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Abstract: In this manuscript, we have introduced a new 

transformed version of xgamma distribution using the Alpha 

Power Transformation (APT) technique known as Alpha Power 

Transformed Xgamma distribution (APTXGD). Through the 

APT technique, we have added a new parameter in xgamma 

distribution thus, making it more flexible as compared to baseline 

model. Several properties of the proposed model viz., moments, 

conditional moments, generating functions, order statistics, 

L-moments, entropies, Boneferroni and Lorenz curve, mean 

deviation e.t.c. have been studied. Besides, the behaviour of 

hazard rate and shape of the density function have been discussed 

in detail. The parameters of proposed model are estimated 

through the widely used classical estimation method, maximum 

likelihood estimation. A simulation study has been carried out to 

check the consistency of the estimates of proposed model. Lastly, 

five real life examples pertaining to different arenas are 

considered to show the applicability and significance of the 

proposed model.  
 

Index Terms: Xgamma distribution, generating functions, 

moments, order statistics, method of estimation, simulation study.  
 
      1  Introduction 

 In this modern era, a special attraction of researchers revolve 

around the development of the new probability distribution. 

Probability distributions are of utmost importance in the field 

of statistical inference because with these developed lifetime 

probability distribution, we analyse the data and draw the 

inferences about the population on the basis of different 

statistical tools and techniques. There are different extension 

methodology and family generators for probability 

distributions exist in the literature. They are helpful to add a 

new parameter and generate the family of a probability 

distribution. Objective of such modification increases the 

flexibility of the base probability distribution. Several authors 

have worked on the family generators and some of them are: 

Lee et al. [1] , Jones [2] , Alzaatreh et al. [3] . Beta-G, 

gamma-G, Kw-G, Weibull-G have introduced by Eugene et al. 

[4], Zografos and Balakrishnan [5], Cordeiro and Castro [6], 
Bourguignon et al. [7] respectively. 

Alpha power transformed (APT) methodology is one 

among such techniques that add a new parameter in the 

probability distribution and thereby enhance it’s utility. It 

brings the flexibility in model and makes the it more reliable 

for the real life. In a nutshell, this newly introduced parameter 

makes the XGD more flexible. Mahdavi and Kundu [8] have 

been derived the new method of generating distribution. 

Cumulative distribution function (CDF) [𝐹𝐴𝑃𝑇(𝑥)]  [see, 

Equation [1] ] and probability density function (PDF) 

(𝑓𝐴𝑃𝑇(𝑥)))  [see, Equation (2) ] of APT when a random 

variable X having baseline CDF 𝐹(𝑥) and PDF 𝑓(𝑥) are:  

 

𝐹𝐴𝑃𝑇(𝑥) = {

𝛼𝐹(𝑥)−1

𝛼−1
;

      𝑥 ∈ ℜ, 𝛼 > 0, 𝛼 ≠ 1
𝐹(𝑥);   𝑥 ∈ ℜ, 𝛼 = 1

     (1) (1) 

 

and 

 

𝑓𝐴𝑃𝑇(𝑥) = {

log𝛼𝑓(𝑥)𝛼𝐹(𝑥)

(𝛼−1)
;

  𝑥 ∈ ℜ, 𝛼 > 0, 𝛼 ≠ 1
𝑓(𝑥);   𝑥 ∈ ℜ, 𝛼 = 1

       (2) (2) 

 

𝛼  is shape parameter of proposed model. In recent 

time, we have noticed that the interest of the researchers 

inclined toward to development of the APT distributions. Dey 

et al. [see, [9],[10], [11], [12]] have discussed new extension 
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of generalized exponential distribution, a new extension of 

Weibull distribution, alpha power transformed Lindley and 

alpha power transformed inverse Lindley distribution 

respectively. Further, Hassan et al. [see, [13],[14]], Nassar et 

al. [15] and Shumaila et al. [16] have introduced alpha power 

transformed extended exponential distribution and alpha power 

transformed power Lindley distribution, alpha power Weibull 

distribution and alpha power Pareto distribution receptively. 

In the article, we derived APT version of xgamma 

distribution (XGD), called alpha power transformed xgamma 

distribution (APTXGD). Hence, the motivation of this article is 

three fold: first one is to study the survival and reliability 

characteristics of APTXGD and to evaluate the expression of 

several statistical properties of APTXGD viz., moments, 

conditional moments, generating functions, order statistics etc. 

Second is the estimation of parameters involved using 

maximum likelihood estimation (MLE) technique. Third is to 

demonstrate the application of the APTXGD in real life 

situation pertaining to different areas. 

Rest of article organized as follows: In section 2, we 

have discussed the APTXGD and derived the reliability 

characteristic of APTXGD. Shape of proposed density and 

characterization of hazard rate function (HRF) is given in 

section 3 . Related statistical properties of suggested 

probability distribution are given in section 4. The parameter 

estimation of the proposed model is discussed in section 5. In 

section 6 , a Monte carlo simulation study is carried out to 

assess the performances of the maximum likelihood estimates 

for the survival and hazard rate functions in terms of MSEs. 

For illustrative purposes, five real data sets are analyzed in 

section 7. Finally, concluding remarks are given in section 8. 
 
2  Proposed model and its reliability characteristics 

 

 Basically proposed model is the extension of XGD, discussed 

by Sen et al. [17]. XGD is a combination of  𝑒𝑥𝑝 (1, 𝜃) and 

 𝑔𝑎𝑚𝑚𝑎 (3, 𝜃) with finite mixing proportion. Sen et al. [17] 
have stated that added flexibility over the exponential 

distribution was observed with regard to certain important 

properties of the XGD and perform better than exponential 

distribution. Also, they have discussed the statistical properties, 

MLE method of parameter estimation, simulation study and 

real life example to prove the applicability of XGD. PDF [see, 

Equation 3] and the cumulative distribution function (CDF) 

[see, Equation 4] of XGD with parameter 𝜃 are given below: 

 

𝑓(𝑥; 𝜃) =
𝜃2

(1+𝜃)
(1 +

𝜃

2
𝑥2) 𝑒−𝜃𝑥   ; 𝑥 > 0, 𝜃 > 0     (3) (3) 

 

And 

𝐹(𝑥; 𝜃) = 1 −
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)

(1+𝜃)
𝑒−𝜃𝑥 ; 𝑥 > 0, 𝜃 > 0    (4) 

 Now here we present the transform version of XGD, called 

APTXGD. To render APTXGD, we add one more parameter to 

XGD by using APT. Consequently, APTXGD becomes more 

feasible and adoption chances of APTXGD in real life 

scenarios. The PDF [see, Equation 5] and CDF [see, Equation 

6] of APTXGD are written below by using the expression of 

these function for the base model : 

 

𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥) =

{
 
 

 
 
log𝛼

𝛼−1

𝜃2

(1+𝜃)
(1 +

𝜃

2
𝑥2) 𝑒−𝜃𝑥

𝛼1−𝑢0;  𝛼 > 0, 𝛼 ≠ 1
𝜃2

(1+𝜃)
(1 +

𝜃

2
𝑥2) 𝑒−𝜃𝑥;  𝛼 = 1

     (5) (5) 

 where 𝑥 > 0 and 𝜃 > 0.  

𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑥) = {
𝛼1−𝑢0−1

𝛼−1
;  𝛼 > 0, 𝛼 ≠ 1

1 − 𝑢0;  𝛼 = 1
          (6) (6) 

 

Where, 𝑢0 =
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)

(1+𝜃)
𝑒−𝜃𝑥 

Behaviour of any lifetime distribution can be 

evaluated by the survival function (SF) and HRF. They are the 

most crucial property of the lifetime distribution that comment 

upon the life and time to failure of the units respectively. Thus, 

SF [see, Equation 7] and HRF [see, Equation 8] corresponding 

to PDF and CDF of APTXGD are given as:  

𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑥) = {
1 − [

𝛼1−𝑢0−1

𝛼−1
]

;    𝛼 > 0, 𝛼 ≠ 1
1 − [1 − 𝑢0];     𝛼 = 1

         (7) (7) 

 

and 

 

𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑥) =

{
 
 

 
 
log𝛼

𝛼−1

𝜃2

(1+𝜃)
𝑢01𝛼

1−𝑢0

1−[
𝛼1−𝑢0−1

𝛼−1
]

; 𝛼 > 0, 𝛼 ≠ 1
𝜃2

(1+𝜃)
(1+

𝜃

2
𝑥2)𝑒−𝜃𝑥

1−[1−𝑢0]
; 𝛼 = 1

         (8) (8) 

 where, 𝑢01 = (1 +
𝜃

2
𝑥2) 𝑒−𝜃𝑥. We depict the pattern of PDF, 

CDF and reliability characteristics viz., SF and HRF through 

the graph. Figure 1  and Figure 2  is the graphical 

representation of the PDF and CDF. SF and HRF are illustrated 

by the Figure 3 and Figure 4 respectively.  

   

 
 

Figure  1: Probability density function 
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Figure  2: Cumulative density function 

   

 

 
   

Figure  3: Survival function 

   

 
   

Figure  4: Hazard rate function 

   

 
3  Shape of the density and the characterizations of 

HRF. 

