

Volume 66, Issue 4, 2022

**Journal of Scientific Research** 

of The Banaras Hindu University



# Structural Characterization of CaF<sub>2</sub>: Dy Nanoparticles Synthesized by Simple

## **Chemical Co-Precipitation Method**

L. Shantibala  ${\rm Devi}^1,$  L. Raghumani  ${\rm Singh}^2$  , Th. Komol  ${\rm Singh}^1$ 

<sup>1</sup> Department of Physics, CMJ University, Shillong

shantibala79@gmail.com ; komolmeetei@gmail.com

<sup>2</sup> Department of Physics, D.M. College of Science, Imphal, Dhanamanjuri University, Manipur

Corresponding author: laishramraghumani204@gmail.com

Abstract: In this work, nanoparticles of dysprosium doped calcium fluoride (CaF<sub>2</sub>:Dy) has been prepared by Simple Chemical Co-Precipitation Method in which  $0.05 \text{ mol of } CaCL_2$  is used as the calcium ion source and 0.05 mol of NH<sub>4</sub>F as the fluoride ion source. 1 mol% of Dy<sub>2</sub>O<sub>3</sub>was used as the dopant. synthesized nanoparticle samples The was characterized by X- ray diffraction (XRD) and the crystallite size using the dominant (111) peak was found to be 56.09 nm. SEM image shows the presence of spherical shaped nanoparticles. The PL emissions bands are observed at 479 nm (blue emission peak) and 573 nm (yellow emission peak).

*Index terms*: Calcium Flouride, Co- Precipitation, Dopant, EDAX, Nanoparticles, Photoluminescence, Xray diffraction

#### I. Introduction

As alkaline-earth fluorides exhibit single properties, it finds a number of applications in optics and electronics [1]. Fluorides are transparent in a wide wavelength region from Vacuum Ultraviolet (VUV) to Infrared (IR) due to its large band gap [2,3]. The fluoride materials normally possess low refraction index and phonon energies, usually in the range of 400–500  $\text{cm}^{-1}$  as compared to oxides [4], which in turn can decrease the nonradioactive transition probability of the active ions [5]. These materials also finds their applications in laser and when their features are frequency conversion combined with the spectroscopic characteristics of rare earths used as doping ions [6]. Therefore, they can act as the window materials for both ultraviolet and infrared wavelength regions [7]. As calcium fluoride (CaF<sub>2</sub>) possesses good stability, nonhygroscopic behavior and applications as optical device, especially in ultraviolet and vacuum ultraviolet (VUV), it had considerable interest among the various fluorides. CaF<sub>2</sub> being one of the alkaline-earth fluorides, it has a well-known fluoritetype structure. Each  $Ca^{2+}$  ions lie at the nodes in a face-centered lattice whereas F-ions lie at the centers of the octants [1,8]. CaF<sub>2</sub> nanoparticles exhibit high laser induced damage threshold and high transparency up to vacuum ultraviolet. Therefore, they can be considered as the most promising candidate to replace the fused silica for deep ultraviolet laser lithography techniques and ultraviolet transparent optical lenses [9]. Further

more,  $CaF_2$  can act as optical waveguide for optoelectronic devices [10,11]. RE-doped  $CaF_2$  is also becoming an attractive material for upconversion (UC) luminescence and can be compared with RE-doped NaYF<sub>4</sub>, which is broadly acknowledged as the most efficient UC host [12– 15].

In the last 5 years, fluoride compounds are more attracted due to the possibility of preparing nanopowders of fluorides which can produce ultimate effects on their physical properties [16]. Therefore, a number of synthesis methods had been employed to produce CaF<sub>2</sub> nanoparticles such as coprecipitation method [17], hydrothermal method [18–20], reverse micelle method [3], etc. Since the fluoride compounds are very sensitive to water and which are oxygen always present in the environment, the production of fluoride compounds is a challenge for researches. The possibility of contamination with impurities like O<sup>2-</sup> and OH<sup>-</sup> is very high due to similarity of the ionic radius [21,22]. Such impurities can affect the luminescence properties [23] acting as luminescence quenching centers, degradation of the transparency, lights scattering defects and others. However, the chance to incorporate these impurities can be reduced by following the process of annealing. Further, the liquid-phase methods have the advantages of simple operation, controllable granularity and the nanoscale powders materials thus prepared have high surface activity. So, in this work, we synthesized CaF<sub>2</sub>:Dy nanoparticles by Co-Precipitation method.

