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Abstract—A novel approach for expanding a family of life time
distributions is put forward by introducing a new parameter
referred as the MTI transformation technique. Various proper-
ties of the MTI transformation technique have been obtained.
The technique has been specialized on two-parameter Weibull
distribution, resulting a new distribution called MTI Weibull
(MTIW) that has been explored in detail. The density function
of the MTIW distribution can be decreasing, unimodal, bimodal,
symmetrical, skewed to the right, also with monotonic and non-
monotonic behaviour of failure rate function. Two real life data
sets were analyzed to illustrate the efficacy of the suggested
model.

Index Terms—MTI Transformation; Quantile Function; Re-
liability Function; Mean Waiting Time; Maximum Likelihood
Estimation.

There are plenty of probability distributions in the statistical
literature for modeling various real-life random phenomena in
fields such as engineering, hydrology, actuarial science, data
science, medical sciences, finance, insurance etc. Since no
single distribution is suitable for modeling all phenomena, as a
result, the number of new flexible distributions are increasing
rapidly. Generalizing the existing classical distributions by in-
troducing new parameters is growing at rapid pace, numerous
methods have been introduced in the statistical literature by
various authors. Mudholkar and Srivastava (1993) proposed
a new method to introduce an extra parameter to an existing
distribution known as exponentiation. The cumulative distribu-
tion function (cdf) of the exponentiated random variable (rv)
for x ∈ R is defined as

F (x;α, φ) = ψ(x;φ)α; α, φ > 0 (1)

where ψ(x;φ) is the cdf of baseline model and φ is the param-
eter vector. Cordeiro et al. (2016) introduced the exponentiated
Gompertz generated family of distributions, Jan et al. (2018)
proposed the exponentiated inverse power Lindley distribution
and determined its various properties. Hassan and Abd-Allah
(2018) introduced the exponentiated Weibull-Lomax distribu-
tion. The beta-generated technique was established by Eugene
et al. (2002) that makes use of the beta distribution as the

generator to establish the beta generated distributions. Thus,
the cdf of a rv X for beta-generated method is defined as

F (x) =

ψ(x)∫
0

m(s)ds, (2)

where ψ(x) is the cdf of any rv X and m(s) is the probability
density function (pdf) of a beta rv. Eugene et al. (2002)
modified the normal distribution by using (2) and discussed
its various statistical properties. Nadarajah and Kotz (2006)
obtained the beta exponential distribution, Akinsete et al.
(2008) introduced the beta-Pareto distribution. The quadratic
rank transmutation map approach was put forward by Shaw
and Buckley (2007) and is given as

F (x; ξ, φ) = (1+ξ)ψ(x;φ)−ξψ(x;φ)2, φ > 0, |ξ| ≤ 1, x ∈ R,
(3)

where ψ(x;φ) is the cdf of an existing distribution. Mahdavi
and Kundu (2017) proposed a method called the α-Power-
Transformation (APT) family of distributions, they defined it
in terms of cdf as, for x ∈ R

FAPT (x) =

{
αψ(x)−1
α−1 ;α 6= 1, α ∈ R+

ψ(x) ;α = 1
(4)

where ψ(x) is the cdf of a continuous rv X . Mahdavi
and Kundu (2017) have specialized (4) on the exponential
and Weibull distributions and explored various statistical
properties. Nassar et al. (2017) presented α-power Weibull
distribution, α-power Rayleigh distribution of Malik and
Ahmad (2017) and α-power inverse exponential distribution
of Ceren et al. (2018).

Hassan et al. (2021) presented a new method based
on trigonometric function called Sine-Exponentiated-
Transformation (SET). They employed this method upon
exponential distribution and derived a new two-parameter
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sine exponentiated exponential distribution. They defined the
cdf for x ∈ R as

FSET (x, α) = ψ(x) sin
(π

2
ψα(x)

)
;α ≥ 0,

where ψ(x) is the cdf of a continuous rv X .

Recently, Lone et al. (2022) proposed a novel method called
Ratio Transformation (RT). They employed this method upon
two-parameter Weibull distribution and derived a new three-
parameter RT Weibull (RTW) distribution. They defined the
cdf for x ∈ R as

FRT (x, α) =
ψ(x)

1 + α− αψ(x)
;α > 0,

where ψ(x) is the cdf of a continuous rv X .