  

             3.1  Shape of the density 

In this subsection, we discuss the shape of APT density in 

general [see, Equation (2)] and the conditions for which the 

density is log-concave. The logarithm of the APT density can 

be written as:  

log(𝑓𝐴𝑃𝑇(𝑥)) = log (
log𝛼

𝛼 − 1
) + log(𝑓(𝑥)) + 𝐹(𝑥)log𝛼 

 Evaluate the first and second derivative of log(𝑓𝐴𝑃𝑇(𝑥) and 

both derivatives are given below:  
𝜕log𝑓𝐴𝑃𝑇(𝑥)

𝜕𝑥
=

𝑓′(𝑥)

𝑓(𝑥)
+ 𝑓(𝑥)log𝛼           (9) (9) 

 and 
𝜕2log𝐴𝑃𝑇𝑓(𝑥)

𝜕𝑥2
=

𝑓′(𝑥)

𝑓(𝑥)
+ 𝑓′(𝑥) 

 × [log𝛼 −
1

𝑓(𝑥)

𝜕log𝑓(𝑥)

𝜕𝑥
]          (10) (10) 

 From Equation (10 ), we observe that the APT density is 

log-concave when the second derivative is less than zero. This 

is observed in two situations: firstly, when 𝛼 < 1  and 

secondly, when 𝛼 > 1 along with the constraint that log𝛼 <
1

𝑓(𝑥)

𝜕log𝑓(𝑥)

𝜕𝑥
. Hence, APTXGD is also log-concave for above 

derived condition. 

 

3.2  Characterization of HRF 

 Characterization of HRF is one of the key interest to 

researchers. It consists of identifying the shape of HRF. Glaser 

[18]  has discussed the conditions which are necessary to 

characterize the failure rates. Glaser [18]  demonstrated the 

application of derived results to the exponential families of 

density. According to Glaser, increasing, decreasing shapes of 

HRF depends on the quantity 𝜂(𝑥) =
−𝑓′(𝑥)

𝑓(𝑥)
. For details readers 

are requested to refer Glaser (1980). Expression of 𝜂(𝑥) for 

our proposed model is given in following equation: 

   

𝜂(𝑥) = − [log(𝛼)
𝜃2𝑒−𝜃𝑥

1+𝜃
(1 +

𝜃𝑥2

2
) − 𝜃 +

𝜃𝑥

(1+
𝜃𝑥2

2
)
]      (11) (11) 

    

 𝜂′(𝑥) =

−
{log(𝛼)

𝜃3𝑒−𝜃𝑥

1+𝜃
[𝑥−(1+

𝜃𝑥2

2
)](1+

𝜃𝑥2

2
)
2

+𝜃[(1+
𝜃𝑥2

2
)−𝜃𝑥2]}

(1+
𝜃𝑥2

2
)
2  

  

  

𝜂′(𝑥) = −
{log(𝛼)

𝜃3𝑒−𝜃𝑥

1+𝜃
[𝑥−(1+

𝜃𝑥2

2
)](1+

𝜃𝑥2

2
)
2

+𝜃[(1−
𝜃𝑥2

2
)]}

(1+
𝜃𝑥2

2
)
2    (12) (12) 

  

We came across the interesting results regarding the 

shapes of HRF from the Equation ( 12 ). The trends are 

elaborated below:   

 1.  For 𝛼 > 1 and the fixed value of 𝜃, when 𝑥 > (1 +
𝜃𝑥2

2
) 

and 
𝜃𝑥2

2
< 1, then 𝜂′(𝑥) < 0 for all values of 𝑥 > 0, 

indicating that HRF is decreasing.  

 2.  For 𝛼 > 1 and the fixed value of 𝜃, when 𝑥 < (1 +
𝜃𝑥2

2
) 

and 
𝜃𝑥2

2
> 1, then 𝜂′(𝑥) > 0 for all values of 𝑥 > 0, this 

indicating that HRF is increasing.  

 3.  For 𝛼 < 1 and the fixed value of 𝜃, when 𝑥 > (1 +
𝜃𝑥2

2
) 

and 
𝜃𝑥2

2
< 1, then 𝜂′(𝑥) > 0 for all values of 𝑥 > 0, this 
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indicating that HRF is increasing.  

 4.  For 𝛼 < 1 and the fixed value of 𝜃, when 𝑥 < (1 +
𝜃𝑥2

2
) 

and 
𝜃𝑥2

2
> 1, then 𝜂′(𝑥) < 0 for all values of 𝑥 > 0, this 

indicating that HRF is decreasing.  

 

 

4  Statistical properties of APTXGD 

 

This section provides the statistical properties of the proposed 

model viz., moments, conditional moments, generating 

functions, mean deviation about mean, order statistics, 

Bonefferoni and Lorenz curve, ageing intensity, quantile 

function, residual lifetime function, entropies and L-moments. 

Mathematical deduction of statistical properties have been 

provided with their necessary steps of proof. 

 

        4.1  Moments 

 Moments are the crucial aspect of any probability distribution 

which are important for the explaination regarding measures of 

central tendency, to comment of their spread, asymmetricity 

and peakedness. Thus it in a nutshell, moment helps in 

explaining our data comprehensively. The expression of r-th 

raw moment for the APTXGD is given below: 

 

 𝐸(𝑋𝑟) = ∫
∞

0
𝑥𝑟𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 

 

𝐸(𝑋𝑟) = ∫

∞

0

𝑥𝑟
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
(1

+
𝜃

2
𝑥2) 𝑒−𝜃𝑥𝛼

1−
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)

(1+𝜃)
𝑒−𝜃𝑥

𝑑𝑥 

 

 

𝐸(𝑋𝑟) =
log𝛼

𝛼−1

𝜃2

(1+𝜃)
[∫
∞

0
𝑥𝑟𝑢1𝑑𝑥 +

𝜃

2
∫
∞

0
𝑥𝑟+2𝑢1𝑑𝑥]     (13) (13) 

 where, 𝑢1 = 𝑒
−𝜃𝑥𝛼

1−
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2 )

(1+𝜃)
𝑒−𝜃𝑥

 To compute the 

Equation 13, we have provided below a lemma which played a 

major role in the computation of several statistical properties. 

The lemma is; 

 Lemma 1: Let X be random variable having 

APTXGD then 

  

𝐾1(𝑎, 𝑏, 𝑐, 𝛿) = ∫

∞

0

𝑥𝑐𝑒−𝛿𝑥𝑎
1−
(1+𝑏+𝑏𝑥+

𝑏2𝑥2

2
)

(1+𝑏)
𝑒−𝑏𝑥

𝑑𝑥 

 

 

=∑∞𝑖=0 ∑
𝑖
𝑗=0 ∑

𝑗
𝑘=0 ∑

𝑘
𝑙=0 ∑

𝑙
𝑚=0 𝑖𝑗

𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!
 

     
(−1)𝑗

(1+𝑏)𝑖

𝑏𝑘+𝑚

2𝑚

Γ(𝑐+𝑙+𝑚+1)

(𝛿+𝑖𝑏)𝑐+𝑙+𝑚+1
        (14) (14) 

  and  

  

𝐾2(𝑎, 𝑏, 𝑐, 𝛿) = ∫

∞

0

𝑥𝑐+2𝑒−𝛿𝑥𝑎
1−
(1+𝑏+𝑏𝑥+

𝑏2𝑥2

2
)

(1+𝑏)
𝑒−𝑏𝑥

𝑑𝑥 

 = ∑∞𝑖=0 ∑
𝑖
𝑗=0 ∑

𝑗
𝑘=0 ∑

𝑘
𝑙=0 ∑

𝑙
𝑚=0 𝑖𝑗

𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!
 

              
(−1)𝑗

(1+𝑏)𝑖

𝑏𝑘+𝑚

2𝑚

Γ(𝑐+𝑙+𝑚+3)

(𝛿+𝑖𝑏)𝑐+𝑙+𝑚+3
 (15) 

  

 

 𝐾1(𝑎, 𝑏, 𝑐, 𝛿) = ∑
∞
𝑖=0

(log𝑎)𝑖

𝑖!
∫
∞

𝑖=0
𝑥𝑐

𝑒−𝛿𝑥−𝑖𝑏𝑥

(1+𝑏)𝑖
[1 −

(1+𝑏+𝑏𝑥+
𝑏2𝑥2

2
)

(1+𝑏)
𝑒−𝑏𝑥]

𝑖

𝑑𝑥 

=∑

∞

𝑖=0

(log𝑎)𝑖

𝑖!
∑

𝑖

𝑗=0

𝑖
𝑗
(−1)𝑗∑

𝑗

𝑘=0

𝑗
𝑘
𝑏𝑘 

∫

∞

𝑖=0

𝑥𝑐
𝑒−𝛿𝑥−𝑖𝑏𝑥

(1 + 𝑏)𝑖
(1 + 𝑥 +

𝑏𝑥2

2
)

𝑘

𝑑𝑥 

=∑

∞

𝑖=0

(log𝑎)𝑖

𝑖!
∑

𝑖

𝑗=0

𝑖
𝑗
(−1)𝑗∑

𝑗

𝑘=0

𝑗
𝑘
𝑏𝑘∑

𝑘

𝑙=0

𝑘
𝑙
∑

𝑙

𝑚=0

𝑙
𝑚

𝑏𝑚

2𝑚
 

∫

∞

𝑖=0

𝑥𝑐+𝑙+𝑚
𝑒−𝛿𝑥−𝑖𝑏𝑥

(1 + 𝑏)𝑖
𝑑𝑥 

  

=∑

∞

𝑖=0

(log𝑎)𝑖

𝑖!
∑

𝑖

𝑗=0

𝑖
𝑗

(−1)𝑗

(1 + 𝑏)𝑖
∑

𝑗

𝑘=0

𝑗
𝑘
𝑏𝑘∑

𝑘

𝑙=0

𝑘
𝑙
∑

𝑙

𝑚=0

𝑙
𝑚

𝑏𝑚

2𝑚
 

∫

∞

𝑖=0

𝑥𝑐+𝑙+𝑚𝑒−𝛿𝑥−𝑖𝑏𝑥𝑑𝑥 

  

Integral in the above Equation can be solved by 

gamma function. Thus, and after solving the integration, 

Equation can be written as; 

  

𝐾1(𝑎, 𝑏, 𝑐, 𝛿)

= ∑

∞

𝑖=0

∑

𝑖

𝑗=0

∑

𝑗

𝑘=0

∑

𝑘

𝑙=0

∑

𝑙

𝑚=0

𝑖
𝑗
𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!

