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Abstract:In various circumstances of stochastic regression
analysis, one deals with a random vector (X, Y), where Y is
an outcome of X but not vice-versa. In such situations, X has
a non-normal distribution while the conditional distribution
of (Y|X=x) may or may not be normal. In this paper, the
distribution of X is assumed to be Extreme value distribution
(Type 1) and the conditional distribution of Y to be normal.
Then Modified Maximum Likelihood (MML) estimators are
derived. Hypothesis testing procedure is also developed.

Index Terms:Extreme value, Maximum Likelihood,
Modified Maximum Likelihood, Stochastic Regressor,
Econometrics

I. INTRODUCTION

One of the important assumptions of regression model is that
the explanatory variables are fixed in repeated samples. In many
cases, the assumption of non-stochastic regressor is not always
tenable (Judge et. al, 1988; Bharali and Hazarika, 2019). This is
valid for experimental work, in which the experimenter has
control over the explanatory variables and can repeatedly
observe the outcome of the dependent variable with the same
fixed values or some designated values of the explanatory
variables. Thus, under a non-experimental or uncontrolled
environment, the dependent variable is often under the influence
of explanatory variables that are stochastic in nature. This work
is devoted to a condition where the both the variables X and Y in
the regression model y=p +px+¢ follows particular

distribution. Hooper and Zellner (1961), Kerridge (1967),
Hartley (1973), Hwang (1980), Tiku (1980), Lai and Wei (1982),
Kinal and Lahiri (1983), Lai and Wei (1985), Tiku and Suresh
(1992), Lai (1994), Hu (1997), Magdalinos, and kandilorou
(2001), Islam, Tiku and Yildirim (2001), Islam and Tiku (2005),
Sazak et al. (2006), Islam and Tiku (2010), Tiku and Akkaya
(2010) are some of the works related to stochastic regressor. In
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this paper distribution of independent variable X follows
Extreme Value Distribution of Type | and the conditional
distribution of (Y|X=x) follow the Normal Distribution. First, we
estimate the parameters and then develop the hypothesis testing
procedures based on Modified Maximum Likelihood (MML)
estimators.After that, simulated values are compared to test the
model efficiency.

Il. MARGINAL EXTREME VALUE DISTRIBUTION (TYPE I) AND
CONDITIONAL NORMAL
In certain instances of regression analysis, the dependent
variable Y regresses on the independent variable X, howeverthis
is not always the case. The distribution of the independent
variables may be positively skewed in this case, and the
conditional distribution of the dependent variable (Y|X=x) may
or may not follow the Normal Distribution (Bowden and
Turkington,1981; Ehrenberg,1963; Akkaya and Tiku, 2001).
Assuming that the distribution of X is an Extreme Value
Distribution (Type 1), the density function is as follows:
l (s

h(x):fe"il exp[—eTl] -0 < X<w, 0,50

0y

1 e X-
=g ) where 7= _H

0 0;

2.1)
and the conditional density function of (Y|X=x) is the normal
distribution with density

Y-t~ P22 (X~ ¥
) 0

Here, -co <y< oo; pu1, l2 € R; 61, 02> 0and -1 <p <1

h(y[x) =

1 exo[ 1
\/ﬂaz (1—p2)% 20,(1- 2.2)

Moreover, the assumption is that, in certain situations, the
regression of Y on X is reasonable  with

e= (y—ﬂz - pZ(x _ﬂl))being normally distributed.
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There are no apparent solutions to the likelihood equations in
equations (2.1) and (2.2) for parameter analysis. They can be a
terrific problem to tackle via iteration because the characteristics
of the resulting estimators are determined, especially for small
samples. Because iterative approaches present numerous
significant challenges, MML estimators are employed to
estimate the parameter.