In this manuscript a novel method for introducing greater
flexibility to a family of distribution functions by bringing in
new parameter to the given family has been introduced. This
novel technique has been refereed as MTI transformation.
The proposed MTI transformation is very simple and efficient
technique for introducing a new parameter to generalize the
existing distributions. Some general properties of this class of
distribution functions have been discussed. Then MTI method
has been specialized to a two-parameter Weibull distribution
and generated a three-parameter MTIW distribution, several
statistical and reliability measures of MTIW distribution have
been obtained.

In section 2, the pdf and cdf of the novel technique have
been obtained and various general properties of this technique
have been discussed. In section 3, the technique has been
specialized on two parameter Weibull distribution and its
structural properties as well as reliability measures have been
obtained. In section 4, estimates of unknown parameters and
simulation study have been performed. In section 5, two
real data sets were analyzed to illustrate the efficacy of the
suggested model. In section 6, the conclusion is stated.

I. PROPERTIES OF MTI METHOD

Let X be a continuous rv, then the cdf of MTI transforma-
tion for x ∈ R, is defined as

FMTI(x) =
µF (x)

µ− logµF̄ (x)
; µ ∈ R+, (5)

where, F̄ (x) = 1− F (x)

Obviously, FMTI(x) is a valid cdf only if F (x) is a valid
cdf. The corresponding pdf of MTI transformation for x ∈ R,
is defined as

fMTI(x) =
µ(µ− logµ)f(x)

(µ− logµF̄ (x))2
; µ ∈ R+ (6)

The reliability function RMTI(x) is given by

RMTI(x) =
(µ− logµ)F̄ (x)

µ− logµF̄ (x)
; µ ∈ R+ (7)

The hazard rate function hMTI(x) is given by

hMTI(x) =
µf(x)

F̄ (x)(µ− logµF̄ (x))
; µ ∈ R+ (8)

If h(x) is the hazard rate function of f then the hazard rate
hMTI(x) is given by

hMTI(x) = h(x)
µ

µ− logµF̄ (x)
; µ ∈ R+ (9)

From (9), it is clear that

lim
x→−∞

hMTI(x) =
µ

µ− logµ
lim

x→−∞
h(x)

and,
lim
x→∞

hMTI(x) = lim
x→∞

h(x)

It follows from (9) that

h(x) ≤ hMTI(x) ≤ µ

µ− logµ
h(x) ; x ∈ R, µ ≥ 1

h(x) ≥ hMTI(x) ≥ µ

µ− logµ
h(x) ; x ∈ R, µ ≤ 1

F (x) ≤ FMTI(x) ≤ µ

µ− logµ
F (x) ; x ∈ R, µ ≥ 1

F (x) ≥ FMTI(x) ≥ µ

µ− logµ
F (x) ; x ∈ R, µ ≤ 1

.

Obviously, hMTI(x)
h(x) is increasing in x for µ > 1 and

decreasing in x for 0 < µ < 1.

If F−1(x) exists in explicit form, then for µ > 0, a random
sample from FMTI(x) can be easily obtained as

µF (x)

µ− logµF̄ (x)
= u

µF (x) = uµ− ulogµ+ ulogµF (x)

F (x)(µ− ulog) = u(µ− logµ)

x = F−1
(
u(µ− logµ)

µ− ulogµ

)
where U is a uniform rv, 0 < u < 1.

Therefore, the qth quantile xq of FMTI(x) is given by

xq = F−1
(
q(µ− logµ)

µ− q logµ

)
If q = 0.5, we can get the median of the distribution.

Theorem 1: If f(x) is a non-increasing function, and
µ ≥ 1, then fMTI(x) is a non-increasing function.

Proof: We have,

d

dx
logfMTI(x) =

f
′
(x)

f(x)
− 2logµf(x)

µ− logµF̄ (x)
. (10)

Clearly, the R.H.S. of (10) is negative.
Theorem 2: If f(x) is a non-increasing function, and f(x)

is log-convex, then for µ ≥ 1, the hazard function hMTI(x)
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is a non-increasing function.

Proof: We have,

d2

dx2
logfMTI(x) =

d2

dx2
logf(x) +

2logµ

(µ− logµF̄ (x))2

×
{
logµf2(x)−

(
µ− logµF̄ (x)

)
f
′
(x)
}

(11)

Clearly, the R.H.S. of (11) is positive. Hence the result
from Barlow and Proschan (1975).