(−1)𝑗

(1 + 𝑏)𝑖
𝑏𝑘+𝑚

2𝑚
 

Γ(𝑐 + 𝑙 + 𝑚 + 1)

(𝛿 + 𝑖𝑏)𝑐+𝑙+𝑚+1
 

  

In similar manner we solve the 𝐾2(𝑎, 𝑏, 𝑐, 𝛿) and the 

solution is: 

  

𝐾2(𝑎, 𝑏, 𝑐, 𝛿)

= ∑

∞

𝑖=0

∑

𝑖

𝑗=0

∑

𝑗

𝑘=0

∑

𝑘

𝑙=0

∑

𝑙

𝑚=0

𝑖
𝑗
𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!

(−1)𝑗

(1 + 𝑏)𝑖
𝑏𝑘+𝑚

2𝑚
 

Γ(𝑐 + 𝑙 + 𝑚 + 3)

(𝛿 + 𝑖𝑏)𝑐+𝑙+𝑚+3
 

   

Put 𝑎 = 𝛼 , 𝑏 = 𝜃 , 𝑐 = 𝑟  and 𝛿 = 𝜃 , r-th raw 

moment is: 

  

𝐸(𝑋𝑟) =
log𝛼

𝛼−1

𝜃2

(1+𝜃)
[𝐾1(𝛼, 𝜃, 𝑟, 𝜃) +

𝜃

2
𝐾2(𝛼, 𝜃, 𝑟, 𝜃)]    (16) (16) 
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From Equation (16 ), we can obtain first four raw 

moments by putting 𝑟 = 1,2,3,4 respectively. 

  

𝐸(𝑋) =
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
[𝐾1(𝛼, 𝜃, 1, 𝜃) +

𝜃

2
𝐾2(𝛼, 𝜃, 1, 𝜃)] = 𝜇1′ 

  

  

𝐸(𝑋2) =
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
[𝐾1(𝛼, 𝜃, 2, 𝜃) +

𝜃

2
𝐾2(𝛼, 𝜃, 2, 𝜃)]

= 𝜇2′ 
    

𝐸(𝑋3) =
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
[𝐾1(𝛼, 𝜃, 3, 𝜃) +

𝜃

2
𝐾2(𝛼, 𝜃, 3, 𝜃)]

= 𝜇3′ 
    

𝐸(𝑋4) =
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
[𝐾1(𝛼, 𝜃, 4, 𝜃) +

𝜃

2
𝐾2(𝛼, 𝜃, 4, 𝜃)]

= 𝜇4′ 
  The above evaluated raw moments are helpful to find the 

first four central moments. Note that the formula of first four 

central moments are given as:  

 𝜇1 = 𝜇1′, 𝜇2 = 𝜇2′ − 𝜇1
′2, 𝜇3 = 𝜇3′ − 3𝜇1′𝜇2′ + 2𝜇1

′3 

 

 𝜇4 = 𝜇4′ − 4𝜇3′𝜇1′ − 3𝜇2
′2 + 12𝜇2′𝜇1

′2 − 6𝜇1
′4 

Pearson provided for the measures of skewness and kurtosis to 

comment upon the symmetry and peak of any PDF by 

following formulas:  

 

𝑆𝐾 =
𝜇3
2

𝜇2
3   𝑎𝑛𝑑  𝐾𝑅 =

𝜇4

𝜇2
2 

 

          4.2  Generating functions 

 
 In the literature of statistics, mainly three generating functions 

viz., moment generating function (MGF), characteristic 

function (CF) and kumulant generating function (KGF) are 

given and these are denoted by 𝑀𝑥(𝑡) , Φ𝑥(𝑡)  and 𝑁𝑥(𝑡) 
respectively. These generators are the useful to evaluate the 

moments and the expression of MGF is: 

 

 𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫

∞

0
𝑒𝑡𝑥𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 

 

 

𝑀𝑥(𝑡) = ∫

∞

0

𝑒𝑡𝑥
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
(1 +

𝜃

2
𝑥2) 𝑒−𝜃𝑥

× 𝛼
1−
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)

(1+𝜃)
𝑒−𝜃𝑥

𝑑𝑥 

 

To solve the above integral of 𝑀𝑥(𝑡) , we have to 

follow the Lemma 1 for evaluate the integral of 𝑀𝑥(𝑡) and the 

expression of 𝑀𝑥(𝑡) is: 

.  

𝑀𝑥(𝑡) =
log𝛼

𝛼−1
×

𝜃2

𝜃+1
[𝐾1(𝛼, 𝜃, 0, 𝜃 − 𝑡) +

𝜃

2
𝐾1(𝛼, 𝜃, 0, 𝜃 − 𝑡)]  

                                        (17) (17) 

 The MGF suffers from the drawback that it is confined in the 

range -𝜖0 < 𝑡 < 𝜖0  where 𝜖0  is any small positive number. 

Thus there arises the need to resort to another function called 

characteristic function which is defined for entire real range. 

Thus CF (Φ𝑥(𝑡)) of APTXGD, obtained by replacing 𝑡 with 

𝑖𝑡 in Equation (17) is given as: 

 

Φ𝑥(𝑡) =
log𝛼

𝛼−1

𝜃2

𝜃+1
× [𝐾1(𝛼, 𝜃, 0, 𝜃 − 𝑖𝑡) +

𝜃

2
𝐾1(𝛼, 𝜃, 0, 𝜃 − 𝑖𝑡)]  

                              (18) 

 Another generating function defined as logarithmicof MGF is 

known as KGF. Denoted by KGF (𝑁𝑥(𝑡) ) it assumes the 

following form for our model: 

 

𝑁𝑥(𝑡) = log𝑀𝑥(𝑡) 
 

𝑁𝑥(𝑡) = log × {
log𝛼

𝛼−1

𝜃2

𝜃+1
[𝐾1(𝛼, 𝜃, 0, 𝜃 − 𝑡) +

𝜃

2
𝐾1(𝛼, 𝜃, 0, 𝜃 −

𝑡)]}                   (19) 

 

 

        4.3  Conditional moments 

 
Having assumed that the life of units under study follows our 

proposed model and the life exceeds say x then one may be 

interested in conditional moments. Besides, these are useful to 

determine the mean deviation, Bonefferoni and Lorenz curves. 

The expression for conditional moments are: 

𝐸(𝑋𝑛|𝑋 > 𝑥) = ∫

∞

𝑥

𝑥𝑛
𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)

1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)
𝑑𝑥 

where, 𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)  and 𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)  is PDF and CDF of 

APTXGD, given in Equations (5) and (6). 

  

𝐸(𝑋𝑐|𝑋 > 𝑥) =
1

1−𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼−1

𝜃2

𝜃+1
[∫

∞

𝑥
𝑥𝑟𝑢1𝑑𝑥 +

𝜃

2
∫
∞

𝑥
𝑥𝑟+2𝑢1𝑑𝑥]                            (20) (20) 

  

Two complicated integrals are involve in above 

equation. For the solution of these integrals [see, Equation 

(20)], we use the following lemma: 

 Lemma 2: Let X be random variable having 

APTXGD then 

 

  

𝐿1(𝑎, 𝑏, 𝑐, 𝛿, 𝑡) = ∫

∞

𝑡

𝑥𝑐𝑒−𝛿𝑥𝑎
1−
(1+𝑏+𝑏𝑥+

𝑏2𝑥2

2
)

(1+𝑏)
𝑒−𝑏𝑥

𝑑𝑥 

= ∑∞𝑖=0 ∑
𝑖
𝑗=0 ∑

𝑗
𝑘=0 ∑

𝑘
𝑙=0 ∑

𝑙
𝑚=0 𝑖𝑗

𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!
  

                
(−1)𝑗

(1+𝑏)𝑖

𝑏𝑘+𝑚

2𝑚

Γ(𝑐+𝑙+𝑚+1,𝑡(𝛿+𝑖𝑏))

(𝛿+𝑖𝑏)𝑐+𝑙+𝑚+1
              (21) (21) 

  and   

𝐿2(𝑎, 𝑏, 𝑐, 𝛿, 𝑡) = ∫

∞

𝑡

𝑥𝑐+2𝑒−𝛿𝑥𝑎
1−
(1+𝑏+𝑏𝑥+

𝑏2𝑥2

2
)

(1+𝑏)
𝑒−𝑏𝑥

𝑑𝑥 

=∑

∞

𝑖=0

∑

𝑖

𝑗=0

∑

𝑗

𝑘=0

∑

𝑘

𝑙=0

∑

𝑙

𝑚=0

𝑖
𝑗
𝑗
𝑘
𝑘
𝑙
𝑙
𝑚

(log𝑎)𝑖

𝑖!
 