### **II. Literature Survey**

K. Tahvildari et al. [24] prepared thenano-sized calcium fluoride (CaF2) using CaCl<sub>2</sub>.6H<sub>2</sub>O and ammonium fluorideby co-precipitation method. The characterizations of the as synthesized nanocrystals were done by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning

electron microscopy (SEM). Further, the crystallite size was estimated using Scherer's formula and found to vary in the range of 20 to 30nm. The SEM imagesrevealed that the nanoparticles were agglomerated, crispy with porous.

Benjamin Ritter et al. [25] synthesized nanoscopic rare earth doped calcium fluoride sols. Through a fluorolytic sol–gel process, spherical monodisperse ,5 nm sized nanoparticles were achieved using a simple and reproducible one-pot-wet chemical route at room temperature. Under UV excitation at room temperature, the as-synthesized clear sols exhibit an intense red and green luminescence. A spectroscopic study of the sols revealed the characteristic transitions.

Numan Salah et al. [26]synthesized nanostructures of calcium fluoride (CaF2) doped with Eu, Tb, Dy, Cu, and Ag were synthesized by the coprecipitation method and studied for their thermoluminescence (TL) and photoluminescence (PL) properties. The PL emission spectrum of pure CaF<sub>2</sub> nanostructure was observed with broad band in the 370–550nm range. Similar spectra were also observed in case of doped samples. It was also observed that with increase in Dy concentration, the particle size of CaF<sub>2</sub> nanostructure was significantly reduced indicating that Dy is a proper activator in the host of CaF<sub>2</sub> nanostructure.

Mahesh S. et al. [27]prepared, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF<sub>2</sub>:Dy) using simple chemical co-precipitation method and their thermoluminescence (TL) dosimetric properties were studied. The particle size calculated from XRD pattern was found around 30 nm. The surface morphology and shape were also observed by scanningelectron microscopy (SEM). It was also observed that the total areas of all the TL glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF<sub>2</sub>:Dy annealed at 400 ° C, indicated very

sharp linear response in the dose range from 1 Gy to 750 Gy.

Alexander Rehmer et al.[28]synthesized nanoscopic calcium fluoride by the fluorolytic sol–gel process. They prepared the antireflective coatings of CaF<sub>2</sub> from sols obtained by the reaction of CaCl<sub>2</sub> with HF and subsequent dip coating. The solid state NMR spectroscopy, dynamic light scattering (DLS) and Xray powder diffraction (XRD) were used to study the formation and crystallisation of CaF2 nanoparticles and the morphology of a CaF<sub>2</sub>-film was analysed by high resolution scanning electron microscopy (HR-SEM). The Crockmeter test was also employed for evaluation of the mechanical stability of a CaF<sub>2</sub>film.

Duong Thi Mai Huong et al. [29]prepared CaF<sub>2</sub> nanoparticles doped with 0, 1, 2, 3, 4 and 5 mol% Sm<sup>3+</sup> by coprecipitationmethod. The XRD patterns confirmed the cubic structure of CaF<sub>2</sub> and absence of other impurities. The size of CaF<sub>2</sub> Nanoparticles was found to vary from 15 to 20 nm. The photoluminescence spectra were also observed peaking around at 566 nm, 604 nm, 645 nm and 704 nm.

Xiaohong Yang et al. [30]synthesized  $CaF_2$  and  $CaF_2:Ln^{3+}$  (Ln = Eu, Tb, Ce/Tb) with tunable particle size (about 2.5 mm) by one-step facile and effective hydrothermal method. The particles showed highly uniform spherical structure andwell-dispersed. Under UV excitation, strong green photo-luminescence was observed.