II. MTIW DISTRIBUTION AND ITS PROPERTIES

A RV X has a three-parameter MTIW distribution denoted
by MTIW(µ, θ, λ) with parameters µ, θ and λ , if the cdf and
pdf of X for x > 0, are respectively, given by

FMTIW (x) =
µ
(

1− e−λxθ
)

µ− logµ e−λxθ
; θ, λ > 0, µ ∈ R+

(12)
and

fMTIW (x) =
µ(µ− logµ)λθxθ−1e−λx

θ

(µ− logµ e−λxθ )2
; θ, λ > 0, µ ∈ R+

(13)
The reliability and the hazard rate of MTIW distribution for
x > 0 are, respectively, given by

RMTIW (x) =
(µ− logµ)e−λx

θ

µ− logµ e−λxθ
; θ, λ > 0, µ ∈ R+

(14)
and

hMTIW (x) =
µλθxθ−1

µ− logµ e−λxθ
; θ, λ > 0, µ ∈ R+

The behaviour of the hazard rate function at extremes for
different values of shape parameter θ.

h(0) =


∞ for 0 < θ < 1,
µλ

µ−logµ for θ = 1,

0 for θ > 1,

h(∞) =


0 for 0 < θ < 1,

λ for θ = 1,

∞ for θ > 1.

Theorem 3: If hMTIW (x) is the hazard rate of the MTIW
distribution, then

(i) For µ ∈ [1,∞) and θ ∈ (0, 1), then hMTIW (x) is
decreasing.

(ii) For µ ∈ (0, 1) and θ ∈ (1,∞), then hMTIW (x) is
increasing.

(iii) For µ ∈ [1,∞), θ ∈ (1,∞) and A(µ, θ) =

θ
(
µ− logµ e−1

θ

)
−µ > 0, then hMTIW (x) is increas-

ing, otherwise, hMTIW (x) is increasing-decreasing-
increasing.

(iv) For µ ∈ (0, 1), θ ∈ (0, 1) and A(µ, θ) =

θ
(
µ− logµ e−1

θ

)
−µ < 0, then hMTIW (x) is decreas-

ing, otherwise, hMTIW (x) is decreasing-increasing-
decreasing.

Proof: Without losing generality, assume λ = 1 as it is a
scale parameter. The first derivative of hMTIW (x) with respect
to x is given by:
h
′
(x) = s(x)t(xθ), x > 0

where s(x) > 0 and t(y) = (θ − 1)
(
µ− logµ e−1

θ

)
−

θlogµ ye−y; y = xθ > 0

(i) For µ ∈ [1,∞), θ ∈ (0, 1), clearly t(y) < 0, this implies
h
′
(x) < 0. Therefore, hMTIW (x) is decreasing.

(ii) By using similar approach as (i).
(iii) For µ ∈ [1,∞), θ ∈ (1,∞), the derivative of t(y) w.r.t.

x is
t
′
(y) = logµ e−y(yθ − 1) ; y > 0,

i.e., t(y) has a stationary point at y∗ = 1/θ. Since
t
′′
(y∗) = logµ θe−

1
θ > 0. This implies t(y) has the

global minimum at y∗. The global minimum value of
t(y) is
t(y∗) = θ

(
µ− logµ e− 1

θ

)
−µ = A(µ, θ), say. Cleraly,

for θ ∈ (1,∞), lim
y→0

t(y) = (θ − 1)(µ − logµ) > 0 and

lim
y→∞

t(y) = µ(θ − 1) > 0.

If t(y∗) = A(µ, θ) > 0, then t(y) > 0 ∀ y > 0. Hence,
h
′
(x) > 0 ∀ x > 0, i.e. hMTIW (x) is increasing.

If t(y∗) = A(µ, θ) < 0, then t(y) has exactly two
roots x1 < x2, such that hMTIW (x) non-decreasing on
(0, x1), non-increasing on (x1, x2) and ultimately non-
decreasing on (x2,∞). So, hMTIW (x) is increasing-
decreasing-increasing (see figure 2).

(iv) By using similar approach as (iii).
�

Remark: When µ = 1, the MTIW distribution becomes the
standard Weibull distribution. In that case the shapes for
hazard rate function are well known in the literature. Table I
lists seven important special models of the new distribution.

TABLE I
SUB-CASES OF THE MTIW DISTRIBUTION

µ λ θ Reduced model

- 1 - MTI one-parameter Weibull distribution
1 - - Two-parameter Weibull distribution
1 1 - One-parameter Weibull distribution
- - 2 MTI-Rayleigh distribution
1 - 2 Rayleigh distribution
- - 1 MTI-exponential distribution
1 - 1 Exponential distribution

Fig. 1 shows some MTIW density graphs for various
selected parameter values. Fig. 2 depicts graphs of the hazard
rate of the MTIW distribution for distinct parameters values.