[1l. ESTIMATION OF PARAMETERS
Given the random sample (xi, yi), (1< i < n) the likelihood
function L is-
L :H f(X .00, 15,05, p)

i=1

x-py

= o'e

1 1
TPl
i1 V2r o,(1- p?): 20, (1-p%)

O.
{y -1, — p=2(x— w)¥]
(<1

[T o 0 momlC 2 —e = oty p 2 (- )Y

Lo, "o, (L-p?) 5 {Z (L) Zexp RS (YL ()
i1 0y = 0y -p )T 1

Let,

XA

: % and ei:{Yi_ﬂz_p?f(Xi_M)} ; (I<i<n); P2<1

o 1 n
Lo o,"6,"(1-p?) 2(27)7 exp| Zz Zexp - ————"¢]
20, (1-p°) (3.1)

Taking logarithm both sides of equation (3.1), we get

nL=-nlho,—nho, —%In (1—p2)—g|n(27z)+2": z,
i=1
1 1 u 2
- D expz, —— g
; Pz 20,2 (1— p?) ; I
The likelihood equations for estimating M1, o1, Ha, 02, and p are
olnL n
.+ e
o, o, 01,21: o-lcrz(l P’ )Z (3.2)
ahL n
-_n_2 Z,+— ) ex z,—————-> 67,=0
oo, o1 61; 1|Zl: () 0,0, (1 P )121: (33)
olnL 1 4
= 2 zei =0
o, o, (1-p°) = (3.4)
oinL n -
= e =0
do, o, 02 (1 P’ )le o, (1 P’ ); (3.5)
oinL np P o 1 N
=— - e+ €z;,=0
op -p* o @-p*) Z:‘ o, (1—/02); (3.6)
(e}
Let,gzpiz then
0,
ol L
Zlel -
0 o (1 P’ )Z (3.7
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There are no explicit solutions due to the complex nature of
the first two equations (3.2) to (3.6). In practice, it is difficult to
solve by repetition, as of the case with likelihood equations
(Reynolds, 1982; Smith, 1984; Tiku et al, 1986;
Potcher,1989;Narula, 1974; Tiku et al., 2001; Akkaya and Tiku,
2005; Oral, 2006). To estimate the Modified Maximum
Likelihood Estimators (MMLE), ordering has been done for the
values x;, in increasing order of magnitudes, i.e. /<i <n.

Let, X < x@ < .. SX() (3.8)

Let ypij be the yjobservation which corresponds to Xgy; yrij may
be called associated of x. Hence, the sample observations are

Zg :M €i = {y[u] —Hy
% and (3.9
since complete sums are invariant to ordering, it proves that

Zl:em =0 sz

O
/7*2 (Xm - /41)}
o

;1<i<n

(3.10)
Thus, the equations (3.2) to (3.6) reduces to
ohnL :——+—Zexp(z(, TN
Oy O, Op'ia
olnL n
=————) 75 +— D exp(z4)z; =0
do, 01 0'1; 0'1; @70
oln L 1
Oy ' (A= p? )lzl: " >(3_11)
olnL n
=——+ e, =
o0, o, o (1— ); v
omnL _ np Z _
op (1:0)0'2(1/’)2' v %
IV. THE MODIFIED MAXIMUM LIKELIHOOD

ESTIMATORS
To make the preceding equations easily solvable, Taylor
Series around tg = E(zg) has been employed. The functions are
linearizing by considering the first two terms of the Taylor
Series expansions as follow:

1_, 1 d_ . :

Zg =ty +(zg _t(i))(E g )zm:tm =y — B gy > I<i=n

4.2)
a 2
where 2 = %iognd o =P
2 _ ol )

and € € +[Z(|) (.)]( ) 2=ty = _Z(i)ﬂi

4.2)
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e‘m —t. et(-)

ai: i
where ® andﬁ (- e,z)

Substituting the values of (4.1) and (4.2) in (3.11), the Modified
Maximum Likelihood equations are as follows:

olnL Jln L* n

= -——t— (a - Bz )=0
o o o Z @ (4.3)
olnL dln L*__n .