#### **III. Experimental Details**

Dydoped Calcium Fluoride nanoparticles was prepared by the chemical co-precipitation method. Calcium chloride and ammonium fluoride of AR grade were taken as the calcium ion source and fluoride ion source respectively. 0.05 mol of CaCl<sub>2</sub> was dissolved separately in 20 ml double distilled water to form a clear solution. 0.05 mol of NH<sub>4</sub>F was also dissolved in 20 ml of distilled water to form a clear solution. Then 1 mol% Dy<sub>2</sub>O<sub>3</sub>was added to the CaCl<sub>2</sub> solution and the mixture was stirred continuously for 20 minute and subsequently 50 ml ethanol was added to the solution. The same is further stirred for 10 min. The NH<sub>4</sub>F solution was added drop wise in the solution until the precipitation was complete. The precipitates so formed were filtered out and washed four times with double distilled water. The precipitate was finally dried at 120°C for 5 h. to obtain the sample. The sample is crushed to obtain the powder samples and the same was annealed at 400°Cfor 2 h to obtain CaF<sub>2</sub>:Dy nanoparticles.

#### **IV. Results and Discussion**

### **XRD** Analysis :

X-ray diffraction pattern of  $CaF_2$ :Dy nanoparticles is shown in Figure 1. The sharp peaks were assigned to diffractions on (111) plane and the low intensity peaks were attributed to diffractions on (200), (220), (311), (222) and (420) planes. These findings reveal that the sample is CaF<sub>2</sub>with cubic lattice structure and corresponds to ICSD collection code No. 060368. From XRD pattern, the crystallite size was estimated using the Scherrer'sformula:

Where D is crystallite size, k is a constant which is equal to 0.9,  $\lambda$  is the wavelength of CuKa(1.5406 A<sup>0</sup>) line,  $\beta$  is the full width at half-maximum (FWHM) and  $\theta$  is the diffraction angle. The crystallite sizes, D of CaF<sub>2</sub>:Dyusing the dominant (111) peak was calculated and found to be 56.09 nmapproximately.Further, the introduction or doping of dysprosium ions on concentration is confirmed by the presence of very low intensity peaks in the XRD pattern. The inter planar spacing (d spacing) is calculated by using Bragg's equation,

$$n\lambda = 2dSin\theta \dots \dots \dots (2)$$

where  $\lambda = 1.5406 A^{\circ}$  (wavelength of incident X-ray),  $\theta$  = Peak position (in radian), n = 1(order of diffraction), d = inter planar spacing or d spacing (in  $A^{\circ}$ ). The value of **d**-spacing for dominant peak was found to be 3.44  $A^{\circ}$ .

The lattice constants for cubic phase is determined by using the relation

$$a = d\sqrt{h^2 + k^2 + l^2} \dots \dots \dots \dots (3)$$

The corresponding value of lattice constant, **a** was found to be 5.95  $A^0$  which is comparable with the literature value,  $a = 5.435 A^{\circ}$  [31].

Assuming spherical crystal, the diameter of the sphere (L) can be estimated by

$$< L > = \left(\frac{4}{3}\right) D \dots \dots \dots \dots (4)$$

Where D is crystallite suze. The value of < L > corresponding to the dominant (111) peak was found to be 74.78 nm.



Fig. 1. XRD Pattern of CaF<sub>2</sub>:Dynanoparticles Photoluminescence Study :

#### Surface morphology :

The surface morphology of CaF<sub>2</sub>:Dy nanoparticles was examined by scanning electron microscopy (SEM). Figure 2 shows the SEM image of CaF<sub>2</sub>:Dy nanoparticles. It isobserved that the as-prepared nanoparticles are nearly spherical in shape and they have pores on their surface. The agglomeration of nanoparticles is also observed.



Fig. 2. SEM image of CaF<sub>2</sub>:Dy nanoparticles



#### Fig. 3 : PL Excitation Spectrum of CaF2:Dy nanoparticles with excitation wavelength at 398 nm

The excitation spectrum is obtained by scanning at 1200 nm/min the sample at a pre-defined wavelength range, 200 - 401 nm and is shown in figure 3. The excitation peak is observed at 398 nm.