A. Simulation and Quantile

The MTIW distribution can be simulated using inverse cdf
method

µ
(

1− e−λxθ
)

µ− logµ e−λxθ
= u

µ− µe−λx
θ

+ ulogµe−λx
θ

= uµ

e−λx
θ

=
µ(u− 1)

ulogµ− µ
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Fig. 1. Density plots of MTIW for different combinations of µ, θ and λ = 1.
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Fig. 2. Hazard rate plots of MTIW for different combinations of µ, θ and
λ = 1.

x =

{
− 1

λ
log

(
µ(u− 1)

ulogµ− µ

)} 1
θ

(15)

where U is a uniform rv, 0 < u < 1. The qth quantile of
MTIW distribution is

xq =

{
− 1

λ
log

(
µ(q − 1)

q logµ− µ

)} 1
θ

.

The median can be obtained as

x0.5 =

{
− 1

λ
log

(
µ

2µ− logµ

)} 1
θ

.

B. Moments and generating function

The rth moment of MTIW distribution is obtained by using
the following series representation.

(1− x)−2 =

∞∑
j=0

(j + 1)xj ; |x| < 1, (16)

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xrf(x)dx

= (µ− logµ)
λθ

µ

∞∫
0

xr+θ−1e−λx
θ

(
1− logµ

µ
e−λx

θ

)−2
(17)

By substituting e−λx
θ

= y in (17), we get

E(Xr) =
µ− logµ
µλ

r
θ

∞∑
j=0

(j + 1)

(
logµ

µ

)j 1∫
0

(−logy)
r
θ yjdy

(18)
Again, substituting −log(y) = z in (18), we get the final
expression as

E(Xr) =
µ− logµ
µλ

r
θ

∞∑
j=0

(
logµ

µ

)j Γ(1 + r
θ )

(j + 1)
r
θ

and the moment generating function of MTIW distribution
is obtained as

MX(t) =

∞∫
0

etxf(x)dx

by using the same procedure as above, we get the final
expression for moment generating function as

MX(t) =
µ− logµ

µ

∞∑
r=0

∞∑
j=0

tr

r!λ
r
θ

(
logµ

µ

)j Γ(1 + r
θ )

(j + 1)
r
θ

C. The Mean residual life of MTIW distribution

Mean residual life M(t) function of MTIW distribution is

M(t) =
1

R(t)

E(t)−
t∫

0

xf(x)dx

− t (19)
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where

E(t) =
µ− logµ
µλ

1
θ

∞∑
j=0

(
logµ

µ

)j Γ(1 + 1
θ )

(j + 1)
1
θ

(20)

and
t∫

0

xf(x)dx =
µ− logµ
µλ

1
θ

∞∑
j=0

(
logµ

µ

)j
1

(j + 1)
1
θ−1

×γ
(

(j + 1)λtθ,
1

θ
+ 1

)
(21)

Substituting (14), (20) and (21) in (19), we have

M(t) =
µ− logµ e−λt

θ

µλ
1
θ e−λtθ

∞∑
j=0

1

(j + 1)
1
θ

(
logµ

µ

)j
×
{

Γ

(
1

θ
+ 1

)
− (j + 1)γ

(
(j + 1)λtθ,

1

θ
+ 1

)}
− t

where γ(a,m) =
a∫
0

xm−1e−xdx, is called lower incomplete

gamma function.

The mean waiting time M̄(t) of MTIW distribution, is
defined as

M̄(t) = t− 1

F (t)

t∫
0

xf(x)dx. (22)

Putting (12) and (21) in (22), we get

M̄(t) = t− µ− logµ e−λtθ

µ(1− e−λtθ )

µ− logµµλ
1
θ

∞∑
j=0

(
logµ

µ

)j
× 1

(j + 1)
1
θ−1

γ

(
(j + 1)λtθ,

1

θ
+ 1

)}

D. Rnyi Entropy

Rnyi entropy of MTIW distribution, sayREX(u) is defined
as

REX(u) =
1

1− u
log

 ∞∫
−∞

f(x)udx

 ; u > 0, u 6= 1.

Using(16), the Rnyi entropy of MTIW distribution is given
by

REX(u) =
1

1− ulog

{(
µ− logµ

µ

)u ∞∑
a=0

(
2u

a

)(
logµ

µ

)a
1

a+ 1

}

survival 1.pdf survival 1.jpeg survival 1.png

Fig. 3. (i) Fitted MTIW density & relative histogram. (ii) Fitted MTIW
reliability & empirical reliability for first data set.

