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Abstract:Athreedimensionalsystemofthepredator
preymathematicalmodelwithdiseasein prey is considered.This 
system has a reaction-diffusion model with 
diseasetransmittedaccordingtonon-linearincidencerateand with 
ratio-dependent Michaelis-Menten (Holling-type
response.Stability analysis of thesystem without diffusion and 
with diffusion is analysedhere. The effect of disease due to 
spatial diffusion is tobe studied and analyse the conditions of 
Turing instability.We have also discussed that a Hopf
bifurcationmechanisms around the interior equilibrium point, 
taking rate of infection and mortality rate of infected preyare 
bifurcation parameters. The analytical findings 
aresupportedbynumericalobservations. 

Index Terms
Diseasetransmission,Globalstability,Hopfbifurcation,Stability.

I. INTRODUCTION 

Eco-epidemiology is a combination of ecology and 
epidemiology. Eco-epidemiology is a major field of 
study.Standardepidemiologicalmodelsareconsideredassingle
speciesmodelsanditsthreshold observationscan be 
checked.But, the actuality is different.Themother world 
nurtures variety of species together andthey can be infected 
by each other’s disease.On theother hands, one species 
competes with another speciesfor space or food, even predation 
takes place.Therefore,in epidemiological dynamics the 
species interaction is well known as fundamental structures.In 
thepublications [1],the researchers were the first to 
consideraneco-epidemiologicalmodelbymergingtheecological 
predator-prey model introduced by Lotka 
andVolterra,theeffectof disease in ecological system 
isanimportantfactorfromthecombinationofmath
ecological point of view.Inthe publi-cation [2], the 
researchers considered modifications oftheclassic Lotka
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epidemiology is a combination of ecology and 
epidemiology is a major field of 

study.Standardepidemiologicalmodelsareconsideredassingle-
speciesmodelsanditsthreshold observationscan be 
checked.But, the actuality is different.Themother world 
nurtures variety of species together andthey can be infected 

r hands, one species 
for space or food, even predation 

takes place.Therefore,in epidemiological dynamics the 
species interaction is well known as fundamental structures.In 
thepublications [1],the researchers were the first to 

modelbymergingtheecological 
prey model introduced by Lotka 

andVolterra,theeffectof disease in ecological system 
isanimportantfactorfromthecombinationofmath-ematical and 

cation [2], the 
difications oftheclassic Lotka-

Volterra predator-prey model withSI and SIS disease over 
either the prey or predator.Also, the researchers in [3] studied 
similar SI and SISmodels where only prey population is 
infected and logisticgrowthonboththepreyandpreda
It isassumedthat predators consumeinfectedpreyonly. 
Chattopadhyay and Arino [4] considered a threedimensional 
non-linear eco-epidemiological model and they observed the 
conditions for local stability, extinction and Hopf
epidemiology, many researchers considered the interaction term 
between susceptible and infective classes followed by the mass 
action law (αxy). Since, this is a linearly increasing func
then it is realistic for low value of y, but probably unrealistic fo
larger value of y [5]. The authors in [6] also observe that 
homogeneous mixing is not appropriate for sexually transmitted 
disease. For larger values of y, a saturation effect was 
incorporated by Capasso and Serio [7] by choice of general 

interaction term of the form 

number of contacts, sufficient for disease transmission and δ be 
the handling time for each prey. Particularly, for 
general interaction term reduces to the term corresponding to 
mass action law.  In our study we consider 
systems (1) and (2) is referred for large values for y. 

One species can be the new occupant of an alien 
zonebytheprocessofdiffusionwhichmeansthespeciescanextendthe
irpopulationboundarywithtime,dependingon 
diffusion.Diffusionalsomeansmovementfromhighdensitypopulati
ontolowdensitypopulation.Themeasurementcanbedonebytheconc
entrationgradientwhichisthedifferencebetweenthetwodifferentpo
pulationdensities.Variousecologicalmodelsareformedandanalyze
dbyusingrandomproceduresbasedonspaceandtime. 
Thisoccurrenceis classified as spatial in their characteristics 
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and includes all aspects of population. By theoretical 
investigation, we dominate spatial ecology till now. At 
present, the study of diffusion models in predator-prey system 
has occupied new horizon of modern investigation and can 
occupied with better skills in future time.  