                 
(−1)𝑗

(1+𝑏)𝑖

𝑏𝑘+𝑚

2𝑚

Γ(𝑐+𝑙+𝑚+3,𝑡(𝛿+𝑖𝑏))

(𝛿+𝑖𝑏)𝑐+𝑙+𝑚+3
             (22) (22) 
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 Proof of lemma 2 is similar as the lemma 1. Hence 

the expression of conditional moment is: 

 

 

𝐸(𝑋𝑛|𝑋 > 𝑥) =
1

1−𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼−1

𝜃2

𝜃+1
× [𝐿1(𝑎, 𝑏, 𝑐, 𝛿, 𝑡) +

𝜃

2
𝐿2(𝑎, 𝑏, 𝑐, 𝛿, 𝑡)]                                (23) (23) 

 

Put a= 𝛼, b= 𝜃, c=n, 𝛿 = 𝜃 , t=x in Equation (23) 
and get the expression of n-th conditional moment of 

APTXGD.  

𝐸(𝑋𝑛|𝑋 > 𝑥) =
1

1−𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼−1

𝜃2

𝜃+1
× [𝐿1(𝛼, 𝜃, 𝑛, 𝜃, 𝑥) +

𝜃

2
𝐿2(𝛼, 𝜃, 𝑛, 𝜃, 𝑥)]                      (24) (24) 

 Using Lemma 2, the first four conditional moments are given 

as: 

𝐸(𝑋|𝑋 > 𝑥) =
1

1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼 − 1

𝜃2

𝜃 + 1

× [𝐿1(𝛼, 𝜃, 1, 𝜃, 𝑥) +
𝜃

2
𝐿2(𝛼, 𝜃, 1, 𝜃, 𝑥)] 

  

𝐸(𝑋2|𝑋 > 𝑥) =
1

1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼 − 1

𝜃2

𝜃 + 1

× [𝐿1(𝛼, 𝜃, 2, 𝜃, 𝑥) +
𝜃

2
𝐿2(𝛼, 𝜃, 2, 𝜃, 𝑥)] 

  

𝐸(𝑋3|𝑋 > 𝑥) =
1

1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼 − 1

𝜃2

𝜃 + 1

× [𝐿1(𝛼, 𝜃, 3, 𝜃, 𝑥) +
𝜃

2
𝐿2(𝛼, 𝜃, 3, 𝜃, 𝑥)] 

  

𝐸(𝑋4|𝑋 > 𝑥) =
1

1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷

log𝛼

𝛼 − 1

𝜃2

𝜃 + 1

× [𝐿1(𝛼, 𝜃, 4, 𝜃, 𝑥) +
𝜃

2
𝐿2(𝛼, 𝜃, 4, 𝜃, 𝑥)] 

 

 

       4.4  Mean deviation 

 
In this section, we discuss about a measure of dispersion 

known as mean deviation about mean . It evaluates the extent 

of scatteredness from mean. Mathematical expression for the 

same is given below;  

𝑀𝐷 = ∫

∞

0

|𝑥 − 𝜇|𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 

where, 𝜇 mean of the APTXGD.  

𝑀𝐷 = ∫

𝜇

0

(𝜇 − 𝑥)𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 + ∫

∞

𝜇

(𝑥 − 𝜇)𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 

 = 2𝜇𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝜇) − 2𝜇 +

2∫
∞

𝜇
𝑥𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 

 After simplification and by using the above lemma, the 

expression of MD is obtained as;  

𝑀𝐷 = 2𝜇𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝜇) − 2𝜇 + 2
log𝛼

𝛼−1

𝜃2

𝜃+1
[𝐿1(𝛼, 𝜃, 1, 𝜃, 𝜇) +

𝜃

2
𝐿2(𝛼, 𝜃, 1, 𝜃, 𝜇)]                  (25) (25) 

  

        4.5  Quantile function 

 

If Q(p) be the quantile of order p of the APTXGD random 

variable X, then the quantile function will be the solution of the 

following equation:  

𝑝 = 𝐹(𝑄(𝑝)) 
 

𝑝 =

[
 
 
 
 
𝛼
1−

(1+𝜃+𝜃𝑄(𝑝)+
𝜃2𝑄(𝑝)2

2 )

(1+𝜃)
𝑒−𝜃𝑄(𝑝)

−1

𝛼−1

]
 
 
 
 

;     (26) (26) 

 The Bowley measure of skewness [see, Bowley (19)] and 

Moors measure of kurtosis [see, Moors (20)] based on quantile 

are given as follows: 

 

 𝑆𝐾 =
𝑄(
3

4
)−2𝑄(

1

2
)+𝑄(

1

4
)

𝑄(
3

4
)−𝑄(

1

4
)

 

  

 𝐾𝑅 =
𝑄(
7

8
)−𝑄(

5

8
)+𝑄(

3

8
)−𝑄(

1

8
)

𝑄(
6

8
)−𝑄(

2

8
)

 

 

 

             4.6  Order statistics 

Let 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛  is a random sample of size 𝑛  when 

population follows the pattern of APTXGD. Now, the ordered 

observations 𝑋(1) < 𝑋(2) < 𝑋(3) <. . . . . < 𝑋(𝑛)  on the basis of 

their magnitude constitute the order statistic. Let 𝑌 = 𝑋(𝑘:𝑛) 

denotes the 𝑘-th order statistic, then the PDF and CDF of 𝑘-th 

order statistic are given by the expressions below:  

𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) = 𝑛
𝑘
𝐹𝐴𝑃𝑇𝑋𝐺𝐷
(𝑘−1)

(𝑦) × [1

− 𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)]
𝑛−𝑘𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) 

 

 

𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) = 𝑛
𝑘
𝐹𝐴𝑃𝑇𝑋𝐺𝐷
𝑘−1 (𝑦)∑

𝑛−𝑘

𝑖=0

(−1)𝑖 × 𝑛

− 𝑘
𝑖
[𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)]

𝑖𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) 

 

 

 𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) = 𝑛𝑘
∑𝑛−𝑘𝑖=0 (−1)

𝑖 × 

𝑛 − 𝑘
𝑖
[𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)]

(𝑘+𝑖−1)𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)      (27) (27) 

 Equation (27) represents the PDF of k-th order statistics. Now, 

the CDF of k-th order statistics is: 

 

𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) = ∑

𝑛

𝑗=𝑘

𝑛
𝑗
𝐹𝐴𝑃𝑇𝑋𝐺𝐷
𝑗

(𝑦) × [1 − 𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)]
𝑛−𝑗 

 

 

𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦) =∑

𝑛

𝑗=𝑘

∑

𝑛−𝑗

𝑖=0

𝑛
𝑗
× 
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𝑛 − 𝑗
𝑖
(−1)𝑖[𝐹𝐴𝑃𝑇𝑋𝐺𝐷(𝑦)]

𝑗+𝑖            (28) (28) 

 By putting the value of PDF and CDF [see, Equations (5) and 

(6) respectively] of APTXGD in Equations (27) and (28) , 

we get the PDF and CDF of k-th order staistics of APTXGD. 

Also, the distribution of 𝑋(1) = min(𝑋(1) < 𝑋(2) < 𝑋(3) <

. . . . . < 𝑋(𝑛))  and 𝑋(𝑛) = max(𝑋(1) < 𝑋(2) < 𝑋(3) <. . . . . <

𝑋(𝑛)) can be computed with help of above Equations (27) and 

(28) by putting 𝑘 = 1 and 𝑘 = 𝑛 respectively. 

 

4.7  Bonferroni and Lorenz curves 

 

One of the important tool in actuarial and population sciences 

is Bonferroni (21) and Lorenz curves (22) . They are used to 

study the income and poverty level. Besides, based on specific 

probability distributions, we evaluate the reliability curves. Let 

𝑋  be a random variable with PDF 𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥) , defined in 

Equation (5) then Bonferroni curve 𝐵(𝑝) and Lorenz curve 

𝐿(𝑝) are defined by the following Equations (29) and (30) 

respectively.  

𝐵(𝑝) =
1

𝑝𝜇
[𝜇 − ∫

∞

𝑞

𝑥𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥] 

 

𝐿(𝑝) =
1

𝜇
[𝜇 − ∫

∞

𝑞

𝑥𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥] 

After simplification, the final expression of 𝐵(𝑝)  and 𝐿(𝑝) 
are obtained as:  

 𝐵(𝑝) =
1

𝑝𝜇
[𝜇 −

log𝛼

𝛼−1

𝜃2

𝜃+1
× 𝑢2]       (29) (29) 

 and  

 𝐿(𝑝) =
1

𝜇
[𝜇 −

log𝛼

𝛼−1

𝜃2

𝜃+1
× 𝑢2]        (30) (30) 

 where 𝑢2 = (𝐿1(𝛼, 𝜃, 1, 𝜃, 𝑞) +
𝜃

2
𝐿2(𝛼, 𝜃, 1, 𝜃, 𝑞)) 

where, 𝜇 = 𝐸(𝑥). 
Bonferroni and Gini indices are helpful in fields such 

as that of income, wealth, reliability, insurance, demography 

and medicine. The mathematical expressions of Bonferroni and 

Gini indices based on these two curves are given as  

𝐵 = 1 −∫

1

0

𝐵(𝑝)𝑑𝑝 

 

𝐺 = 1 − 2∫

1

0

𝐿(𝑝)𝑑𝑝 

 

            4.8  Ageing intensity 

 

Ageing is a basic characteristic of the any system or product. In 

the study of the survival and reliability analysis, ageing is an 

important aspect to study. Every system has inherent ageing 

characteristic that can be calculated by a mathematical formula 

(31). Ageing intensity (AI), function of x is defined as the 

ratio of hazard rate to baseline hazard rate. Expression of AI is 

given as:  

𝐿𝑥(𝑡) =
𝐻𝑥(𝑡)

1
𝑡 ∫

𝑡

0
𝐻𝑥(𝑢)𝑑𝑢

 

 

 𝐿𝑥(𝑡) =
−𝑡(𝑓𝐴𝑃𝑇𝑋𝐺𝐷)𝑥(𝑡)

(𝑆𝐴𝑃𝑇𝑋𝐺𝐷)𝑥(𝑡)log((𝑆𝐴𝑃𝑇𝑋𝐺𝐷)𝑥(𝑡))
    

(31) (31) 

 Note that the pattern of AI depends on the hazard rate. If 

hazard rate increasing, decreasing and constant then ageing is 

positive, negative and non-ageing respectively. When X be a 

non negative random variable then 𝐿𝑥(𝑡) can take three value 

namely, = 1, < 1 and > 1 for all 𝑡 > 0. 𝐿𝑥(𝑡) assumes the 

value 1  iff 𝐻𝑥(𝑡)  is constant. 𝐿𝑥(𝑡)  takes value > 1  if 

hazard rate is increasing in t and 𝐿𝑥(𝑡) is < 1 if hazard rate is 

decreasing function in t. 