TABLE II
MEAN VALUES OF ML ESTIMATES AND THEIR CORRESPONDING MEAN

SQUARE ERRORS(N=50).

Parameter MLE MSE

λ µ θ λ̂ µ̂ θ̂ λ̂ µ̂ θ̂

1 0.5 1 1.18179 0.81745 1.02638 0.93980 0.65328 0.07487
1.5 1.13836 0.98257 1.58870 1.05747 1.02049 0.17206
2 1.22388 0.80207 2.03381 1.03472 0.68804 0.30086

1 1 1.28407 1.38648 0.94904 0.80105 1.07311 0.03661
1.5 1.29026 1.47548 1.45377 0.83372 1.26247 0.09177
2 1.35592 1.31013 1.87588 0.92744 1.04082 0.17989

1.5 1 1.30234 1.75575 0.94803 0.61513 1.09861 0.02750
1.5 1.39462 1.65607 1.40788 1.04933 0.98571 0.08092
2 1.35450 1.63660 1.88802 0.75936 0.99909 0.12829

2 1 1.29728 1.87489 0.93764 0.68005 0.96809 0.02531
1.5 1.35068 1.87370 1.40692 0.98757 0.94978 0.06298
2 1.28476 1.93592 1.89704 0.42022 0.92955 0.10058

2 0.5 1 1.88192 0.98516 1.10379 0.93321 0.94257 0.07176
1.5 2.16756 0.77951 1.54901 1.25992 0.58640 0.16942
2 2.11348 0.83451 2.07516 1.22824 0.69212 0.27335

1 1 2.29927 1.48654 0.96703 1.01152 1.26495 0.04015
1.5 2.31886 1.33608 1.43148 0.94762 1.00709 0.08137
2 2.21523 1.66188 1.99822 0.99429 1.43652 0.14591

1.5 1 2.38932 1.77766 0.95661 0.82935 1.06833 0.02801
1.5 2.30217 1.73995 1.44201 0.50734 0.93121 0.04252
2 2.35458 1.70152 1.92136 0.71460 0.93689 0.09761

2 1 2.41522 1.82619 0.94998 0.90039 0.86900 0.02475
1.5 2.40601 1.86414 1.41397 0.78808 0.91042 0.04243
2 2.39917 1.81243 1.85499 0.78301 0.94106 0.09531

TABLE III
MEAN VALUES OF ML ESTIMATES AND THEIR CORRESPONDING MEAN

SQUARE ERRORS(N=100).

Parameter MLE MSE

λ µ θ λ̂ µ̂ θ̂ λ̂ µ̂ θ̂

1 0.5 1 1.06590 0.70699 1.02449 0.36021 0.36659 0.04708
1.5 1.08844 0.69721 1.53956 0.45554 0.34607 0.11134
2 1.14823 0.63074 2.00125 0.75362 0.22384 0.23330

1 1 1.20422 1.34688 0.93877 0.49807 0.92665 0.02519
1.5 1.26389 1.37796 1.47269 0.80724 0.95104 0.08107
2 1.09072 1.29961 1.98134 0.25247 0.68847 0.06524

1.5 1 1.21124 1.71280 0.95728 0.28271 0.91864 0.01729
1.5 1.26326 1.59287 1.43581 0.76581 0.90130 0.05219
2 1.19217 1.61647 1.92178 0.22521 0.90276 0.06297

2 1 1.15537 1.97437 0.96596 0.26196 0.73111 0.01129
1.5 1.16515 1.97112 1.45601 0.17585 0.74403 0.02773
2 1.17250 2.03638 1.93671 0.15928 0.79701 0.04113

2 0.5 1 1.97254 0.74254 1.04388 0.52685 0.40358 0.03928
1.5 2.12048 0.71372 1.52302 0.96575 0.44781 0.12682
2 2.08346 0.71406 2.03369 1.04337 0.44072 0.24041

1 1 2.13504 1.51531 0.99061 0.65486 1.07801 0.02511
1.5 2.20425 1.18544 1.45430 0.44807 0.63551 0.04523
2 2.19529 1.32071 1.99156 0.81397 0.84363 0.10234

1.5 1 2.34454 1.66117 0.95562 0.82297 0.88214 0.02281
1.5 2.28948 1.67895 1.41888 0.49815 0.86225 0.04074
2 2.29010 1.67375 1.93280 0.70837 0.90935 0.09234

2 1 2.41102 1.88802 0.95640 0.90021 0.86746 0.02443
1.5 2.26063 1.88061 1.44836 0.22693 0.80906 0.01888
2 2.33511 1.85817 1.87602 0.69694 0.88337 0.07582

survival 2.pdf survival 2.jpeg survival 2.png

Fig. 4. (i) Fitted MTIW density & relative histogram. (ii) Fitted MTIW
reliability & empirical reliability for second data set.