The role of diffusion in the system (1) has been extensively 
studied in several publications [8, 9, 10, 11]. A diffusive 
predator-prey epidemiological model was studied by [12, 13, 14, 
15] and the conditions of stability and persistence were obtained. 
The complex dynamics of interacting species with cross-
diffusion epidemic models were studied by the researchers [16, 
17, 18, 19].Wang [20] proposed the dynamics of cross-
diffusion 
SIepidemicmodelandfoundtheconditionsoftheexistence and 
non-existence of the positive non-constantsteady states.He 
also proved the conditions for localand global stability of the 
nonnegative constant 
steadystates.Onthebasisoffieldobservations,theresearcher [21] 
did apply reaction-diffusion theory to explain thespread of 
plague through Europe in the mid-14th century.  

In this work, a diffusive predator-prey model withprey 
affected by disease is proposed here. The growthrate of prey 
species is considered to follow the 
logisticlawanddiseasespreadamongthe 
preyspeciesaccordingtonon-linear incidencerate.The predator 
eatsonly infected prey with Holling Type-II functional 
response. In this eco-epidemiological model, diffusion 
isincorporated and its stability near equilibrium is 
analyzedhere. 

 

II. MATHEMATICALMODEL 

Forconstructionofthemathematicalmodelthefollow-
ingassumptionscanbemade: 

A1: Let N (t) and z(t) be the prey species and 
predatorspecies respectivelyattimet. 

Now,intheabsenceof disease and predation, 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁

𝑘
, 

where 0 < 𝑘 < 𝑁, 𝑘(> 0) =  carrying capacity, 𝑟(>

0) =logistic growth rate. 
A2: In the presence of disease, the total prey population is 

divided into two groups such that N = x + y, 
wherex=susceptibleprey,y=infectedprey. 
A3:Itisassumedthattherateofdiseasetransmissionaccordingt

onon-linearincident whichis the growth of infected 

prey.  
A4:Since infected preys are fewer active, can becaught 

more easily [22, 23, 24, 25].In the publication [26] they 
were indicated that the predator consumed only the 
infected prey.So, the predator 

consumeonlyinfectedpreyby 𝜅(𝑦, 𝑧) = , 𝑚 >

0 (see[27]). Peterson and Page [28] showed that wolf 
attackson moose are more successful if they heavily 
infectedby‘Echinococcusgranulosus’. 

Theeco-epidemiologicalmodelis 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 1 −

𝑥

𝑘
−

𝛼𝑥𝑦

1 + 𝛼𝛿𝑦
, 

𝑑𝑦

𝑑𝑡
=

𝛼𝑥𝑦

1 + 𝛼𝛿𝑦
−

𝑐1𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑1𝑦, 

= − 𝑑 𝑧,                          (1) 

wherec1=thepredationrateofpredatorforinfected 
prey,e(0<e<1)=theconversionfactorforinfected class, 
d1=death rate of infected prey, d2=death rate 
ofpredator,m(m>0)=constant. 

To investigate the effects of diffusion on predatorprey 
system, it is assumed, susceptible prey, 
infectedpreyandpredatorarediffusingintherectangulardomain
Ω=[0,L]×[0,H]⊆R2. LetD1, D2, D3arethe self-
diffusioncoefficientsofsusceptibleprey,infected 
preyandpredatorrespectively,thenaccordingtothe 
Fick’slaw,themodifiedsystemisgovernedbythesystem 
ofequationsinthedomainΩare: 

 
𝜕𝑥

𝜕𝑡
= 𝑟𝑥 1 −

𝑥

𝑘
−

𝛼𝑥𝑦

1 + 𝛼𝛿𝑦
+ 𝐷1∇2𝑥, 

𝜕𝑦

𝜕𝑡
=

𝛼𝑥𝑦

1 + 𝛼𝛿𝑦
−

𝑐1𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑1𝑦 + 𝐷2∇2𝑦, 

𝜕𝑧

𝜕𝑡
=

𝑐1𝑒𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑2𝑧 + 𝐷3∇2𝑧, 

                                                               (2) 

 where (𝑢, 𝑣, 𝑡) ∈ Ω × (0, ∞), ∇ ≡ + . 

