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Abstract: This paper examines the finite-time 

synchronization of identical hyper-chaotic finance systems 

with hyperbolic nonlinearity. The adaptive control 

technique has been used to guarantee the synchronization 

between master and slave systems. The Lyapunov stability 

theory has been used to stabilize the proposed controller. 

Some numerical resultsare depicted through graphs, which 

validates the applicability and efficiency of the suggested 

technique. 

Keywords: Finite time synchronization, adaptive control 

method, hyper-chaotic finance system. 

 

1. Introduction 

Since several decades, nonlinear dynamics has a significant 

role in the field of mathematics and physics. The dynamical 

system is being used to describe the evolution of natural 

phenomena. The predictive power of these sorts of models 

reflects their utility in scientific and technical applications. One 

of the essential property of a chaotic system from application 

point of view is that extremely sensitive to initial conditions. 

Secure communications can make advantage of dynamical 

systems that are highly dependent on the initial conditions [1]. 

It has a wide range of applications in physics, biology, secure 

communication, engineering, science, sociology, control 

theory, neural networks and other domains. In 1990, Pecora 

and Carroll [2] laid the foundation in this unexplored area with 

their study of synchronization of chaotic systems. A pioneer 

work was done by Pecora and Carrol [2, 3], to utilize the 

chaotic systems in communication. The application aspect 

motivates the researchers to study the chaotic systems. Lorenz 

discovered the first chaotic attractor in 1963 [4], after that 

researchers have realized that chaos exists everywhere. In 

1999, Chen and Ueta [5] discovered another similar chaotic 

attractor that was not topologically identical to the Lorenz 

chaotic attractor but dual to the Lorenz system. 

It is well-known fact that there are so many dynamical systems 

encountered in engineering and physical sciences can be 

modeled by systems of ordinary nonlinear differential 

equations. For the engineers and scientists involved in 

modeling, analysis and design, complex dynamical systems 

creates big problem. Generally, the dynamical systems 

represented by nonlinear differential equations are so complex 

that they cannot be solved analytically in a closed form. Thus, 

the alternative method of analysis is required in order to 

ascertain the qualitative behavior of an equilibrium point of a 

dynamical system. Complex dynamical systems have received 

more and more attention in recent years, almost all kinds of 

areas existing in various phenomena in the world, like social 

network, telecommunication and world wide web (WWW), etc.   

Since the early 1990s researchers have realized that chaotic 

systems can be synchronized. The study of synchronization 

between chaotic systems becomes a herculean endeavour since 

synchronization can be disrupted by uncertainty and 

disturbances. The recognized potential for communications 

systems, this phenomenon has evolved into its own subfield of 

nonlinear dynamics, with the necessity to comprehend the 
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phenomenon in its most fundamental form considered as being 

essential. 

Based on new control techniques, Ouannas and Abu-Saris [6] 

established certain necessary conditions and got some 

synchronization criteria. Several scholars have looked into 

matrix projective synchronization [7–10] and systems with 

uncertainty and external disturbance [11–14]. 

Chaos and synchronization have been intensively studied in 

science and engineering. Chaos control attempts to eradicate 

chaotic behaviors while synchronization intends to control a 

slave system to follow master system. A number of control 

techniques such as adaptive control [15], active control [16-

17], back stepping control [18], sliding mode control [19-20], 

have been used by several researchers. 

Sometimes, the parameters of a chaotic system have time-

varying property and not always accessible. Over the last 

decade, adaptive control is one of the most widely used design 

methods, the adaptive back stepping control method is efficient 

and convenient to synchronize chaotic systems. Wang and Ge 

[21] studied synchronization between two uncertain chaotic 

systems using adaptive back stepping method. They consider 

master system as smooth, bounded, nonlinear chaotic system, 

while the slave system in the strict-feedback form. 

Vaidyanathan et al. [22] global chaos synchronization has been 

achieved for a pair of new chaotic jerk systems with three 

nonlinear terms via adaptive back stepping control. Windmi 

and Coullet chaotic systems has been discussed by Rasappan 

and Vaidyanathan [23] using adaptive backstepping control 

method. It is also shown that the adaptive backstepping control 

method works well and is practical for synchronising and 

estimating the chaotic systems' parameters. Tirandaz [24] used 

the adaptive control method to study the synchronization and 

control of a Zhang chaotic system with uncertain parameters. 

Huang et al. [25] applied the concept of adaptive control on 

sliding mode controller and designed master-slave modified 

Chua’s systems. Aghababa and Hashtarkhani [26] studied 

adaptive control scheme for two distinct chaotic systems with 

uncertainty and an adaptive control scheme has been designed 

based on the chaotic systems' state boundedness property. 