E. Order Statistics
Let Xj , (j = 1, 2, ...n), a random sample from (13), then the pdf of rth

order statistics is

fr:n(x) =
µrλθxθ−1(1− e−λxθ )r−1

(
(µ− logµ)e−λx

θ
)n−r+1

Υ(r, n− r + 1)
(
µ− logµ e−λxθ

)n+1
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Fig. 5. q-q plot for first and second data set.
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Fig. 6. p-p plot for first and second data set.

TABLE IV
ESTIMATES (STANDARD ERRORS) AND KOLMOGOROV SMIRNOV TEST

STATISTIC FOR THE FIRST DATA SET.

Model Estimates Statistic

µ̂ θ̂ λ̂ K-S p-value

MTIW 2.71826 1.61534 0.31532 0.06773 0.99910
APIW 166.99088 1.41814 0.17382 0.11149 0.84990
MW 0.00100 1.46395 0.45517 0.07485 0.99601
TW 0.54248 1.57512 2.12136 0.06863 0.99890
ZBLL 0.55915 2.82749 1.91907 0.08003 0.99070
OW 1.53558 1.03078 1.83077 0.09029 0.89574
W - 1.46332 0.45609 0.07487 0.99600

TABLE V
INFORMATION MEASURES FOR THE FIRST DATA SET.

Model −2l(θ̂) AIC AICC BIC

MTIW 79.42328 85.42328 86.34635 89.62687
APIW 86.31192 92.31192 93.23500 96.51551
MW 79.82328 85.82328 86.74635 90.02687
TW 79.43389 85.43389 86.35697 89.63749
ZBLL 79.74570 85.74570 86.66877 89.94929
OW 81.26015 87.26015 88.18322 89.46374
W 83.82075 87.82075 88.26520 90.62315

where Υ(a,m) is a beta function.

F. Stress Strength Reliability
If X1 ∼ MTIW (µ1, λ1, θ) and X2 ∼ MTIW (µ2, λ2, θ), where X1

and X2 are independent strength and stress rv’s respectively, then, the stress

TABLE VI
ESTIMATES (STANDARD ERRORS) AND KOLMOGOROV SMIRNOV TEST

STATISTIC FOR THE SECOND DATA SET.

Model Estimates Statistic

µ̂ θ̂ λ̂ K-S p-value

MTIW 2.71828 1.11467 0.37223 0.08259 0.97450
APIW 26.05535 1.08404 0.22839 0.08952 0.94810
MW 0.53103 1.04398 0.00100 0.08898 0.95060
TW 0.41864 1.07639 2.39282 0.08349 0.97170
ZBLL 0.70559 1.71970 1.76662 0.08756 0.95680
OW 1.35245 0.78430 1.99202 0.08908 0.94075
W - 1.01022 0.52625 0.09184 0.93660

TABLE VII
INFORMATION MEASURES FOR THE SECOND DATA SET.

Model −2l(θ̂) AIC AICC BIC

MTIW 110.2949 116.2949 117.0949 120.8739
APIW 114.1059 120.1059 120.9059 124.6850
MW 110.9052 116.9052 117.7052 121.4842
TW 110.5260 116.5260 117.3260 121.1051
ZBLL 111.6207 117.6207 118.4207 122.1998
OW 111.6349 117.6349 118.4349 122.2140
W 114.8992 118.8992 119.2863 121.9521

strength reliability P(X1 > X2), say SSR, can be obtained as

SSR =

∞∫
−∞

f1(x)F2(x)dx

Using Equations (12) and (13), the stress-strength reliability SSR, can be
obtained as

SSR =
µ1 − logµ1

µ1

∞∫
0

λ1θx
θ−1

e
−λ1x

θ
(1 − e−λ2x

θ
)

×
(
1 −

logµ1

µ1

e
−λ1x

θ
)−2 (

1 −
logµ2

µ2

e
−λ2x

θ
)−1

dx (23)