Thesystem(2)hastobeanalyze with thefollowing 
initialconditions: 
𝑥(𝑢, 𝑣, 0) ≥ 0, 𝑦(𝑢, 𝑣, 0) ≥ 0, 𝑧(𝑢, 𝑣, 0) ≥ 0, (𝑢, 𝑣) ∈ Ω 
and zerofluxboundaryconditions: 

𝜕𝑥

𝜕𝜂
=

𝜕𝑥

𝜕𝜂
=

𝜕𝑥

𝜕𝜂
0 𝑜𝑛 (0, ∞) × 𝜕Ω, 

whereΩisaboundedregionwithsmoothboundary∂Ωandηisth
eoutwarddirectionalderivativenormalto∂Ω.This zero-flux 
boundary conditions imply that thesystem (2) is self-
contained and there is a 
populationwithoutmovementoutsidetheboundary∂Ω,nointerna
l outflow and no external input. Here (𝑢, 𝑣) ∈ [0, ∞) denote 
the spatial position and time, respectively [29]. 

 

III. MATHEMATICAL STUDY OF SYSTEM (1) 

 
A.  Boundedness of system (1) 
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Theorem-1. Every solution of the system (1) are bounded. 
Proof: Let 𝑈(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡), 
Now, using the equations (1), we have                                        

= + +  

= 𝑟𝑥 1 −
𝑥

𝑘
−

𝑐 𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑 𝑦 +

𝑐 𝑒𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑 𝑧 

= 𝑟𝑥 −
𝑟𝑥2

𝑘
− 𝑐 (1 − 𝑒)

𝑦𝑧

𝑦 + 𝑚𝑧
− 𝑑 𝑦 − 𝑑 𝑧 

≤ 𝑟𝑥 −
𝑟𝑥2

𝑘
− 𝑑 𝑦 − 𝑑 𝑧, since 0<e<1. 

Therefore,  
𝑑𝑈

𝑑𝑡
+ 𝜇𝑈 ≤ 𝑥 𝑟 + 𝜇 −

𝑟𝑥

𝑘
− (𝑑 − 𝜇)𝑦 − (𝑑 − 𝜇)𝑧 

≤ 𝑥 𝑟 + 𝜇 −
𝑟𝑥

𝑘
,  if  𝜇 = min(𝑑 , 𝑑 ). 

We can choose 𝜇  in such a way that 𝜇 = min(𝑑 , 𝑑 ) 
then for each  P>0, we have  

𝑑𝑈

𝑑𝑡
+ 𝜇𝑈 ≤

𝑘(𝑟 + 𝜇)

4𝑟
= 𝑃 

Now using the reference [30], the following is obtained.           

0 ≤ 𝑈(𝑡) ≤
𝑃

𝜇
(1 − 𝑒 ) + 𝑢(0)𝑒 . 

As 𝑡 → ∞, then 0 ≤ 𝑈(𝑡) ≤ .Hence 𝑈(𝑡) is bounded. 

B.  Equilibria: 
The equilibrium points of the system (1) are: 
B1: The equilibrium points𝐸 (0,0,0) and 𝐸 (𝑘, 0,0)  exist 

for all parametric values. 
B2: The equilibrium point 𝐸 (𝑥, 𝑦, 0)exists 

if 𝑅 = > 1 , where 𝑦 = (𝛼𝑥 − 𝑑 )  and 𝑥 is the 

positive root of the equation 
𝑟𝛼𝛿𝑥 + 𝑘𝛼(1 − 𝑟𝛿)𝑥 − 𝑘𝑑 = 0. 

B3: The positive interior equilibrium point 

𝐸∗( 𝑥∗, 𝑦∗, 𝑧∗) , where 𝑧∗ =
( ) ∗

, 𝑥∗ = 𝑘 −
∗

( ∗)
 and 𝑦∗is the positive root of the equation 

𝐴𝜌 + 𝐵𝜌 + 𝐶 = 0, 
Where 𝐴 = 𝐿𝛼 𝛿 , 𝐵 = 2𝐿𝛼𝛿 + 𝑘𝛼 − 𝑘𝑟𝛼𝛿, 𝐶 = 𝑘𝑟 − 𝐿, 

𝐿 =
𝑟(𝑐 𝑒 + 𝑑 𝑒𝑚 − 𝑑 )

𝛼𝑒𝑚
. 