 

         4.9  Entropy measurements 

 

Entropy is used to measure the randomness of systems and it is 

widely used in areas like physics, molecular imaging of tumors 

and sparse kernel density estimation. In this section, we have 

discussed the different measures of entropies viz., Generalized 

entropy and Renyi entropy (23). 

  Generalized entropy: General expression of 

generalized entropy is given below:  

𝐺𝐸 =
𝜈𝜆𝜇

−𝜆 − 1

𝜆(𝜆 − 1)
;       𝜆 ≠ 0,1 

where, 𝜈𝜆 = ∫
∞

0
𝑥𝜆𝑓𝐴𝑃𝑇𝑋𝐺𝐷(𝑥)𝑑𝑥 . 𝜈𝜆  is determined by the 

𝜆-th raw moments. Now the expression of generalized entropy 

in case of APTXGD model is: 

 

𝐺𝐸 =

log𝛼

𝛼−1

𝜃2

(1+𝜃)
[𝐾1(𝛼,𝜃,𝜆,𝜃)+

𝜃

2
𝐾2(𝛼,𝜃,𝜆,𝜃)]𝜇

−𝜆−1

𝜆(𝜆−1)
       (32) (32) 

 

 Renyi entropy: Renyi entropy, denoted by 𝐼𝑅(𝑟) is 

defined below: 

 

 𝐼𝑅(𝑟) =
1

1−𝜈
log(∫

∞

0
𝑓𝐴𝑃𝑇𝑋𝐺𝐷
𝜈 (𝑥)𝑑𝑥) 

 Where 𝜈 > 0 and 𝜈 ≠ 1. The expression of Renyi entropy is:   

𝐼𝑅(𝑟) =
1

1 − 𝜈
log [(

log𝛼

𝛼 − 1

𝜃2

𝜃 + 1
)

𝜈

∫

∞

0

(1

+
𝜃

2
𝑥2)

𝜈

𝑒−𝜈𝜃𝑥𝛼
𝜈−𝜈(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)
𝑒−𝜃𝑥

(1+𝜃)𝑑𝑥] 

  

   

𝐼𝑅(𝑟) =

1

1−𝜈
[

(
log𝛼

𝛼−1

𝜃2

𝜃+1
)
𝜈

∑∞𝑖=0 ∑
𝑖
𝑗=0 ∑

𝑗
𝑘=0 ∑

𝑘
𝑙=0 ∑

𝑙
𝑚=0 ∑

𝜈
𝑞=0

𝑖
𝑗
𝑗
𝑘
𝑘
𝑙
𝑙
𝑚
𝜈
𝑞

log(𝛼)𝑖

!𝑖
𝜈𝑖

(−1)𝑗

(1+𝜃)𝑗

𝜃𝑘+𝑚+𝑞

2𝑚+𝑞

Γ𝑚+𝑙+2𝑞+1

(𝑗𝜃+𝜈𝜃)𝑚+𝑙++2𝑞+1

] (33) 

   

                                        (33) 

        4.10  L-moments 

 

Some other important measure useful for lifetime probability 

are the L-moments suggested by Hoskings (1990). L-moments 

possess several advantages compared to conventional 
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moments. Hosking [24]  proved that if the mean of a 

distribution exists, then all its L-moments exist and the 

distribution is uniquely characterized by its L-moments. It can 

be shown using Lemma 1 that the k-th L-moment is:  

𝜆𝑘 = ∑
𝑘−1
𝑗=0 (−1)

𝑘−1−𝑗𝑘 − 1
𝑗
𝑘 − 1 + 𝑗

𝑗
𝛽𝑗    (34) (34) 

 where  

𝛽𝑘 =
log𝛼

𝛼 − 1

𝜃2

(1 + 𝜃)
× 

 [𝐾1(𝛼(𝑘 + 1), 𝜃, 1, 𝜃) +
𝜃

2
𝐾2(𝛼(𝑘 +

1), 𝜃, 1, 𝜃)] 

 So first four L-moments are: 

 

 𝜆1 = 𝛽1 

 

 𝜆2 = 2𝛽1 − 𝛽0 

 

 𝜆3 = 6𝛽2 − 6𝛽1 + 𝛽0 

 

 𝜆 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0 

 

     5  Parameter estimation of APTXGD 

 

In this section, maximum likelihood estimation (MLE) 

technique is discussed for point estimation of parameter of 

proposed model and it usually used by researchers. MLEs are 

consistent and most efficient estimator and the principle of 

MLE is to maximize the log-likelihood function for the 

considered parameters of probability distribution. After 

obtaining the estimates of the parameters of APTXGD, the 

MLEs of survival function and hazard function for the the 

given time point t are also computed using invariance principle 

of MLE.  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size 𝑛 from 

Equation (5). Then, the log-likelihood function for the 

observed random sample 𝑥1, 𝑥2, … , 𝑥𝑛 is given as: 
  

log𝐿(𝛼, 𝜃) = 𝑛log (
log𝛼

𝛼 − 1
) + 𝑛log (

𝜃2

𝜃 + 1
)

+∑

𝑛

𝑖=1

[log (1 +
𝜃

2
𝑥𝑖
2)] − 𝜃∑

𝑛

𝑖=1

𝑥𝑖

+∑

𝑛

𝑖=1

[log(𝛼
1−
(1+𝜃+𝜃𝑥+

𝜃2𝑥2

2
)

(1+𝜃)
𝑒−𝜃𝑥

)] 

        (35) 

  Take the partial derivative of the log-likelihood with respect 

to the 𝛼 and 𝜃 we get; 

  
𝜕 log𝐿(𝜃, 𝛼)

𝜕𝛼
= 𝑛

𝛼 − 1

log𝛼
[

1

𝛼(𝛼 − 1)
−

log𝛼

(𝛼 − 1)2
]

+∑

𝑛

𝑖=1

[
 
 
 
 
 
1 −

(1 + 𝜃 + 𝜃𝑥𝑖 +
𝜃2𝑥𝑖

2

2
)

(1 + 𝜃)
𝑒−𝜃𝑥𝑖

𝛼

]
 
 
 
 
 

 

                        (36) (36) 

  and   

𝜕 log𝐿(𝜃, 𝛼)

𝜕𝜃
= 𝑛

𝜃 + 1

𝜃2
[
2𝜃 + 𝜃2

(1 + 𝜃)2
] +∑

𝑛

𝑖=1

[

𝑥𝑖
2

2

1 +
𝜃
2
𝑥𝑖
2
] −∑

𝑛

𝑖=1

𝑥𝑖

+∑

𝑛

𝑖=1

[log𝛼{𝑢3 + 𝑢4}] 

                   (37) 

  where 𝑢3 = (1 + 𝜃 + 𝜃𝑥𝑖 +
𝜃2𝑥𝑖

2

2
) (

𝑥𝑖𝑒
−𝜃𝑥𝑖

1+𝜃
−

𝑒−𝜃𝑥𝑖

(1+𝜃)2
)  and    

𝑢4 =
𝑒−𝜃𝑥𝑖

(1+𝜃)
(1 + 𝑥𝑖 +

𝜃

2
𝑥𝑖
2). Equating these partial derivatives 

to zero, we try to find out the estimates of 𝛼 and 𝜃. Since we 

can not determine the estimates in explicit form, so we opt for 

numerical analysis technique to solve the above partial 

derivatives simultaneously. Denoting the ML estimates of 𝛼 

and 𝜃  by 𝛼̂𝑚𝑙𝑒  and 𝜃̂𝑚𝑙𝑒  respectively and using the 

invariance properties of MLEs, we can get the estimators of 

𝑆̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒  and 𝐻̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒  for the given time 𝑡 . 