#### Fig. 4 : PL Emission Spectra of CaF<sub>2</sub>:Dy nanoparticles with emission wavelengths at 479 nm and 573 nm.

The PL emission Spectra of CaF<sub>2</sub>:Dy nanoparticles is shown in figure 4. The Dy ion acts as a well known activator mostly showing its emission in the visible regions because this ion gets introduced into the host of CaF<sub>2</sub> matrix in its  $Dy^{3+}$  form.The PL emissions bands are observed at 479 nm (blue emission peak) and 573 nm (yellow emission peak). These emission bands can be attributed due to transitions from  ${}^{4}F_{9/2}$  to  ${}^{6}H1_{5/2}$  and  ${}^{6}H_{13/2}$ respectively [32]. The blue shifting is caused due to decrease in particle size (quantum size effect). This in turns reduces the number of allowed transitions to some extent in the nanoparticles.Dysprosium ions can be considered as good source of blue because of its strong blue luminescence and this property the possibility using creates of CaF<sub>2</sub>:Dv nanoparticles in blue lasers. Further, it can be interpreted that the surface defects like Schottky and Frenkel do not exist in the lattice structure of alkali halides at all temperatures. Because, any other emission peaks except at 479 nm and 573 nm can not be observed in the PL emission spectra. This suggests that the non-radiative relaxation of excited electrons does not take place i.e. phonons are not emitted due to the absence of defects and only radiative relaxation of excited electrons takes place. This means that the sample i.e. CaF<sub>2</sub>:Dy nanoparticles so synthesized ultimately becomes a direct band gap material and hence, the crystal momentum of electrons and holes is the same in both the conduction and the valence band. So, CaF<sub>2</sub>:Dy nanoparticles thus prepared will become a potential candidate for optical devices.

#### V. Conclusion

We have demonstrated the preparation of dysprosium doped CaF<sub>2</sub> nanoparticles by simple coprecipitation method. The nanoparticles so synthesized are characterized by XRD and PL Spectroscopy. The crystallite size of CaF<sub>2</sub>:Dyusing the dominant (111) peak is found to be 56.09 nm. The PL study reveals that CaF<sub>2</sub>:Dy nanoparticles thus prepared may find application for optical devices.

#### VI. Acknowledgement

The authors are thankful to NIT Manipur for providing the facility for XRD and PL

#### **VII. References**

- H. Wang, R.Liu, K.Chen, X.Shi, Z.Xu, (2011), Electrodeposition and characterization of CaF2 and rare earth doped CaF2 films, Thin Solid Films 519, 6438–6442.
- [2] M.F.Joubert, Y.Guyot, B.Jacquier, J.P.Chaminade, A.Garcia (2001), Fluoride crystals and highly excited states of rare earth ions, J.Fluor.Chem.107, 235–240.
- [3] A.Bensalah, M.Mortier, G.Patriarche, P.Gredin, D.Vivien (2006),Synthesis and optical characterizations of undoped and rare-earthdopedCaF2 nanoparticles, J. Solid StateChem.179, 2636–2644.
- [4] C. Fouassier, T.Nakajima, B. Zemva, A. Tressaud(Eds.) (2000), Adv. Inorg. Fluorides Synth. Charact. Appl., Elsevier, Am-Sterdam, pp. 315-328
- [5] Z. Yang, G.Wang, Y.Guo, F.Kang,Y.Huang,D.Bo (2012), Microwaveassisted synthesis and characterization of hierarchically structured calcium fluoride, Mater.Res.Bull.47, 3965–3970.
- [6] P.Maroni, L.Palatella, A.Toncelli, M.Tonelli, Fluoridecrystals (2001), laser emission and energy transfer mechanisms in Er3b, J.Cryst.Growth 229, 497–500.
- [7] H. Shi,R.Jia,R.I.Eglitis, (2014), CaF2, Comput. Mater.Sci.89, 247–256.
- [8] R. Saravanan, S.Israel, Bondingin(2016), fluorite compoundCaF2 using MEM,Phys.B
- [9] J.Wang, J.Hao, Q.Wang, Y. Jin, F.Li, B.Liu, Q.Li, B. Liu, Q. Cui (2011), Pressure-induced

Spectroscopymeasurement and Physics Department, Manipur University for SEM analysis of the sample.

structural transitioninCaF<sub>2</sub>nanocrystals, Phys.Status Solid Basic Res 248, 1115–1118.

- [10] L.E. Bausa, G.Lifante, E.Daran, P.L.Pernas (1996), CaF2: Er3b molecular beam epitaxial layers as optical waveguides, Appl.Phys.Lett.68, 3242.
- [11] H.H. Moore, (1982), Refractive index of alkaline earth halides and its wavelength and temperature derivatives, J.Phys.Chem.Ref.Data.9, 161–290.

[12] Z. Liu,B, Mei,J.Song, W.Li (2014), Fabrication and optical characterizations of Yb,Er codoped CaF<sub>2</sub> transparent ceramic,J.Eur.Ceram.Soc.34, 4389–4394.