C. Stability analysis 
The stability of 𝐸 , 𝐸 , 𝐸  and 𝐸∗ of the system (1) is 

discussed here. It is point out that although 𝐸  and 𝐸 are 
defined for system (1), because of the ratio dependent 
Michaelis-Menten functional response, 𝐸  and 𝐸  are 
singular points. So, the model cannot be linearized 
about the point𝐸  and 𝐸 .In this way, the local stability 
of 𝐸  and 𝐸  cannot be 
explained.Certainly,thesesingularitiesareresponsibleforth
emuch difficulty in the analysis of the system which con-
tributes remarkably to the richness of dynamics of 
themodel[31,27]. 

Theorem-2. The predator free equilibrium point 
𝐸 (𝑥, 𝑦, 0)  is asymptotically stable if 𝑅 < 1  and 
𝑅 ≤ 1. 

        Proof: The variational matrix of the system (1) 
about 𝐸 (𝑥, 𝑦, 0) is  

𝑉(𝐸2) =

⎣
⎢
⎢
⎢
⎢
⎡ −

𝑟

𝑘
𝑥 −

𝛼𝑥

(1 + 𝛼𝛿𝑦)2
0

𝛼𝑦

1 + 𝛼𝛿𝑦

𝛼𝑥

(1 + 𝛼𝛿𝑦)2
− 𝑑1

𝑐𝑦2

(𝑦 + 𝑚𝑧)2

0 0 𝑐1𝑒 − 𝑑2 ⎦
⎥
⎥
⎥
⎥
⎤

 

    The eigenvalues of 𝑉(𝐸2)are 𝑐 𝑒 − 𝑑  and the positive 
roots of the equation 

𝜌 + 𝑄 𝜌 + 𝑄 = 0, 
Where 
𝑄 = 𝑥 + 𝑑 −

( )
,  

𝑄 = 𝑥 𝑑 −
( )

+
( )

. 

All the eigenvalues have negative real parts if 𝑅 < 1 and 
𝑅 ≤ 1, where 𝑅 =

𝑐1𝑒

𝑑2
 and 𝑅 =

𝛼𝑥

𝑑1(1+𝛼𝛿𝑦)2
.So, 𝐸  is 

asymptotically stable if 𝑅 < 1 and 𝑅 ≤ 1. 
Theorem-3. The positive interior equilibrium point 
𝐸∗( 𝑥∗, 𝑦∗, 𝑧∗)  is locally asymptotically stable if and only if    
𝑝 > 0, 𝑝 > 0, 𝑝 𝑝 − 𝑝 > 0, where 𝑝 𝑠 are given in the proof 
of the theorem. 

Proof: The Variational matrix of the system (1) around 
𝐸∗(𝑥∗, 𝑦∗, 𝑧∗)is  

𝑉(𝐸∗) =
−𝑚 −𝑚 0
𝑚 𝑚 −𝑚

0 𝑚 −𝑚
, 

where 

𝑚 =
𝑟

𝑘
𝑥∗, 𝑚 =

𝛼𝑥∗

(1 + 𝛼𝛿𝑦∗)2
,

𝑚 =
𝛼𝑦∗

1 + 𝛼𝛿𝑦∗
,                          𝑚

=
𝛼𝑥∗

(1 + 𝛼𝛿𝑦∗)2
−

𝑚𝑐1𝑧∗

(𝑦∗ + 𝑚𝑧∗)2
− 𝑑 ,

𝑚 =
𝑚𝑐1𝑦∗2

(𝑦∗ + 𝑚𝑧∗)2
,

𝑚 =
𝑚𝑐1𝑒𝑧∗2

(𝑦∗ + 𝑚𝑧∗)2
, 𝑚

= 𝑑 −
𝑒𝑐1𝑦∗2

(𝑦∗ + 𝑚𝑧∗)2
 

The eigenvalues of  𝑉(𝐸∗)  are the roots of the equation  
𝜌 + 𝑝 𝜌 + 𝑝 𝜌 + 𝑝 = 0,            (3) 
Where 𝑝 = 𝑚 − 𝑚 + 𝑚 ,  
𝑝 = 𝑚 (𝑚 − 𝑚 ) + 𝑚 𝑚 + (𝑚 𝑚 − 𝑚 𝑚 ),  
𝑝 = 𝑚 𝑚 𝑚 + 𝑚 (𝑚 𝑚 − 𝑚 𝑚 ), 𝑝 𝑝 −