= - Zi t 2y (@ = fiz4) =0
0o, oo, o1 O'llzl“ v 'Zl: v ! (4.4)
dln L dln L* 1

e|

o, ou, o,,1-p ).21: w (4.5)
oimL _olhL*  np z _
» o @-p) o (1 p)rE " (4.6)

The Modified Maximum Likelihood (MML) estimators are the

solutions of the equations (4.3) to (4.6)

~ iﬁnxr)
s -71n 7K+Do-1
* > Zﬂ*l 4.7)
n n Z BiXiy
e \/[21 )y - =)
01= & 2n - 1
_ —B+/B%+4nC
2n (4.8)
Hy =¥ %G )
Oy (49)
2
O_Zzsy 0—1
Sy (4.10)
NG, s,
P==,
o Sy (4.11)
Where,
I’&szi ny:zn:yi
i=1 i
2:1:()(i_;)2 Z(y. y)? i(xi*;)z(yi*§)z
ey Y e YT e
Zn:ﬂix(i) 1 &
K=+ :?Z(l_ai)
ﬁi Zﬂl i=1
i=1 s i=1
: c-3 A bl
B=> (- a)(X.—i) Xi)~ g
; (i) %: %: |
Lemmal:As, sy <sis2 so that s’ —(s? /s;)>s. —s =0 so,

is always positive.

Lemma2: According to Vaughan and Tiku (2000)
" 1

/02 N 42 272 2 2.2 nd

[L+(s,s, /sy 017 )A—s, /s,’s, )]

A A
. ays . 2 2
o, is always positive since s*y o1/,
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0<s? <s’ s’ . Hence, p? always assumes values between 0

and 1.

V.CONDITIONAL AND MARGINAL LIKELIHOOD

FUNCTIONS
The likelihood function, in general, comprises of the
conditional and  marginal  density  functions, and

together reparametrization of the conditional part, we have

1 1 o
hy\x = \/go_ (1_,02)1,2 exp[- 20 2(1_p2){y_,uz _p;j(x_:ul)}z]
2 2
Then the likelihood function is given by-

Ly\x :Hf|(X;O'zvﬂ1vﬂzvp)

— :" 1
_li:l[[\/go_z(l_pz)uz

_ O_an (1_p2)—n/2 (2”)—n/2 exp{_

Y S — v, fp@(xi )

20,"(1-p?)

ﬁ;()’. 1y =0 (%, #1))]

Let, W, =Y, —0 X

Hoy = 1, = Ot

0'2.12 :O'Zz(l_Pz)
Then the equation becomes,

L0 (27) ™" (00) " exp(- ;ziw—um o1
21 1= 5.1

where e; is distributed as normal N(o,gz_lz) and wiis distributed

as normal N(,,,0,,?)

& = (W, — £,)
=Y~ 1, —0(X — 1)

;1<i<n

Rl
( Xty e )

1 o
g0=—e "
0.

1

Again

Then, the likelihood function is given by-

gy XT”J
Lx = H (Glle[ " )

i=l
= 0'171 eXp(ZZi - ZEXp z;)
i=l i=l
Since, L = LyLyx

. n n . . 1 n
=Ll=0 exp(zzi _zeXp z,)(2r) /20'2.1 exp(- 2 Z(Wi _:uz.l)z)

i=1 i=1 O,y i=l

taking logarithm both sides, we get

nL=ho, " ep(>2 - > ew2)27) 20y, " expl-——y 3 (W, - 4,)°)]

i=1 i=1 Oy il
=-nho,—-nino,, -3 27+> 7, - expz, —LZZ(ei)2
i=1 i=1 20'2.1 i=1
(5.2)
The Likelihood equations for estimating p, o1, Y21, o2.1and eare
ohi__n, —Zexp(z) 0
O o oiT (5.3)
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onL 1 e =0