- [13] G. Wang, Q. Peng, Y.Li (2009), Up conversion luminescence of monodisperse CaF2: Yb3b/Er3 nanocrystals, J.Am.Chem.Soc.131, 14200–14201.
- [14] J. Zhao, Y.J.Zhu, J.Wu,F, Chen (2015), Microwave-assisted solvo thermal synthesis and up conversion luminescence of CaF2: Yb3þ/Er3 nanocrystals, J., ColloidInter- face Sci.440, 39–45.
- [15] N. Rakov, R.B.Guimarães, G.S.Maciel (2016), Photon up-conversion production in Tb3p– Yb3p co-doped CaF<sub>2</sub> phosphors prepared by combustion synthesis, Mater.Res.Bull.74, 103– 108.
- [16]V.V. Vistovskyy, A.V. Zhyshkovych, N.E.Mitina, A.S.Zaichenko, A.V.Gektin (2012), Relaxation of electronic excitations in CaF<sub>2</sub> nanoparticles, vol.24325, pp. 0–7.
- 17] G. Zhi, J.Song, B.Mei, W.Zhou (2011), synthesis and characterization of Er<sup>3+</sup> doped

CaF<sub>2</sub> nanoparticles, J.Alloy.Compd.509, 9133–9137.

- [18] C. Pandurangappa, B.N. Lakshminarasappa, B.M. Nagabhushana (2010), Synthesis and characterization of CaF2 nanocrystals, J. Alloy. Compd. 489, 592-595
- [19] S. Hou,Y.Zou,X.Liu,X.Yu,B.Liu,X.Sun,Y.Xing
  (2011), CaF2 and CaF2 : Ln3b (Ln<sup>1</sup>/4Er, Nd,Yb)chierarchicalnanoflowers:hydrothermals
   ynthesisandluminescent properties, CrystEngComm13, 835–840.
- [20] X. Sun, Y.Li (2003), Size controllableluminescentsinglecrystalCaF2 nanocubes, Chem. Commun, 1768.
- [21] S.L. Baldochi,S.P.Morato m(2001), Fluoridebulkcrystals:growth,Encycl.Mater.Sci. Technol, 3200–3205.
- [22] R.D. Shannon (1976), Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, ActaCrystallogr. Sect.A32, 751–767.
- [23]

P.D.Belsare,C.P.Joshi,S.V.Moharil,S.K.Omanw ar,P.L.Muthal,S.M.Dhopte (2009), One stepsynthesisofCe3b activated aluminofluoridepowders,Opt.Mater.31, 668– 672.

[24] K. Tahvildari1 M. Esmaeili pour1,, Sh.Ghammamy H. Nabipour, (2012)CaF<sub>2</sub> nanoparticles: Synthesis and characterization,

Int.J.Nano Dim. 2(4): 269-273, Spring 2012 ISSN: 2008-8868

- [25] Benjamin Ritter, Thoralf Krahl, Knut Rurackb and Erhard Kemnitz (2014), 2, 8607–8613 J. Mater. Chem. C,
- [26] Numan Salah, Najlaa D. Alharbi, Sami S. Habib, and S. P. Lochab4 (2015)Hindawi Publishing Corporation Journal of Nanomaterials
- [27] Mahesh S. J. Patil, S. S. Dahiwale, M. S. Kulkarni, B. C. Bhatt, (2015), Solid State PhysicsAIP Conf. Proc. 1665, 050113-1–050113-3; doi: 10.1063/1.4917754
- [28] Alexander Rehmer Kerstin Scheurell and Erhard Kemnitzet . (2015), J. Mater. Chem. C, 3, 1716-1723
- [29] Duong Thi Mai Huong,Le Van Vu, Nguyen Ngoc Long, Duong Ngoc Thanh (2016), VNU Journal of Science: Mathematics – Physics, 32(1), 44-51, V
- [30] Xiaohong ,YangJingjing Cao, Shanshan Hu.(2016),5(2), 54-60
- [31] Taylor A, (1961) X-ray Metallography, John Wiley & Sons, Inc., New York
- [32] T. Vilaithong, S. Wanwilairat, M. Rhodes, W. Hoffmann, T. Messarius, (2002) Highresolution emission spectra of TL materials, Radiat. Prot. Dosim. 100 (1–4), 211–216.

\*\*\*