𝑝 = ( 𝑚 − 𝑚 ) ( 𝑚 𝑚 + 𝑚 − 𝑚 𝑚 ) +

                             (𝑚 − 𝑚 )(𝑚 𝑚 + 𝑚 − 𝑚 𝑚 ) 
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Using the Routh-Hurwitz criteria, all roots of the above 
equation have negative real parts if and only if 𝑝 > 0, 𝑝 > 0,

𝑝 𝑝 − 𝑝 > 0. Therefore, the positive interior equilibrium point 
𝐸∗(𝑥∗, 𝑦∗, 𝑧∗) is asymptotically stable if 𝑝 > 0, 𝑝 > 0, 𝑝 𝑝 −

𝑝 > 0. 

IV. Hopf bifurcation analysis 

Theorem-4. If the rate of infection 𝛼 exceeds the critical value 
𝛼∗  then the system (1) goes to hopf-bifurcation about the 
equilibrium 𝐸∗ if  

(i)  𝑝 (𝛼∗) > 0,   

(𝑖𝑖) 𝜓(𝛼∗) =  𝑝 (𝛼∗) 𝑝 (𝛼∗) −  𝑝 (𝛼∗) = 0,  

(iii) { 𝜓(𝛼)} ≠ 0, 𝑎𝑡  𝛼 = 𝛼∗. 

Proof: Let 𝐸∗is locally asymptotically stable and α as 
bifurcation parameter. If there exists a critical value 𝛼∗ 
such that  (𝑖) p (α∗) > 0, (𝑖𝑖)𝜓(𝛼∗) =  𝑝 (𝛼∗) 𝑝 (𝛼∗) −

 𝑝 (𝛼∗) = 0,   

And (ii) {𝜓(𝛼)} ≠ 0, 𝑎𝑡  𝛼 = 𝛼∗,  then for the 

occurrence of Hopf-bifurcation at 𝛼 = 𝛼∗. Equation (3) can 
be written as 

{𝜌 +  𝑝 (𝛼∗)}{𝜌 +  𝑝 (𝛼∗)} = 0                      (4) 

The roots of the equation are 𝜌 (𝛼∗) = 𝑖  𝑝 (𝛼∗),

𝜌 (𝛼∗) = −𝑖  𝑝 (𝛼∗)   and 𝜌 = − 𝑝 (𝛼∗). 
The transversality condition need to the verified for the 

occurrence of Hopf-bifurcation at 𝛼 = 𝛼∗. 

𝑅𝑒 𝜌 (𝛼) ≠ 0,at 𝛼 = 𝛼∗, for j=1,2. 

For all 𝛼, the roots are in general form  
𝜌 (𝛼) = 𝛽 (𝛼) + 𝑖𝛽 (𝛼), 𝜌 (𝛼) = 𝛽 (𝛼) − 𝑖𝛽 (𝛼), 𝜌 (𝛼) =

− 𝑝 (𝛼). We put 𝜌 (𝛼) = 𝛽 (𝛼) ± 𝑖𝛽 (𝛼) in (4) and calculating 

the derivative, we have  
𝐾(𝛼)𝛽 (𝛼) − 𝐿(𝛼)𝛽 (𝛼) + 𝑀(𝛼) = 0,               (5) 
𝐿(𝛼)𝛽 (𝛼) + 𝐾(𝛼)𝛽 (𝛼) + 𝑅(𝛼) = 0,               (6) 
 
where 
 

𝐾(𝛼) = 3𝛽 (𝛼) + 2 𝑝 (𝛼)𝛽 (𝛼) +  𝑝 (𝛼) − 3𝛽 (𝛼), 
 

𝐿(𝛼) = 6𝛽 (𝛼)𝛽 (𝛼) + 2 𝑝 (𝛼)𝛽 (𝛼), 
𝑀(𝛼) = 𝛽 (𝛼)𝑝 (𝛼) +  𝑝 (𝛼)𝛽 (𝛼) +  𝑝 (𝛼) − 𝑝 (𝛼)𝛽 (𝛼), 

𝑅(𝛼) = 2𝛽 (𝛼)𝛽 (𝛼)𝑝 (𝛼) +  𝑝 (𝛼)𝛽 (𝛼). 