Vaidyanathan [27] investigated the hybrid synchronization of 

chaotic Liu and Lü systems by adaptive control. An adaptive 

control technique has also been used by Li and Tong [28] to 

synchronize a fractional-order chaotic system and find that 

presented schemes are simple and flexible.  

In many scientific domains, hyper-chaos has recently gained 

attention. In 1985, the chaotic phenomenon was found in 

economics. In the context of the economic crisis, the chaotic 

finance system has been investigated. In 2012, Yu et al. [29] 

added a new state variable to the finance system in order to 

examine a new, hyper-chaotic financial system and studied 

equilibrium, stability, Lyapunov exponents, bifurcation 

analysis of this system. Further, this hyper-chaotic finance 

system with bounded uncertainties and external disturbances 

also studied by Cai et al. [30] via chatter free sliding mode 

control. Jahanshahi et al. [31] investigated the dynamic 

behaviour of this finance system for several parameters making 

use of Lyapunov exponents, bifurcation diagrams and phase 

portraits. Motivated by the above discussions, the authors have 

studied synchronization between hyper-chaotic systems via 

adaptive control method. 

Finite time synchronization for systems with external 

disturbance and uncertainty becomes more difficult to achieve 

than other types of synchronization. The finite time 

synchronization provides a wide range of applications that 

improve message security. The finite time synchronization 

approach is used to secure communication through better 

chaotic masking. Before being broadcast, the information 

signal is mixed with the chaotic signal and recovered without 

distortion by the synchronized receiver. 

All types of identical synchronization, in which two or more 

dynamical systems behave in the same way at the same time, 

are just examples of dynamical activity restricted to a flat hyper 

plane in phase space. Whether the behaviour is chaotic, 

periodic, fixed point, or something else, this holds true. 

This paper is organized as follows. The section 2, concerned 

with the description of the hyper-chaotic finance system. The 

phase portrait of the hyper-chaotic finance system is depicted 

through Fig.1. Finite time synchronization of identical hyper-

chaotic finance system with hyper-chaotic nonlinearity via 

adoptive control technique as been studied in Section 3. 

Section 4 deals with the numerical results and discussion. The 

conclusion of this research article has been incorporated in 

section 5. 

 

2. System’s description 

A dynamic model of finance is system of four first-order 

differential equations. The hyper-chaotic finance system [29] 

can be expressed as 

,)()( 41231  +−+= at  

,1)( 2

22 1
 −−= bt  

,)( 313  ct −−=  

,)( 4214  kdt −−=     
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The finance hyper-chaotic system with hyperbolic nonlinearity 

is considered as master system and expressed as 

,)1.0sinh()()( 141231  −+−+= at  

,1)( 2

22 1
 −−= bt  

,)( 313  ct −−= (1) ,)( 4214  kdt −−=   

      

where dcba ,,, and k are positive constants and thefinance 

hyper-chaotic system with hyperbolic nonlinearity shows 

chaotic behavior for ,2.0,9.0 == ba 2.0,5.1 == dc

and 17.0=k .The phase portrait of system (1) is revealed 

through Fig1. 

 
Fig1.Phase portrait of finance hyper-chaotic system in 

431  −− space. 

3. Finite time synchronization between finance systems 

This section deals with the study of finite time synchronization 

between identical hyper-chaotic finance systems with 

hyperbolic nonlinearity (Fig.1). During the study of finite time 

synchronization between identical hyper-chaotic finance 

systems with hyperbolic nonlinearity (1) is taken as master 

system and the controlled finance system with hyperbolic 

nonlinearity (2) is taken as slave system  

,)()1.0sinh()()( 1141231 tuat +−+−+=   

),(1)( 2

2

22 1
tubt +−−=  (2)

),()( 3313 tuct +−−=   

),()( 44214 tukdt +−−=      

   

Define the error system as iiie  −= , 4,3,2,1= i .The 

error system is defined as  

,)()1.0sinh()1.0sinh()( 11121214311 tueeaete ++−−+++−=    

),()( 2

22

22 11
tubete ++−−=  (3)

),()( 3313 tuceete +−−=  

).()( 4212144 tuddkete ++−−=     

Now define the adaptive control function which are obtained 

from Eq. (3), given as 

,)(sgn)1.0sinh(ˆ)( 1111111121214311


 −−−−−+−−−= mekeeeatu

   

,)(sgnˆ)( 2222222

22

22 11


 −−−−−+= mekebtu

(4) ,)(sgnˆ)( 3333233313


 −−−−+= mekecetu  

,)(sgn)(ˆˆ)( 4444444212144


 −−−−−+= mekdektu

 

where dcba ˆ,ˆ,ˆ,ˆ  are estimation of parameters dcba ,,,  

respectively and 4321 ,,, kkkk are positive constants. 