Mathematically, it can be written as below; 

  

𝑆̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒 = 1 −

[
 
 
 
 
 
 

𝛼̂𝑚𝑙𝑒

1−

(1+𝜃̂𝑚𝑙𝑒+𝜃̂𝑚𝑙𝑒𝑡+
𝜃̂𝑚𝑙𝑒
2 𝑡2

2
)

(1+𝜃̂𝑚𝑙𝑒)
𝑒−𝜃̂𝑚𝑙𝑒𝑡

− 1

𝛼̂𝑚𝑙𝑒 − 1

]
 
 
 
 
 
 

 

                               (38) (38) 

  

  

                                                     

𝐻̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒

log𝛼̂𝑚𝑙𝑒
𝛼̂𝑚𝑙𝑒−1

𝜃̂𝑚𝑙𝑒
2

(1+𝜃̂𝑚𝑙𝑒)
(1+

𝜃̂𝑚𝑙𝑒
2

𝑡2)𝑒−𝜃̂𝑚𝑙𝑒𝑡𝛼̂𝑚𝑙𝑒

1−

(1+𝜃̂𝑚𝑙𝑒+𝜃̂𝑚𝑙𝑒𝑡+
𝜃̂𝑚𝑙𝑒
2 𝑡2

2
)

(1+𝜃̂𝑚𝑙𝑒)
𝑒−𝜃̂𝑚𝑙𝑒𝑡

1−

[
 
 
 
 
 
 
 
 

𝛼̂
𝑚𝑙𝑒

1−

(1+𝜃̂𝑚𝑙𝑒+𝜃̂𝑚𝑙𝑒𝑡+
𝜃̂𝑚𝑙𝑒
2 𝑡2

2
)

(1+𝜃̂𝑚𝑙𝑒)
𝑒−𝜃̂𝑚𝑙𝑒𝑡

−1

𝛼̂𝑚𝑙𝑒−1

]
 
 
 
 
 
 
 
 

     

                                (39) 

  

 

          6  Simulation study 

 

In this section, we studied the Monte Carlo simulation results 

of the proposed probability distribution and the obtained results 

are placed in Tables 2. Simulate the program for 2000 times to 

determine the Mean square errors (MSEs) and average 

estimated values of 𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)  and 𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)  for the 

considered values of  
(𝛼, 𝜃) = (1.60,0.32), (0.60,0.32), (1.75,0.50), (2.25,0.45), 

(1.20,0.15), (1.05,0.35) 
and for the sample sizes  

𝑛 = 10,20,30,40,50,100,150,200 

. Calculated the MSEs of 𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡) and 𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡) on the 

basis of following formulas:  



Journal of Scientific Research, Volume 66, Issue 3, 2022 

338 
Institute of Science, BHU Varanasi, India 

 𝑀𝑆𝐸  𝑜𝑓  𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)

=
1

2000
× ∑

2000

𝑗=1

{𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑗 − 𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)}
2 

  

 𝑀𝑆𝐸  𝑜𝑓  𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)

=
1

2000
× ∑

2000

𝑗=1

{𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑗

− 𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)}
2 

 

 The crux of the simulation study is: MSEs of the 𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡) 
and 𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)  decreases as sample sizes increases for the 

fixed value of 𝛼 and 𝜃. Thus, it proves that the estimators of 

𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡) and 𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡) are consistent. 

 

 

 

        7  Real life example 

 

In this section, we have taken five real life situations to prove 

the utility of proposed model APTXGD. Description of the 

considered examples and associated data are given below. The 

descriptive summary, viz., Minimum, first quartile ( 𝑄1 ), 

median, mean, third quartile (𝑄3 ), maximum, coefficient of 

skewness (CS) and coefficient of kurtosis (CK) of the data sets 

are displayed in Table 8. Firstly, we have checked whether the 

considered data sets comes from APTXGD or not by 

goodness-of-fit test. The test is based on the K-S statistics, 

computing the maximum absolute difference between the 

empirical and theoretical CDFs. It is defined as 𝐷𝑛 =
𝑆𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥; Θ)| , where, Θ = (𝜃, 𝜆)  and 𝑆𝑢𝑝𝑥  is the 

supremum of the set of distances, 𝐹𝑛(𝑥)  is the empirical 

distribution function and 𝐹(𝑥; Θ) is the cumulative distribution 

function. Note that, K-S statistic can be used only to verify the 

goodness-of-fit not as a discrimination criteria. Thus, we resort 

to the discrimination criteria based on the likelihood-function 

evaluated at the MLEs. The criterias are: Akaike’s Information 

Criteria (AIC) and Bayesian Information Criteria (BIC) . They 

are given by  𝐴𝐼𝐶 = −2𝑙(Θ̂) + 2𝑘 , 𝐵𝐼𝐶 = −2𝑙(Θ̂) + 2𝑙𝑛(𝑛) , 

where, 𝑙(Θ̂) denotes the log-likelihood function evaluated at 

the MLEs, 𝑘 is the number of model parameters and n is the 

sample size. The model with lowest values for these statistics 

(AIC and BIC) could be chosen as the best model to fit the 

data. Tables 3 , 4, 5, 6 and 7  are all about to show the 

flexibility of proposed model over other models. Box plots of 

all the considered data sets are shown in Figure (5). Figures (6) 

represents the P-P plots for all the considered data sets. 

 Data I: Following observations represent the number 

of millions revolution to failure for 23  ball bearings. 

Considered data set has reported in Lawless [25]. 
 

17.88,28.92,33,41.52,42.12,45.60,48.40,51.84 

 

, 51.96,54.12,55.56,67.80,68.64,68.64, ,68.88, 
 

84.12,93.12,98.64,105.12,105.84,127.92,128.04, 
 

173.40,127.92,128.04,173.40 

Model fitting summary of the data set I is given in Table 3. 

The MLEs of the parameters, 𝑙(Θ̂), AIC, BIC, K-S Statistic 

with corresponding p values are displayed in Table 3. From 

Table 3, it has been observed that the proposed model is best 

fit as compared to Weibull distribution (WD), inverse Weibull 

distribution (IWD), exponential power distribution (EPD), 

Frechet distribution (FD), Lindley distribution (LD) and 

xgamma distribution (XGD) in terms of 𝑝 value. Descriptive 

summary of the data I has given in Table 8. Estimated value of 

survival function and hazard rate function of data I at the 

MLEs and for the given value of t has given in Table (9). 

 

 Data II: Following observations represent the failure 

times in minutes for a sample of 15 electronic component in 

accelerated life test [see Lawless [25]]  

1.4,5.1,6.3,10.8,12.1,18.5,19.7,22.2,23,30.6, 
 

37.3,46.3,53.9,59.8,66.2 

Model fitting summary of considered data set II has given in 

Table 4. The values of MLEs of the parameters, 𝑙(Θ̂), AIC, 

BIC, K-S Statistic with corresponding p values are displayed in 

Table 4 . From Table 4 , it has observed that the proposed 

model is best fit as compared to inverse Weibull distribution 

(IWD), inverse Pareto (IP), exponential power distribution 

(EPD), Frechet distribution (FD), Lindley distribution (LD), 

transmuted Rayleigh distribution distribution (TRD), xgamma 

distribution (XGD), Akash distribution (AKD), inverted 

exponential distribution (IED), inverse xgamma distribution 

(IXGD), exponential distribution (ED) and inverse Lindley 

distribution (ILD) in terms of 𝑝 value. Descriptive summary of 

the data II has given in Table 8. Estimated value of survival 

function and hazard rate function of data II at the MLEs and for 

the given value of t has given in Table (9). 

 

 Data III: Here, we have considered vinyl chloride 

data obtained from clean up gradient monitoring wells. Vinyl 

chloride is a volatile organic compound. This constituent is of 

particular interest in environmental investigations because it is 

both anthropogenic and carcinogenic. Nevertheless, low levels 

of this constituent are found in many background monitoring 

wells. The low-level detections of this compound in clean 

upgradient background monitoring wells are due to cross 

contamination from air or gas or the analytical process itself 

[see, Bhaumik et al. [26]]. 
 

5.1,1.2,1.3,0.6,0.5,2.4,0.5,1.1,8.0,0.8,0.4,0.6, 
0.9,0.4,2.0,0.5,5.3,3.2,2.7,2.9,2.5,2.3,1.0 

, 0.2,0.1,0.1,1.8,0.9,2.0,4.0,6.8,1.2,0.4,0.2 

Model fitting summary of considered data set III is given in 

Table 5. The MLEs of the parameters, 𝑙(Θ̂), AIC, BIC, K-S 

Statistic with corresponding p values of data III are displayed 

in Table 5 . From Table 5 , it has been observed that the 

proposed model is best fit as compared to xgamma distribution 

(XGD), Lindley distribution (LD), Akash distribution (AKD), 

inverse Weibull distribution (IWD), exponential power 

distribution (EPD), Frechet distribution (FD), inverse xgamma 

distribution (IXGD), generalized Lindley distribution (GLD) 

and inverse Lindley distribution (ILD) in terms of 𝑝  value. 

Descriptive summary of the data III has given in Table 8 . 

Estimated value of survival function and hazard rate function 
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of data III at the MLEs and for the given value of t has given in 

Table (9). 

 

 Data IV: Here, we consider the corona-virus cases 

distribution among the fifteen countries viz.,France, Italy, 

Spain, US, Germony, UK, Turkey, Iran, Russia, China, Brazil, 

Canada, Belgium, Netherlands and Switzerland. Data has taken 

from a website and URL is 

https://www.worldometers.info/coronavirus/coronavirus-cases/

. Data is given in percentage and the observations are: 

 

5.37,6.56,7.61,32.83,5.24,5.06,3.65,3.03 

2.89,2.74,2.10,1.57,1.55,1.27,0.97 

Model fitting summary of considered data set IV has given in 

Table 6. The MLEs of the parameters, 𝑙(Θ̂), AIC, BIC, K-S 

Statistic with corresponding p values of data IV are displayed 

in Table 6 . From Table 6 , it has been observed that the 

proposed model is best fit as compared to xgamma distribution 

(XGD), Lindley distribution (LD), Akash distribution (AKD), 

exponential distribution (ED), Weibull distribution (WD), 

generalize exponential distribution (GED), inverted 

exponential distribution (IED), inverse xgamma distribution 

(IXGD), inverse Weibull distribution (IWD), inverse Lindley 

distribution (ILD), pareto type-2 Lomax distribution (Pt2LD), 

inverse Pareto (IP) and exponential power distribution (EPD) 

in terms of 𝑝 value. Descriptive summary of the data IV has 

given in Table 8 . Estimated value of survival function and 

hazard rate function of data IV at the MLEs and for the given 

value of t has given in Table (9). 