Oty 52.12 =g (5.4
ohL_ n 1 Z, Jrizexp(zi)zi =0

oo, o, Oiad  Oiq (5.5)
olnL :_7_‘_ ze -0

003, 021 0'213 i<l (5.6)
onL o, Z”:ez -0

06 O'2,12 =g (5.7)

To derive the MML estimators once again, the order has been

given to x;’s in an increasing way
Xy SXpy oo Xy (5.8)
Let, yjij be the yjobservations which corresponds to xg and hence

the sample observations take the form (X¢), yiip), 1 <i<n.
o (X(i) — 1)
© o and M = Wi

€i1 =Yg — A — g(x(i)

-0 X4)

“H) | <i<n 5.9)
From the above calculations, it is realized that the ordering of z;
is invariant to W, and o1(provided ¢:>0). This is the reason why
() corresponds to X (1 <1i < n). Over again, the complete sums

are invariant to ordering, and hence

dln L
+—Zexp(z(,)) 0 )
Oy 51 Oy iz

onL 1
. o2 Zem =0
M1 Oyy izl

oinL n 13
_*_*ZZ(-) Z exp(z))zg) =0

60'1 0'1 1 i=1 0'1 i=1

> (5.10)

oL n o1&
=-—+—5D 8 =0

00, 021 Oy il
ohL o, <
=% z.e.=0
89 0_2'12 ; (OMU] /

Replacing e?by (% 20/ gives the MMLE below,

olnL _oInL* n
= =—— *Z(D‘ Z(i)ﬂi)zo

o, Oy 01 O (511)
oinL 6InL* n
= - Zz(u) ZZ(,)(a Z(,)ﬁ) 0

0o, 0o, 0y 0y 0y ia (5.12)
oinL _ alnL*
P — Zem =0

My Oty Oy i; (5.13)
olnL _ oInL* n 1 &2
LRl

01 021 G211 Oy im (5.14)
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alnL oinL* o, <
20 - o0 :Glz 228 =0

21 =l

(5.15)
The MML estimators are the solutions of the equations (5.11)
to (5.15)

A iﬂvxm 1 " "
= +9— Z(]_—ai) 0'1:K+DO'1
Y A
“ (5.16)
n Z”:Wm N Z“:'”'X(‘) z i Zﬂlﬂ'x(']
‘{g(l‘“)[xm‘%ﬂ H+ {;(1—%)[%-% ; ﬂ +4n§_1:/)’i[x(.>—liﬁl J
0,= = - -
2n
on (5.17)

(5.18)

ﬁg(yﬁ] Y= 6(x ~ X))

(5.19)
A i(x(i)_ﬂ/\l)(y[i]_ﬂ;)
6:I:1
Z(X(i)_ﬂl)z
- (5.20)
Where,
“?:ixi ”§=Zn:)/.
i=1 i=1
, Zi:(xi—;)z , ;(yi_y)z Zi:(xi_g)z(yi_y)z
Zn:ﬂixm D=

1 n
[ = E— n Z(l a; ) _ N _ _ ;ﬁix(')
STEEED Y N "L L

i=1 i=1
1 ) H

n D Bixqy
C ;ﬂi[x(i) i;ﬁ‘ J

The MMLE (5.16) to (5.20) differ significantly from those
based on bivariate normality. The conditional estimators, on the
other hand, are the same as the Least Squares Estimator (LSE).
This is because the e’s in the linear model
Y, =i, + X +e,(L<i<n) are assumed to be i.i.d normal

N(0,52).