,)ˆ()( 1111 ekeaate −−−=  

,)ˆ()( 2222 ekebbte −−−= (5) ,)ˆ()( 3333 ekeccte −−−=  

.))(ˆ()ˆ()( 44212144 ekddekkte −−−−−−=   

  

Parameters estimation errors are given as  

kkeddeccebbeaae kdcba
ˆ,ˆ,ˆ,ˆ,ˆ −=−=−=−=−=

.(6) 

The derivatives of these function are expressed as 

kedecebeae kdcba








 ˆ,ˆ,ˆ,ˆ,ˆ −=−=−=−=−= .(7) 

Putting the values of kkddccbbaa ˆ,ˆ,ˆ,ˆ,ˆ −−−−− from 

Eq. (6) to Eq. (5), we get 

,)( 1111 ekeete a −−=  

,)( 2222 ekeete b −−= (8) 

,)( 3333 ekeete c −−=  

.)()( 44212144 ekeeete dk −−−−=    

Now we calculate the Lyapunov function, which is given as 

)(
2

1 222222

4

2

3

2

2

2

1 kdcba eeeeeeeeeV ++++++++=  

     (9) 

The derivative of Lyapunov function is 

).ˆ()ˆ)((

)ˆ()ˆ()ˆ(

2

421214

2

3

2

2

2

1

2

44

2

33

2

22

2

11

keedee

ceebeeaeeekekekekV

kd

cba





+−+−

−+−+−+−−−−−=



(10) 
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Now the estimated parameters dcba ˆ,ˆ,ˆ,ˆ and k̂  can be 

obtained from Eq. (10) 

,ˆ

,)(ˆ

,ˆ

,ˆ

,ˆ

9

2

4

821214

7

2

3

6

2

2

5

2

1

k

d

c

b

a

ekek

eked

ekec

ekeb

ekea

+−=

+−−=

+−=

+−=

+−=













(11) 

where 98765 ,,,, kkkkk  are positive constants. 

 
              (a)    

          (b) 

 
              (c)    

          (d) 
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(e)                                                                          (f) 

Fig. 2.synchronization (a) between )(1 t and )(1 t , (b) 

between )(2 t and )(2 t ,  (c) between )(3 t and )(3 t , (d) 

between )(4 t and )(4 t ,(e) Parameter estimation of 

dcba ˆ,ˆ,ˆ,ˆ  and k̂ (f) The time evolution of state errors 

)(),(),(),( 4321 tetetete . 

Now the derivative of Lyapunov function is obtained as 
2

9

2

8

2

7

2

6

2

5

2

44

2

33

2

22

2

11 kdcba ekekekekekekekekekV −−−−−−−−−= .                                        

(12) 

Thus, the error dynamics (5) are globally exponentially stable, 

according to Lyapunov stability theory [19]. 

 

4. Numerical results and discussion 

In this work, all the numerical simulations have been done for 

solving the system using MATLAB ode45 with time step 

0.0005. In adaptive synchronization, the parameter’s values of 

the finance system are taken as ,2.0,9.0 == ba

2.0,5.1 == dc and 17.0=k respectively.  

The initial values of hyper-chaotic finance system are taken as 

),5.0,5.0,5.1,1())0(),0(),0(),0(( 4321 = and

).5.1,1,3,2())0(),0(),0(),0(( 4321 =  

The value of the constants used in adaptive control function are 

taken as 

,1,5.0,5.0;1,1,1,1,1,8,1,1,1 321987654321 ============ mmmkkkkkkkkk

 

;5.0;5.04 == m  

The phase portraits of hyper-chaotic finance system is 

demonstrated by Fig.1 and the Figs.(2a- 2d) depicts the 

synchronization between states of signals. The graphical 

presentation of estimation of parameters dcba ˆ,ˆ,ˆ,ˆ  and k̂  has 

been depicted through Fig. 2(e). The errors with respect to time 

between identical hyper-chaotic finance systems graphically 

represented by Fig. 2(f),which shows that error states 

converges to zero after a small time duration. This property can 

be used in communication technology i.e. the fast 

communication can be achieved between transmitter and 

receiver signals. Therefore, in proposed hyper-chaotic finance 

system with hyperbolic uncertainties the communication 

between transmitter and receiver will be very fast. 

 

5. Conclusion 

The present manuscript has successfully demonstrated the 

finite time synchronization between identical hyper-chaotic 

finance systems with hyper-chaotic nonlinearity through 

adoptive control method. The control function is designed in 

such a way that the error states tend to zero when time tends to 

infinity. The graphs (Figs.2a-2d) demonstrate the finite time 

synchronization between master and slave systems, which 

validates the theoretical results with computational results. The 

graphical presentation of numerical results clearly reveals that 

the applied method is much more reliable and convenient to 

achieve synchronization. The authors’ are optimist that this 

work will be quite beneficial for the researchers working in 

field of dynamical systems. 
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