 

 Data V: The data set represents the rainfall in 

national capital territory-Dehli. Data has taken from the 

website [see, 

URL-http://www.rainwaterharvesting.org/urban/rainfall.htm.] 

and observations of the data are as follows: 

 

866.5,712.2,887.6,793.9,792.4,499,647.6, 
337.2,451.9,398.9,516.1,448.9,581.3,611.8 

Model fitting summary of considered data set V has given in 

Table 7. The values of MLEs of the parameters, 𝑙(Θ̂), AIC, 

BIC, K-S Statistic with corresponding p values of data V are 

displayed in Table 7. From Table 7, it has observed that the 

proposed model is best fit as compared to Marshall-Olkin 

extended exponential (MOExtE) distribution, Lindley 

distribution (LD), xgamma distribution (XGD), Akash 

distribution (AKD), Weibull distribution (WD), exponential 

distribution (ED), exponential power distribution (EPD), 

inverse xgamma distribution (IXGD), inverted exponential 

distribution (IED), inverse Weibull distribution (IWD) and 

inverse Lindley distribution (ILD) in terms of 𝑝  value. 

Descriptive summary of the data V has given in Table 8 . 

Estimated value of survival function and hazard rate function 

of data V at the MLEs and for the given value of t has given in 

Table (9). 

 

              8  Conclusions 

 

In this article, we have proposed a new lifetime probability 

distribution by using APT technique, named as APTXGD. 

Further, the nature of the hazard rate function and shape of the 

density is discussed. Several important statistical properties are 

derived with their necessary proofs. For the purpose of 

parameter estimation, we have used MLE method and also 

derived the expressions for the estimated value of SF and HRF 

at the MLEs. Simulation study is compiled to calculate the 

MSEs of SF and HRF of APTXGD and to check the 

consistency of estimates of our proposed model. One of the 

most important section included, is regarding the application 

part of the APTXGD and for this purpose we have used five 

real life situations in which proposed model is best suited as 

compared to some existing popular model. Real life study 

concludes that the APTXGD is a good alternative choice 

among existing probability distribution. 
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Table 1. Mean, Variance, Skewness, Kurtosis and Median for the various values of 𝜶 and 𝜽. 

  

  𝛼  𝜃   Mean   Median   Variance   Skewness   Kurtosis  

 0.50   0.55   1.89782   1.88281   1.23331   0.03791   1.78297  

   1.5   0.42529   0.41309   0.06274   0.07536   1.81174  

   2   0.29907   0.29401  0.03074  0.01558   1.80339  

   3   0.18812   0.19015   0.01217   -0.02015   1.79243  

   5.2   0.10440   0.10266   0.00431   0.00648   1.77198  

 2   0.55   3.76629   3.78682   4.76669   0.00977   1.77522  

   1.5   0.83439   0.83575   0.23019   0.00622   1.80191  

   2   0.56271   0.56948   0.10220   0.00199   1.83594 

   3   0.34263   0.33909   0.03870   -0.00351   1.80097  

   5.2   0.17469   0.17353   0.01100   0.04089   1.80013  

 6   0.55   7.25315   7.27296   17.70252   -0.01458   1.78928  

   1.5   1.54172   1.53693   0.80962   0.03048   1.77450  

   2   1.01690   1.00458   0.35111   0.02114   1.82847  

   3   0.60611   0.61117   0.11808   -0.02393   1.78928  

   5.2   0.29609   0.29735   0.02912   0.00489   1.79112  

 12   0.55   11.09298   11.05687   43.24225   0.02995   1.80537  

   1.5   2.44363   2.53894   1.94181   -0.08459   1.78464  

   2   1.58867   1.57120   0.82942   0.01116   1.79471  

   3   0.88824   0.86463   0.26822   0.06699   1.79225  

   5.2   0.43452   0.44945   0.05846   -0.08808   1.81700  

  

Table 3: MSE, Average estimated value of 𝑺𝑨𝑷𝑻𝑿𝑮𝑫(𝒕) and 𝑯𝑨𝑷𝑻𝑿𝑮𝑫(𝒕) for different values of t. 

  

  n  𝛼,𝜃   t   𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   

𝑆̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒   

 

𝐻̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒   

 MSE of   MSE of  

              𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)  

 10   1.60,0.32   2   0.8906214   0.0628758   0.9941500   0.0053487   0.004273129   0.001323151  

 20           0.9810521   0.0146135   0.002691616   0.000730476  

 30           0.9560958   0.0302767   0.002067828   0.000522943  

 40           0.9411342   0.0392631   0.001824466   0.000441433  

 50           0.9362108   0.0420682   0.001504238   0.000341764  

 100           0.9284624   0.0465009   0.001235164  0.000248445  

 150           0.9252899   0.0482804   0.001121519  0.000218189  

 200           0.9243022   0.0488469   0.001064547  0.000195890  

  10   0.60,0.32   2   0.8331201  0.09596737   0.9888441   0.0117140   0.008796376   0.002960216  

 20           0.9609945   0.0321797   0.005096533   0.001364929  

 30           0.916037   0.0609276   0.003722259   0.000863146  

 40           0.9020376   0.0693186   0.003247979   0.000712421  

 50           0.8943833   0.0738036   0.002764579   0.000566717  

 100           0.8781422   0.0833082   0.001877657   0.000276351  

 150           0.8751406   0.0850596   0.001689655   0.000199106  

 200           0.8725141   0.0865702   0.001529851   0.000163512  

  10   1.75,0.50   3   0.6781477  0.1650832   0.9269492   0.0775393   0.017599300   0.010541930  

 20           0.8648456   0.1142938   0.009540206   0.004580630  

 30           0.7712558   0.1635274   0.005953594   0.003249698  

 40           0.7421365   0.1775964   0.004810400   0.002791743  

 50           0.7365357   0.1798593   0.004048326   0.002376774  

 100           0.7098968   0.1918525   0.001966252   0.001788118  

 150           0.7047046   0.1940096   0.001413912   0.001563463 

 200           0.7001896   0.1961322   0.001049769   0.001489435  

  10   2.25,0.45   3   0.7490259   0.7490259  0.9556058   0.0457526   0.013629790   0.004772884  

 20           0.9048001   0.0767979   0.007890667   0.002122959  

 30           0.8469131   0.1079978   0.005533918   0.001357244  

 40           0.8513776   0.1046309   0.004824456   0.001005509  

 50           0.8204104   0.1202208   0.004005272   0.000866241  
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 100           0.8010239   0.1293793   0.002582130   0.000483597  

 150           0.7945596   0.1319891   0.002119712   0.000369090  

 200           0.7914205   0.1333438   0.001864180   0.000310983  

  

 

   

  n  𝛼,𝜃   t   𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   

𝑆̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒   

 

𝐻̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒   

 MSE of   MSE of  

              𝑆𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)   𝐻𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)  

 10   1.20,0.15   4   0.9275072   0.02355444  0.9981894   0.0006670   0.001904419   0.000199844  

 20           0.9907611   0.0031272   0.001443056   0.000151662  

 30           0.9719962   0.0090884   0.001257603   0.000133917  

 40           0.9695788   0.0098449   0.001256508   0.000133875  

 50           0.9667034   0.0107357   0.001179513   0.000126387  

 100           0.9626050   0.0120190   0.001073989   0.000116036  

 150           0.9615620   0.0123416   0.001178247   0.000147052  

 200           0.9610417   0.0124997   0.001048830   0.000113998  

  10   1.05,0.35   4   0.686619   0.1227361   0.9379365   0.0513298   0.017556940   0.005765306  

 20           0.8653165   0.0857409   0.009232336   0.002591587  

 30           0.7917879   0.1157461   0.006064375   0.001764684  

 40           0.7587434   0.1285209   0.004742479   0.001419686  

 50           0.7454149   0.1331852   0.003743861   0.001245157  

 100           0.7247765   0.1405793   0.002065795   0.000911220  

 150           0.7184274   0.1429480   0.001579895   0.000808201  

 200           0.7155580   0.1438808   0.001281437   0.000742756  

 10   1.20,0.15   4   0.9275072   0.02355444  0.9981894   0.0006670   0.001904419   0.000199844  

 20           0.9907611   0.0031272   0.001443056   0.000151662  

 30           0.9719962   0.0090884   0.001257603   0.000133917  

 40           0.9695788   0.0098449   0.001256508   0.000133875  

 50           0.9667034   0.0107357   0.001179513   0.000126387  

 100           0.9626050   0.0120190   0.001073989   0.000116036  

 150           0.9615620   0.0123416   0.001178247   0.000147052  

 200           0.9610417   0.0124997   0.001048830   0.000113998  

  10   1.05,0.35   4   0.686619   0.1227361   0.9379365   0.0513298   0.017556940   0.005765306  

 20           0.8653165   0.0857409   0.009232336   0.002591587  

 30           0.7917879   0.1157461   0.006064375   0.001764684  

 40           0.7587434   0.1285209   0.004742479   0.001419686  

 50           0.7454149   0.1331852   0.003743861   0.001245157  

 100           0.7247765   0.1405793   0.002065795   0.000911220  

 150           0.7184274   0.1429480   0.001579895   0.000808201  

 200           0.7155580   0.1438808   0.001281437   0.000742756  

  

Table  3: The model fitting summary for the considered data set I. 

