 

function L is- 
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Taking logarithm both sides of equation (3.1), we get 

2

1
2

21

1

2

21

)1(2

1
exp

)2ln(
2

)1(ln
2

lnlnln

2
i

n

i

n

i

i

n

i

i

ez

z
nn

nnL





==

=

−
−−

+−−−−−=



  

The likelihood equations for estimating µ1, σ1, µ2, σ2, and ρ are 
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There are no explicit solutions due to the complex nature of 

the first two equations (3.2) to (3.6). In practice, it is difficult to 

solve by repetition, as of the case with likelihood equations 

(Reynolds, 1982; Smith, 1984; Tiku et al., 1986; 

Potcher,1989;Narula, 1974; Tiku et al., 2001; Akkaya and Tiku, 

2005; Oral, 2006). To estimate the Modified Maximum 

Likelihood Estimators (MMLE), ordering has been done for the 

values xi, in increasing order of magnitudes, i.e. 1≤ i ≤ n.  

Let,    x(1) ≤  x(2) ≤ …≤ x(n)                                                                  (3.8) 

 

Let y[i] be the yj observation which corresponds to x(i); y[i] may 

be called associated of x(i). Hence, the sample observations are  
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since complete sums are invariant to ordering, it proves that 
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Thus, the equations (3.2) to (3.6) reduces to  
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IV. THE MODIFIED MAXIMUM LIKELIHOOD 

ESTIMATORS 

To make the preceding equations easily solvable, Taylor 

Series around t(i) = E(z(i)) has been employed. The functions are 

linearizing by considering the first two terms of the Taylor 

Series expansions as follow: 
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Substituting the values of (4.1) and (4.2) in (3.11), the Modified 

Maximum Likelihood equations are as follows: 
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The Modified Maximum Likelihood (MML) estimators are the 

solutions of the equations (4.3) to (4.6)  

  (4.7) 
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V.CONDITIONAL AND MARGINAL LIKELIHOOD 

FUNCTIONS 

The likelihood function, in general, comprises of the 

conditional and marginal density functions, and 

together reparametrization of the conditional part, we have  
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The Likelihood equations for estimating µ1, σ1, µ2.1, σ2.1and ɵare 
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To derive the MML estimators once again, the order has been 

given to xi’s in an increasing way 
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Let, y[i] be the yiobservations which corresponds to x(i) and hence 
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The MML estimators are the solutions of the equations (5.11) 

to (5.15) 
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The MMLE (5.16) to (5.20) differ significantly from those 

based on bivariate normality. The conditional estimators, on the 

other hand, are the same as the Least Squares Estimator (LSE). 

This is because the ei’s in the linear model

)1(,2 niexy iii ++=  are assumed to be i.i.d normal 

).,0( 2N  

VI. PROPERTIES OF THE MML ESTIMATORS 

The fact that MMLE are asymptotically equivalent to the 

associated likelihood equations yielded the following 

conclusions. These findings play a significant role in hypothesis 

testing. 
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Lemma 1: The asymptotic distribution of 


1 follows ( )
m

N
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Lemma2:Asymptotically, the estimator


1 is conditionally the 

MVB estimator of 
1 . 

VII. ASYMPTOTIC COVARIANCE MATRIX 

Case1: The asymptotic covariance matrix is given by, 
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Case2: For estimating  and1.21.211 ,,, Fisher 

Information matrix, ),,,,( 1.21.211
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The asymptotic covariance matrix of the estimators
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VIII.   HYPOTHESIS TESTING 

Case 1: In this case, hypothesis has been set as 0:0 =H  against

0:1 H . 

As the MMLE are asymptotically equivalent to the MLE 

(Vaughan and Tiku, 2000; Wu, 1973; Wu, 1974) the likelihood 

ratio statistic is (asymptotically) 
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been proposed as the test based on


  is uniformly most powerful 

(asymptotically).  
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where the denominator part is the asymptotic variance of 
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under Ho. For all n ≥ 15, the null distribution of W is closely 

approximated by N(0,1). Reject 0:0 =H against 0:1 H when 

the value of W is high.  
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The null distribution of 













=






1.2

1
1.21

2

1 ),(




nT

follows
2

distribution with 2d.f. asymptotically.  

Again, 















=

−

−
−

1

33

1

11

1

0

01





n

.  

The test statistic


2

1T turn to be










+=

33

2

1.2

11

2

12

1








T

 

The Decision of acceptance and rejection can be done by 

comparing the value of


2

1T  with )2(
2

05.0 .The non-null 

distribution of


2

1T  is non-central chi-square with 2 d.f and non-

centrality parameter 2 , where, 

















= −

1.2

11
1.21

2 ),(




 n

 
For small n, the null distribution of 

−

− 2

1
)1(2

)2(
T

n

n follows 

approximately central-F with (2, n-2) d.f. Non-null distribution 

follows approximately non-central-F with (2, n-2) d.f. and non-

centrality parameter 2 . 

 

 

IX. SIMULATION STUDY 

We derive the simulated relative efficiencies of Least Square 

Estimator (LSE), the ratio of variance of MMLE to the 

corresponding LSE multiplied by 100. Results have been given 

for different values of n (sample size). We give results for fixed 

value of ρ=0.5 and different values of n =20, 40, 80, 100. The 

results are based on 10,000 Monte Carlo runs. Without loss of 

generality, 2211 ,,,  are considered to be 0, 1, 0, 1. The other 

parameters take values from the relations
1

2



 = , 121.2  −=

, 
2

21.2 1  −=
.The computer program to do simulations is 

written in R studio.   