Using Equations (16) and (23), SSR can be written as

SSR =
λ1θ(µ1 − logµ1)

µ1

∞∑
j=0

∞∑
k=0

(j + 1)

(
logµ1

µ1

)j ( logµ2

µ2

)k

×
∞∫
0

x
θ−1

(
e
−(λ1(j+1)+kλ2)xθ − e−(λ1(j+1)+λ2(k+1))xβ

)
dx

By applying the transformations y = (λ1(j + 1) + kλ2)xθ and
z = (λ1(j + 1) + λ2(k + 1))xβ , SSR reduces to

SSR =
µ1 − logµ1

µ1

∞∑
j=0

∞∑
k=0

(
logµ1

µ1

)j (
logµ2

µ2

)k
× (j + 1)λ1λ2

(λ1(j + 1) + kλ2)(λ1(j + 1) + λ2(k + 1))

III. ESTIMATION

A. Maximum Likelihood Estimation
Let xj ,(j=1,2,...n), be a random sample from (13), then the log-likelihood

function is given by

l = nlog(µλθ(µ− logµ)) +

n∑
j=1

logxθ−1
j − λ

n∑
j=1

xθj

− 2
n∑
j=1

log
(
µ− logµe−λx

θ
j

)
(24)
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The MLEs of µ, λ and θ are achieved by partially differentiating (24) w.r.t.
the corresponding parameters and equating to zero, we have

∂l

∂µ
=
n

µ
+

n(µ− 1)

µ(µ− logµ)
− 2

n∑
j=1

 µ− e−λx
θ
j

µ
(
µ− logµ e−λx

θ
j

)
 = 0 (25)

∂l

∂θ
=
n

θ
+

n∑
j=1

logxj − λ
n∑
j=1

xθj logxj

− 2λlogµ

n∑
j=1

 xθj logxj e−λxθj
µ− logµ e−λx

θ
j

 = 0 (26)

∂l

∂λ
=
n

λ
−

n∑
j=1

xθj − 2

n∑
j=1

 xθj logµ e
−λxθj

µ− logµ e−λx
θ
j

 = 0 (27)

Since, the above equations (25), (26) and (27) cannot be solved analytically,
to calculate the values of the parameters µ, θ and λ. However, R software
can be used to get the MLE.

B. Asymptotic Confidence Intervals
AS the MLEs of the unknown parameters are not in closed forms, so

obtaining the exact distributions of the MLEs is impossible. however, the
approximate confidence intervals of the parameters based on the asymptotic
distributions of their MLE are obtained. Since the MLEs are asymptotically
normally distributed, that is

√
n(ζ − ζ̂) ∼ N3(0,Σ), where, ζ = (µ, θ, λ),

ζ̂ is the MLE of ζ, n and Σ, are respectively, sample size and variance-
covariance matrix, it is acquired as the inverse of the Fishers-information-
matrix. The empirical information matrix is as follows:

I(ζ) =

Iµµ Iµθ Iµλ
Iθµ Iθθ Iθλ
Iλµ Iλθ Iλλ


where Imn = ∂2l

∂m∂n
(m̂, n̂) are presented in the Appendix.

Let Σ = I−1(ζ) =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


We can construct 100(1 − γ)% asymptotic confidence-intervals for the
parameters µ,θ and λ by using variance covariance matrix as follows:

µ ∈ µ̂ ± Z γ
2

√
Σ11 , θ ∈ θ̂ ± Z γ

2

√
Σ22 , λ ∈ λ̂ ± Z γ

2

√
Σ33

C. Simulation study
The simulation analysis is conducted out with R Software in order to

demonstrate the behaviour of the MLEs in terms of sample size. Two sets of
sample (n=50, n=100) each repeated 100 times with different combinations
of parameters λ = (1, 2), µ = (0.5, 1, 1.5, 2) and θ = (1, 1.5, 2) were
achieved from MTIW. In both settings, the mean values of MLEs and their
corresponding observed MSEs were achieved. TABLE II and TABLE III show
the outcomes of the simulation. TABLE II and TABLE III show that the
estimates are pretty stable and reasonably near to the actual parameter values.
In all circumstances, the MSE reduces as the sample size grows.