Again, we note that 𝛽 (𝛼∗) = 0 and 𝛽 (𝛼∗) =  𝑝 (𝛼∗). 
Therefore, 𝐾(𝛼∗) = −2𝑝 (𝛼∗),𝐿(𝛼∗) = 2 𝑝 (𝛼∗)  𝑝 (𝛼∗), 

𝑀(𝛼∗) =  𝑝 (𝛼∗) −  𝑝 (𝛼∗) 𝑝 (𝛼∗) 𝑎𝑛𝑑 𝑅(𝛼∗)

=  𝑝 (𝛼∗)  𝑝 (𝛼∗). 
Solving 𝛽 (𝛼) from equations (5) and (6), we have  

𝛽 (𝛼∗) =
𝑑

𝑑𝛼
𝑅𝑒 𝜌 (𝛼)

∗
 

= −
𝐿(𝛼∗)𝑅(𝛼∗) + 𝐾(𝛼∗)𝑀(𝛼∗)

𝐾 (𝛼∗) + 𝐿 (𝛼∗)
 

=
 (𝛼∗)− (𝛼∗) (𝛼∗)− ( ∗) (𝛼∗)

  ( ∗)  (𝛼∗)
> 0,  provided  𝑝 (𝛼∗) >

[ 𝑝 (𝛼∗) 𝑝 (𝛼∗)] ∗
′  

Also, 𝜌 (𝛼∗) = − 𝑝 (𝛼∗) < 0. Therefore, the transversality 

condition holds. This implies that a Hopf-bifurcation at 𝛼 = 𝛼∗. 
This complete the proof. 

Note: If there exist a  critical value 𝑑 ∗ (corresponding 
mortality rate of infected prey) such that  

𝑝 (𝑑 ∗) > 0, 𝑝 (𝑑 ∗)𝑝 (𝑑 ∗) − 𝑝 (𝑑 ∗) = 0 
and 𝑝 (𝑑 ∗) > [𝑝 (𝑑 ∗)𝑝 (𝑑 ∗)] ∗ then when 

𝑑 < 𝑑 ∗ , 𝐸∗ is stable. When𝑑 = 𝑑 ∗, then 𝐸∗  losses it 
stability and the Hopf-bifurcation occurs at  𝑑 = 𝑑 ∗, 𝐸∗ 
is unstable and a family of periodic solutions bifurcates 
from 𝐸∗. 

V. Mathematical study of the 
System(2) 

Let(𝑥, 𝑦, �̃� )bethegeneralequilibriumpointofthe spatial model 
(2).For investigation of the stability ofthe 
model(2),followingperturbationsoftheform[32] applied here: 

𝑥(𝑡, 𝑢) = 𝑥 + 𝑥 cos(𝑙𝑥) exp(𝜈𝑡), 

𝑦(𝑡, 𝑢) = 𝑦 + 𝑦 cos(𝑙𝑦) exp(𝜈𝑡), 

𝑧(𝑡, 𝑢) = �̃� + 𝑧 cos(𝑙𝑧) exp(𝜈𝑡), 
where 𝑙(> 0) and 𝜈(> 0) are the wave number andtime 

evaluation rate respectively.The above 
expressionsaresubstitutingin(2)andapplyingthecondition for 
equilibriumpoint (𝑥, 𝑦, �̃� )   of the system (2) and 
correspondingsystemofordinarydifferential 
equationsareobtained.Linearizingthissystemabout (𝑥, 𝑦, �̃� ) and
obtainthevariationalmatrixas 

𝑉(𝐸) =

−𝑚 − 𝑙 𝐷 −𝑚 0

𝑚 𝑚 − 𝑙 𝐷 −𝑚

0 𝑚 −𝑚 − 𝑙 𝐷

 

 
At predator free equilibrium point 𝐸 (𝑥, 𝑦, 0) for the system 

(2), the eigenvalues are 𝑐 𝑒 − 𝑑 − 𝑙 𝐷  and the positive 
roots of the equation 

𝜌 + 𝑠 𝜌 + 𝑠 = 0, 
Where 

𝑠 = 𝑥 + 𝑑 −
( )

+ 𝑙 (𝐷 + 𝐷 ),  

𝑠 = ( 𝑥 + 𝑙 𝐷 ) 𝑑 + 𝑙 𝐷 −
( )

+
( )

. 