The simulated estimated value for the marginal distribution 

of X is the Extreme Value Distribution of Type I and the 

conditional distributions of Y given X=x is the Normal 

Distribution are for fixed value of 𝜌 and different values of n are 

presented in  the Table: 9.1  through Table: 9.4. 

CONCLUSION 

In this paper, hypothesis testing procedure has been 

developed using MMLE introduced by M.L. Tiku for the 

situation when the marginal distribution of X is the Extreme 

Value Distribution of Type I and the conditional distributions of 

Y given X=x is the Normal Distribution. From simulation study, 

it has been seen that for all sample sizes n= 20, 40, 80 and 100 

and for all parameters the MML estimators are more efficient 

than the corresponding LS estimators. Moreover, as the sample 

size increases, efficiency of MML estimators are also increases, 

which is due to the reason that asymptotically MML estimators 

are MVB estimators. In regression analysis, the point of focus is 

given on the value of  and . From the table,(9.1) to (9.4) it is 

clear that the efficiency of LS estimators steadily decreases as 

increase in the sample size and it continues to stay near by 80%. 

In this paper, the simulated mean, variance and MSE are 

presented for MML estimators and LS estimators with their 

relative efficiencies. The analysis has been witnessed of the fact 

that MML estimators are more efficient than the corresponding 

LS estimators and it implies efficiency of MMLE directly 

proportional to sample size. Moreover, this result agrees with the 

theoretical results as given. 
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Table 9.1: Simulated Values for n=20, 𝝆 =  𝟎. 𝟓 
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Table 9.2: Simulated Values for n=40, 𝝆 =  𝟎. 𝟓 

 

  

𝝁
𝟏
 

𝝈
𝟏
 

𝝁
𝟐
 

𝝈
𝟐
 

𝝁
𝟐

.𝟏
 

𝝈
𝟐

.𝟏
 

𝜽
 

𝝆
 

M
M

L
E

 

m
ea

n
 

0
.1

0
3
8
 

1
.0

7
5
2
 

0
.0

6
9
1
 

1
.1

0
6
5
 

0
.0

7
2
6
 

0
.9

4
7
1
 

0
.5

7
7
7
 

0
.5

6
3
 

n
*
b

ia
s2

 

0
.1

0
5
2
 

0
.0

6
8
5
 

0
.0

6
6
6
 

0
.0

9
9
 

0
.0

7
3
8
 

0
.0

6
6
6
 

0
.0

6
2
6
 

0
.0

6
5
 

n
*
v

ar
ia

n
ce

 

5
.4

1
6
7
 

0
.8

7
5
7
 

7
.2

7
7
1
 

0
.8

1
3
6
 

5
.5

1
7
8
 

0
.7

0
8
3
 

0
.9

0
6
5
 

0
.6

6
5
3
 

n
*

m
se

 

5
.4

6
0
4
 

0
.8

8
2
7
 

7
.2

8
2
2
 

0
.8

5
1
1
 

5
.5

3
0
1
 

0
.7

1
3
4
 

0
.9

0
7
6
 

0
.6

6
8
8
 

L
S

E
 

m
ea

n
 

0
.0

9
2
6
 

1
.0

4
6
5
 

0
.1

9
3
6
 

1
.0

3
7
3
 

0
.1

0
7
3
 

0
.8

7
7
1
 

0
.5

6
0
1
 

0
.6

3
6
 

n
*
b

ia
s2

 

0
.0

6
4
 

0
.0

6
5
5
 

0
.1

8
3
6
 

0
.0

7
6
6
 

0
.0

6
2
8
 

0
.0

6
2
6
 

0
.0

6
2
6
 

0
.0

6
3
6
 

n
*
v

ar
ia

n
ce

 

5
.5

7
0
3
 

1
.0

7
3
6
 

7
.6

2
9
3
 

0
.8

8
6
5
 

6
.1

8
5
1
 

0
.8

1
7
8
 

1
.0

6
1
6
 

0
.7

5
2
7
 

n
*

m
se

 

5
.5

7
2
8
 

1
.0

7
7
6
 

7
.7

5
1
4
 

0
.9

0
1
6
 

6
.1

8
6
4
 

0
.8

1
8
9
 

1
.0

6
2
7
 

0
.7

5
4
8
 

 ef
fv

ar
 

9
7
.2

7
3

2
3
 

8
0
.5

0
8

0
9
 

9
5
.4

0
7

5
 

9
1
.2

2
5

1
3
 

8
9
.1

6
4

3
1
 

8
5
.5

8
3

1
 

8
4
.5

5
3

0
 

8
7
.4

1
6

8
 

 ef
fm

se
 

9
8
.0

2
2

0
5
 

8
0
.8

8
0

3
1
 

9
3
.9

5
9

9
9
 

9
4
.0

5
0

3
1
 

8
9
.3

4
6

2
2
 

8
6
.1

3
2

2
 

8
4
.5

7
0

0
 

8
7
.6

5
7

0
 



Journal of Scientific Research, Volume 66, Issue 3, 2022 

   299 
Institute of Science, BHU Varanasi, India 

 

Table 9.3: Simulated Values for n=80, 𝝆 =  𝟎. 𝟓 
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Table 9.4: Simulated Values for n=100, 𝝆 =  𝟎. 𝟓 
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