V1. PROPERTIES OF THE MML ESTIMATORS
The fact that MMLE are asymptotically equivalent to the
associated likelihood equations yielded the following
conclusions. These findings play a significant role in hypothesis
testing.
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Lemma 1: The asymptotic distribution of 14 follows N (yl, ‘i)

m

A
Lemma2:Asymptotically, the estimator o, is conditionally the
MVB estimator of o,

VII. ASYMPTOTIC COVARIANCE MATRIX
Casel: The asymptotic covariance matrix is given by,

-1
17 (s 01 M5 102.P) \yhere lis the Fisher information
matrix

I_[Iu] {_ [ o'int ]:| whered, =y, ,0, =0, ,0; =1, ,

0(9 00,
0,=0,,0,=p
| = n
Again, let  @=/°)  the elements of the matrix A are

N
A,u]/q =_O_12{;e ! (1npp )}
1 n 2 n n
A :2{ Zexpz —Zexpz - Zzi+ P Zei

P ) i=1 O-z(l_pz) i=1

np n 1
WM 1 S
Moy 0,-p%) e 0'10'2(1—/32) |:p; I 0, ; I

_ 1 . (1+p°) <
A/ap_dl 1- 2)|:pzzi Ze:|

i1 02(1 P )

. pz)ieizi}%{iexp(zi).ai)z -

i=1 0y | i

:Lz {ZZ. Ye(z)z,
0—1

1 i=1 i=1

n

A¢71#2 = %Z Zi

010,(1-p%) T

Aaloz 0,0, (1 P )|: le :|
Amp:lz{oznl i2_ L) Zn: }

o,(1-p%) o,(1-p*) 3

n
A =" A12L72 - p Lt — :|
s TSR e DR

Auzf—lz{izi e }

o, I-p) T o~ p) =
3 n
T s zzeiz

o, 1-p)=
Ze po_ziziz_ieizi)}

2 n

SULLI A Zn: iz_ i Zeizi

Z -
o, U(l—Pz) i o, (- 2) T

1
Arrz/): 2 { i4i 226
o, (1-

0202
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and
Zn:eiz
1 2np - N
A = 8z —
7 (1—p) le —pz)i; 2(1 p?) 21: (-p)o;’
Case2: For estimating 4 ,o0, ,u,, ,0,,and @ Fisher

Information matrix, 1 *(y, ,0, ,u,, ,0,,,0) 1S defined as the

following-
If I=n A, the element of matrix A are-

1 n n
A == Zexp z A, =62{n =D expz,— Y exp zi.(zi)}
1 i=1 i=1

1 i=1

A =0 A :0 n
Htaf , o2 , #101 _ |:Ze|:|

0102

alal— [ﬂ+222 —ZEXD(Z)(Z) —ZZEXP(Z)(Z )]

n
= 0 1 = 0 _—— = ——
Afflﬂz.l AC71021 A01'91 0,0, ;e'z' M 1421 0_22
2n [Zn:
A = e A =——1r Z;
yep) 0_23 — Hp 62 =
n 3 &
A0'21f721 = 2 4 zei ’-"2131 zelzl
O-z 02 i=1 i
g
i1 02.1

The asymptotic covariance matrix of the estimators [,1 ,51 .

) 0A2.1 and 6 are given by ZE Iil(:u1 10y Hyy 404,0)

VIIl. HYPOTHESIS TESTING

Case 1: In this case, hypothesis has been setas H,, : p =0 against
H,:p#0.

As the MMLE are asymptotically equivalent to the MLE
(Vaughan and Tiku, 2000; Wu, 1973; Wu, 1974) the likelihood
ratio statistic is (asymptotically)

5 max(L|H,)
max(L)

N n/2
2 A _1S.2 A _
_ % L p*) " exp (n A)SyA (1_p02)_(n21)
y 2(1-p") o,
where * [_ Sy ] is the Pearson sample correlation coefficient
o = —2
5,8,

A2
and the likelihood ratio is a monotonic function of ,, . Therefore,
to testH,: p=0againstH, : p>0 the following test statistic has
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been proposed as the test based on;J is uniformly most powerful
(asymptotically).