Now, in absence of diffusion 𝐸  is stable if 𝑐 𝑒 − 𝑑 < 0 

and 𝑑 −
( )

≥ 0 .Underthe sameconditions 

inpresenceofdiffusionE2isalsotobespatiallystablebecauseallt

heeigenvaluesofV(Ẽ)atE2(x̄ ,ȳ ,0)have negativerealparts.The 
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eigenvalues of the variational matrix of the system 
(2)about 𝐸∗are the roots of the equation 

𝜌 + 𝑞 𝜌 + 𝑞 𝜌 + 𝑞 = 0, 
Where              𝑞 = 𝑚 − 𝑚 + 𝑚 + 𝑙 (𝐷 + 𝐷 +

𝐷 ),  𝑞 = 𝑚 (𝑚 − 𝑚 ) + 𝑚 𝑚 + (𝑚 𝑚 −

𝑚 𝑚 ) + 𝑙 {𝐷 (𝑚 + 𝑚 ) + 𝐷 (𝑚 − 𝑚 ) +

𝐷 (𝑚 − 𝑚 )} + 𝑙 (𝐷 𝐷 + 𝐷 𝐷 + 𝐷 𝐷 ), 
𝑞 = 𝑚 𝑚 𝑚 + 𝑚 (𝑚 𝑚 − 𝑚 𝑚 )

+ 𝑙 {𝐷 (𝑚 𝑚 − 𝑚 𝑚 )

+ 𝐷 𝑚 𝑚 + 𝐷 (𝑚 𝑚 − 𝑚 𝑚 )}

+ 𝑙 (𝐷 𝐷 + 𝐷 𝐷 − 𝐷 𝐷 ) + 𝑙 𝐷 𝐷 𝐷 , 
𝑞 𝑞 − 𝑞 = (𝑚 − 𝑚 ) (𝑚 𝑚 + 𝑚 − 𝑚 𝑚 )

+ (𝑚 − 𝑚 )(𝑚 𝑚 + 𝑚

− 𝑚 𝑚 )

+ 𝑙 𝐷 {(𝑚 − 𝑚 )(2𝑚 + 𝑚

− 𝑚 ) + 𝑚 𝑚 }

+ 𝑙 𝐷 {𝑚 𝑚 + 𝑚 𝑚

+ (𝑚 + 𝑚 )(𝑚 + 𝑚 − 2𝑚 )}

+ 𝑙 𝐷 (𝑚 − 𝑚 )(𝑚 + 2𝑚

− 𝑚 ) + 𝑚 𝑚 }}

+ 𝑙 (𝑚 − 𝑚 )(𝐷 𝐷 + 𝐷 𝐷 + 𝐷 𝐷

+ 𝐷 )

+ 𝑙 (𝑚 + 𝑚 )(𝐷 𝐷 + 𝐷 𝐷 + 𝐷 𝐷

+ 𝐷 )

+ 𝑙 (𝑚 − 𝑚 )(𝐷 𝐷 + 𝐷 𝐷 + 𝐷 𝐷

+ 𝐷 )

+ 𝑙 {(𝐷 + 𝐷 )(𝐷 𝐷 + 𝐷 𝐷 + 𝐷 𝐷 )

+ 𝐷 (𝐷 + 𝐷 )}. 

Using the Routh-Hurwitz criteria, we observe that the system 
(2) is locally asymptotically stable around 𝐸∗ if 𝑞 > 0, 𝑞 > 0,

𝑞 𝑞 − 𝑞 > 0. 
VI. Numericalanalysis 

We investigated the qualitative behavior of stability ofeach 
equilibrium points of the systems (1) and (2) byusing the 
hypothetical parametric values are given intheTable1. 

For the set of parametric values in Table 1 andwith 
initial value Z0= (x0, y0, z0)   = (22, 22, 
15),theexistenceconditionsofthecoexistenceequilibriumpoint
E∗issatisfiedandthecoexistenceequilibriumpointE∗ 
=(18.1307, 18.0868, 13.5651) 
islocallyasymptoticallystablewitheigenvalues−0.0601 ±i0.7181, 
−0.1423(seeFigure1).    
Next,weconsiderd2=0.58andotherparametersfixed,thenitisob
servedthatthepredatorspeciesgoestoextinction(seeFigure 
2).Finally,it is established that the hopf- bifurcation diagrams 
are drawn (Figure3 and Figure 4)in the system (1) due to 
changing the value of the parameters α, from 0.07 to 0.1 and 
d1, from 0.15 to 

0.25.Again,forthesetofparametricvaluesinTable1and 𝐷 =

30, 𝐷 = 20, 𝐷 = 15, we have the Figure 5 which depict that 

all the species show stable biomass distribution and 𝐸∗ of 
the system (2) is spatially stable. 