  

 Model   MLE   L-L   AIC   BIC   KS   𝑝 value  

 APTXGD  𝛼 = 5.80188, 𝜃 =
0.05232  

 -113.5504   231.1008   233.3718   0.13221   0.8163  

 XGD  𝜃 = 0.04071   -113.9656   229.9312   231.0667   0.13231   0.8155  

 EPD  𝛽 = 1.42742, 𝜂 =
112.59280  

 -115.1589   234.3177   236.5887   0.17846   0.4565  

 LD  𝜃 = 0.02732   -115.7354   233.4707   234.6062   0.19286   0.3593  

 WD  𝛼 = 2.10184, 𝜆 =
81.87450  

 -113.6920   231.3839   233.6549   0.15104   0.6704  

 IWD  𝛼 = 1.83444, 𝜆 =
1240.59400  

 -115.7805   235.5610   237.8319   0.13309   0.8099  

 FD  𝜃 = 1.83444, 𝜎 =
48.57515  

 -115.7805   235.5610   237.8319   0.13309   0.8099  
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Table  4: The model fitting summary for the considered data set II. 

  

 Model   MLE   L-L   AIC   BIC   KS   𝑝 value  

 APTXGD  𝛼 = 0.35238, 𝜃 =
0.086061  

 -64.72085   133.4417   134.8578   0.13423   0.9169  

 XGD  𝜃 = 0.10030   -64.91840   131.8369   132.5450   0.15700   0.8000  

 AKD  𝜃 = 0.10848   -66.84208   135.6842   136.3922   0.18411   0.6247  

 IWD  𝛼 = 0.84226, 𝜆 =
7.40079  

 -68.53510   141.0702   142.4863   0.19721   0.5396  

 IP  𝜃 = 6.45568, 𝛼 =
2.49168  

 -67.26902   138.5380   139.9541   0.20694   0.4793  

 FD  𝜃 = 0.84226, 𝜎 =
10.76643  

 -68.53510   141.0702   142.4863   0.19721   0.5396  

 TRD  𝜎 =
26.32002, 𝜆 =
0.40450  

 -66.09693   136.1939   137.610   0.19655   0.5438  

 IED  𝜃 = 0.10460   -69.05504   140.1101   140.8181   0.26314   0.2093  

 IXGD  𝜃 = 11.10646   -68.70466   139.4093   140.1174   0.25066   0.2565  

 ED  𝜃 = 0.03630   -64.73822   131.4764   132.1845   0.15577   0.8073  

 ILD  𝜃 = 10.39806   -69.13491   140.2698   140.9779   0.26481   0.2035  

  

    

Table  5: The model fitting summary for the considered data set III. 

  

 Model   MLE   L-L   AIC   BIC   KS   𝑝 value  

 APTXGD  𝛼 = 0.11875, 𝜃 =
0.69160  

 -55.63373   115.2675   118.3202   0.10117   0.8774  

 XGD  𝜃 = 1.03129   -56.48505   114.9701   116.4965   0.13838   0.5330  

 LD  𝜃 = 0.82381   -56.30364   114.6073   116.1336   0.13262   0.5881  

 AKD  𝜃 = 1.16571   -57.57463   117.1493   118.6756   0.15643   0.3762  

 IWD  𝛼 = 0.88060, 𝜆 =
0.65412  

 -58.62659   121.2532   124.3059   0.11339   0.7745  

 EPD  𝛽 = 0.71100, 𝜂 =
3.58385  

 -56.87073   117.7415   120.7942   0.12284   0.6840  

 FD  𝜃 = 0.88040, 𝜎 =
0.61729  

 -58.62659   121.2532  124.3059   0.11339   0.7745  

 WD  𝛼 = 3.19580, 𝜆 =
3.09519  

 -19.85424   43.70848   45.12458   0.19547   0.6153  

 IXGD  𝜃 = 1.06748   -62.65542   127.3108   128.8372   0.20219,   0.1241  

 GLD  𝛼 = 0.76161, 𝜃 =
0.86481  

 -57.26489   118.5298   121.5825   0.1314   0.6000  

 ILD  𝜃 = 0.87739   -61.81358  125.6272   127.1535   0.1907626   0.1683  

  

    

Table  6: The model fitting summary for the considered data set IV. 

  

 Model   MLE   L-L   AIC   BIC   KS   𝑝 value  

 APTXGD  𝛼 = 0.01143, 𝜃 =
0.23369  

 -40.45744   84.91489   86.33099   0.16472   0.7520  

 XGD  𝜃 = 0.42632   -43.55587   89.11175   89.8198   0.25015   0.2585  

 LD  𝜃 = 0.31981   -41.42952   84.85905   85.5671   0.21315   0.4424  

 AKD  𝜃 = 0.50473   -44.56569   91.13137   91.83942   0.26871   0.1905  

 ED  𝜃 = 0.18195   -40.56031   83.12062   83.82867   0.18375   0.6271  

 WD  𝛼 = 0.99807, 𝜆 =
5.48928  

 -40.56024   85.12047   86.53657   0.18359   0.6281  

 GED  𝛼 = 1.40279, 𝜆 =
4.39362  

 -40.19523   84.39046   85.80656   0.18713   0.6048 
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 IED  𝜃 = 0.38537   -38.04216   78.08432   78.79237   0.22226   0.3912  

 IXGD  𝜃 = 3.71576   -38.35785   78.71569   79.42374   0.24059,   0.2998  

 ILD  𝜃 = 3.21108   -37.84871  77.69742   78.40547   0.21186   0.4500  

 Pty2Lomax   𝜃 =
20.65654, 𝛼 =
4.80741  

 -39.98826   83.97653   85.39263   0.19797   0.5348 

 IP   𝜃 =
0.00528, 𝛼 =
488.11090  

 -38.06108   80.12217   81.53827   0.22091   0.3986 

 EPD  𝛽 = 0.60952, 𝜂 =
11.69488  

 -42.94059   89.88119   91.29729   0.24719   0.2709  

  

Table  7: The model fitting summary for the considered data set V. 

  

 Model   MLE   L-L   AIC   BIC   KS   𝑝 value  

 APTXGD  𝛼 =
9276.207, 𝜃 =
0.00969  

 -91.99490   187.9898   189.2679   0.13883   0.9161  

 MOExtE  𝛼 =
300.5061, 𝜃 =
0.00943  

 -92.52174   189.0435   190.3216   0.14042   0.9096  

 LD   0.00327   -98.99006   199.9801   200.6192   0.30458   0.1195 

 XGD  𝜃 = 0.00490   -96.56879   195.1376   195.7766   0.24275   0.3266  

 AKD  𝜃 = 0.00491   -96.52007   195.0401   195.6792   0.24124   0.3337  

 ED  𝜃 = 0.00163   -103.7971   209.5942   210.2333   0.42436   0.0083  

 EPD  𝛽 = 3.00526, 𝜂 =
786.78580  

 -91.89558   187.7912   189.0693   0.15102   0.8610  

 IXGD  𝜃 = 562.4377   -103.8315   209.663   210.3021   0.46857   0.0024  

 IED  𝜃 = 0.00178   -103.8202   209.6404   210.2795   0.4684   0.0024  

 IWD  𝛼 = 2.46908, 𝜆 =
491.6433  

 -94.23454   192.4691   193.7472   0.22769   0.4019  

 ILD  𝜃 = 561.8916   -103.8202   209.6404   210.2794   0.46843   0.0024  

  

  

Table  8: Descriptive summary for the considered data sets. 

  

 Data   Minimum   𝑄1   𝑄2   Mean   𝑄3   Maximum   CS   CK  

 I   17.88   47.00   67.80   72.22   95.88   173.40   0.9412   3.4863  

 II   1.40   11.45   22.20   27.55   41.80   66.20   0.5660   2.0596  

 III   0.100   0.500   1.150   1.879   2.475   8.000   1.6036   5.0054  

 IV   0.970   1.835   3.030   5.496   5.305   32.830   3.0901   11.4119  

 V   337.2   463.7   596.5   610.4   772.4   887.6   0.1567   1.7721  
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Figure 5: Box plots of considered data sets 

   

  
 

 
Figure 6: ECDF Plot 
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Table  9: Estimated survival function and hazard rate function for the considered data sets. 
  

 Data   𝛼̂𝑚𝑙𝑒   𝜃𝑚𝑙𝑒    t   𝐺̂̅𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒   𝐻̂𝐴𝑃𝑇𝑋𝐺𝐷(𝑡)𝑚𝑙𝑒  

 I   5.80188   0.05232   50   0.69989   0.01612  

       72.22   0.44318   0.02479  

       100   0.19722   0.03288  

 II   0.35238   0.08606   50   0.11404   0.06029  

       27.55   0.41051   0.05199  

       100   0.00448   0.06864  

 III   0.11875   0.69160   50   1.032507e-13   0.65299  

       1.879412   3.682363e-01   0.49832  

       100   0.0000000   —-  

 IV   0.01143   0.23369   50  2.870046e-05   0.19742  

       5.496   3.193659e-01   0.25715  

       100   8.852697e-10   0.21455  

 V   9276.207   0.00969   50   0.99998   8.649574e-07  

       610.3786   0.44785   5.093032e-03  

       100   0.99988   3.580336e-06  
  

   
 

 

 

 

 

 

 

 

 
  