IV. APPLICATIONS
We will look at two data sets to describe the significance and flexibility of

the MTIW distribution. The first data set was reported by Hassan and Nassr
(2018) and is provided in Murthy et al. (2004) about time between failures
for repairable item. The data are as follows: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49,
3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73,2.23, 0.45, 0.70, 1.06,
1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.
The second set of data contains 34 observations in mg/L of vinyl chloride
data collected from clean up gradient ground-water monitoring wells. the data
are provided in Bhaumik et al. (2009). and recorded as follows 5.1, 1.2, 1.3,
0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9,
2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4,0.2.

We examine the fit of the MTIW distribution with its sub-model Weibull
(W) and a number of other competing models, namely α-Power Inverse
Weibull (APIW) (see Basheer (2019)), Modified Weibull (MW) (see Sarhan

and Zaindin (2009)), Transmuted Weibull (TW) (see Aryal and Tsokos
(2011)), ZB-Log-Logistic (ZBLL) (see Zografos and Balakrishnan (2009))
and Odd Weibull (OW) (see Cooray (2006)). The corresponding density
functions for x > 0 are presented in the Appendix.

TABLES IV, V, VI and VII show that the MTIW distribution has the
minimum −2l(θ̂), AIC, AICC, BIC and K-S values, as well as the greatest
p-value, of all the competing models. As a result, the MITW distribution
appears to fit both data sets well than the other competing models. Also the
Figures 3,4,5 & 6 definitely confirm the conclusions presented in TABLES IV,
4, 5,& 6.

V. CONCLUSION

In this manuscript, a novel technique known as MTI transformation
has been presented. The MTI technique has been applied to the Weibull
distribution, and a new three-parameter MTIW distribution is established.
Various structural propertied as well as reliability measures of the MTIW
distribution have been highlighted. The reason for adopting this technique is
that its cdf has a nice closed form and can represent data with monotone
& non-monotone failure rates. It has been revealed that the three-parameter
MTIW distribution offers more flexibility in respect of hazard rate function
and the density function. The MTIW model is applied to two independent
real data sets, and the figures demonstrate that it fits both data sets better than
any other competing models.

APPENDIX

APIW f(x) =
logµ

µ− 1
λθx−(θ+µ)e−λx

−θ
µe
−λx−θ

MW f(x) = (µ+ λθxθ−1)e−µx−λx
θ

TW f(x) =
θ

λ

(x
λ

)θ−1
e−( xλ )θ

(
1− µ+ 2µe−( xλ )θ

)
LW f(x) =

θµ2

µ+ 1
λθxθ−1 + λ2θx2θ−1e−µ(λx)

θ

ZBLL f(x) =
θ

λθΓ(µ)
xθ−1

(
1 +

(x
λ

)θ)−2 (
log

(
1 +

(x
λ

)θ))µ−1

OW f(x) =
µθ

x

(x
λ

)θ
e(
x
λ )θ

(
e(
x
λ )θ − 1

)µ−1
[
1 +

(
e(
x
λ )θ − 1

)µ]−2

where µ,θ,λ > 0 and Γ(µ) =
∞∫
0

xµ−1e−xdx.

∂2l

∂µ2
= −

n

µ2
+ n [µ(µ − logµ) − (µ − 1)(2µ − logµ − 1)]

− 2

n∑
i=1


µ(µ − logµ e−λx

θ
i ) − (µ − e−λx

θ
i )

(
2µ − e−λx

θ
i (1 + logµ)

)

(µ(µ − logµ e−λx
θ
i ))2



∂2l

∂θ2
= −

n

θ2
− 2λlogµ

n∑
i=1

(logxi)
2
x
θ
i e
−λxθi

µ(1 − λxθi ) − logµ e
−λxθi

(µ − logµ e−λx
θ
i )2



∂2l

∂λ2
= −

n

λ2
+ 2

n∑
i=1

µ logµ x2θi e
−λxθi

(µ − logµ e−λx
θ
i )2

∂2l

∂µ∂θ
= −2µlogµ λ

n∑
i=1

x
θ
i logxie

−λxθi

 (µ − logµ e−λx
θ
i ) − (µ − e−λx

θ
i )logµ

(µ(µ − logµ e−λx
θ
i ))2



∂2l

∂µ∂λ
= −2µ

n∑
i=1

x
θ
i e
−λxθi

 (µ − logµ e−λx
θ
i ) − logµ(µ − e−λx

θ
i )

(µ(µ − logµ e−λx
θ
i ))2



∂2l

∂θ∂λ
= −

n∑
i=1

x
θ
i logxi − 2logµ

n∑
i=1

x
θ
i logxi e

−λxθi

µ(1 − λxi) − logµ e
−λxθi

(µ − logµ e−λx
θ
i )2


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