W =

"
e’

i=1
A-p)o,’

n
2

2 zzel -

)=

a-|"Tamp) &1 T E T T oap

2 n n 2
1 {n 2np Z le . 4p ZE,Z‘ 4

p=0

A

where the denominator part is the asymptotic variance of £
under Ho. For all n > 15, the null distribution of W is closely
approximated by N(0,1). RejectH,: p=0againstH, : p >0when

the value of W is high.

Case 2: In this case, the hypothesis for testing the mean vector

Hy 0
(1))

#21) \0) for the Conditional and Marginal Likelihood
Functions has been considered.[l1 and ﬂ;_l are equivalent to the
MLE asymptotically. The distribution of the random vector

A

\m(ﬁl ﬂ“j follows Bivariate Normal with Zero mean and

Q= n{gn 0 }
covariance matrix 0 ou],
A A B
o, and 5, are calculated from, o, :Zj: I, 14,0, 11, 0,1,0) -
Being the orthogonal components, the covariance between #1

N . A A .
and y, , is zero. 5, and 5, converge t0 5, and o, , , respectively.

T12 =N, 45,)Q [lil

2
The null distribution of #Z-J follows %

distribution with 2d.f. asymptotically.

Again,

o M
The test statistic TIZ turn to be Ou
The Decision of acceptance and rejection can be done by

comparing the value of TIZ with 5 2(2) .The non-null

distribution ofTI2 is non-central chi-square with 2 d.f and non-

centrality parameter 4%, where,

R =0y, p1p1) Q7 [”1 ]
Haa

distribution of (n-2) 12 follows
2(n-1) *

approximately central-F with (2, n-2) d.f. Non-null distribution

follows approximately non-central-F with (2, n-2) d.f. and non-

centrality parameter 4% .

For small n, the null
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IX. SIMULATION STUDY
We derive the simulated relative efficiencies of Least Square
Estimator (LSE), the ratio of variance of MMLE to the
corresponding LSE multiplied by 100. Results have been given
for different values of n (sample size). We give results for fixed
value of p=0.5 and different values of n =20, 40, 80, 100. The
results are based on 10,000 Monte Carlo runs. Without loss of

generality, #4:%1:H2,92 gre considered to be 0, 1, 0, 1. The other

parameters take values from the relations g = p 2 , #2142~ Oy

= —_ 2 - - -
, ©21=9V1=P" The computer program to do simulations is

written in R studio.

The simulated estimated value for the marginal distribution
of X is the Extreme Value Distribution of Type | and the
conditional distributions of Y given X=x is the Normal
Distribution are for fixed value of p and different values of n are
presented in the Table: 9.1 through Table: 9.4.

CONCLUSION

In this paper, hypothesis testing procedure has been
developed using MMLE introduced by M.L. Tiku for the
situation when the marginal distribution of X is the Extreme
Value Distribution of Type | and the conditional distributions of
Y given X=x is the Normal Distribution. From simulation study,
it has been seen that for all sample sizes n= 20, 40, 80 and 100
and for all parameters the MML estimators are more efficient
than the corresponding LS estimators. Moreover, as the sample
size increases, efficiency of MML estimators are also increases,
which is due to the reason that asymptotically MML estimators
are MVB estimators. In regression analysis, the point of focus is
given on the value of gand . From the table,(9.1) to (9.4) it is

clear that the efficiency of LS estimators steadily decreases as
increase in the sample size and it continues to stay near by 80%.
In this paper, the simulated mean, variance and MSE are
presented for MML estimators and LS estimators with their
relative efficiencies. The analysis has been witnessed of the fact
that MML estimators are more efficient than the corresponding
LS estimators and it implies efficiency of MMLE directly
proportional to sample size. Moreover, this result agrees with the
theoretical results as given.

297



Journal of Scientific Research, Volume 66, Issue 3, 2022

40,p = 0.5

Table 9.2: Simulated Values for n

20,p= 0.5

Table 9.1: Simulated Values for n
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100,p = 0.5

Table 9.4: Simulated Values for n

80,p= 0.5

Table 9.3: Simulated Values for n
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