In another situation, if D2 = 0.02 and other set of para-
metricvaluesasinFigure5,wehavetheFigure6whichdepict that 
all the species shows unstable biomass 
distributionandE∗ofthesystem(2)isspatiallyunstable. 

Simulation experiments for spatial system: Considering the 
two-dimensional cases, we have to analyze the dynamical 
behaviour of system (2) with the Neumann boundary conditions 
on a square domain of 500 × 500  and ∆𝑢 = ∆𝑣 = 0.5  and 

∆𝑡 = , where 𝑢 is the horizontal axis and 𝑣 is the vertical axis. 

The numerically solutions are performed under thefinite 
difference Euler method approximation for 
timeintegration.Considering initial conditions to 
illustratethepatternformationforinterpretationofthesystem(2)in
spatialdomainareasfollows: 

𝑥(𝑢, 𝑣, 0) = 18.1307 + 5 × 10 𝑐𝑜𝑠
( . )

+ 5 ×

10 𝑐𝑜𝑠
( . )

,  

𝑦(𝑢, 𝑣, 0) = 18.0868 + 5 × 10 𝑐𝑜𝑠
2𝜋(𝑢 − 0.1)

30
+ 5

× 10 𝑐𝑜𝑠
2𝜋(𝑣 − 0.1)

30
, 

𝑧(𝑢, 𝑣, 0) = 13.5651 + 5 × 10 𝑐𝑜𝑠
2𝜋(𝑢 − 0.1)

30
+ 5

× 10 𝑐𝑜𝑠
2𝜋(𝑣 − 0.1)

30
. 

VII. CONCLUSION 

 
In thispaper, the stability and bifurcation  analysisof an 

eco-epidemic predator-prey model with diffusionhas been 
examined and analysed.Also, the nature ofbiomass 
distribution and occurrence of diffusive 
instabilityhavebeenstudied. 

Fromboththeoreticalstudyandnumericalcalculation,itiscle
arthatthesystem(1)atthepositiveinterior equilibrium point is 
locally asymptotically stable(see Figure 1). Also, the 
system (2) is spatially stable(see Figure 5) in the same set of 
parameters in Table 1with diffusion coefficients D1= 30, 
D2= 20, D3= 15.Next, the system (2) is spatially unstable 
(see Figure6) for D2= 0.02 and other parameters values as 
inFigure 5. So,the diffusion can be able to change 
fromthestabilitytoinstabilityofpositiveinteriorequilibriumpo
intE∗.Itwillbefoundthattheincorporationofdiffusionarisesdiffus
ioninstability. Thenwehaveshown that diffusion driven 
instability.As a 
result,TuringdiffusioninstabilityoccursandTuringpatternsar
eformed. 
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Table1:Asetofparametricofvalues 

 

 
Figure 1:The equilibrium point E∗ is locally asymp-

toticallystableforthesetofparametersinTable1. 

 
 
Figure 2: The figure shows that for d2 = 0.58, E∗ap-

proaches predator free equilibrium E2 with other pa-
rameters valuesfixedintheTable1 

 
Figure3:Thebifurcationdiagramofallthepopulation for  𝛼. 
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Figure 4: The bifurcation diagram of all the population for 𝑑 . 
 

 

 

 
 
 
 
 

 

 

 
Figure 5:  Stable homogenous biomass distribution ofall 

species over time and space of system (2) for r 
=1,k=72,α=0.044,δ=0.08,m=1,c1=0.7,e=0.8,d1=0.45,d2=0
.42,D1=30,D2=20,D3=15. 
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Figure 6: Untable homogenous biomass distribution ofx, y 

and z species over time and space of system (2)for D2= 
0.02 and other set of parametric values as inFigure5. 

 

 

 

 

 

 
Figure 7: Patterns of three species of system (2) at time t = 0, 

for D2 = 0.02 and other set of parametric values as in Figure 5. 
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Figure 8: Patterns of three species of system (2) at timet = 

1000, for D2= 0.02 and other set of 
parametricvaluesasinFigure5. 
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