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Abstract: In this study, an orthogonal Taylor wavelet Galerkin 
numerical method with its residual process is introduced for solving 
one- dimensional partial differential equations which performs 
crucial role in electrical circuit modeling. Together, its algorithm is 
discussed.  The goal of the introduced wavelet numerical method is 
to provide a fast and efficient implementation for solving one
dimensional partial differential equation. Experimentally, the 
introduced method is analyzed on some one-dimensional partial 
differential equations, and the obtaining results are compared with 
experimental results of other most well-known numerical methods, 
such as wavelets based Galerkin method, and spectral procedures, 
finite difference method, which indicating that the introduced 
method is more effective. 

Keywords: Finite difference method; Orthogonal Taylor
basis; One- dimensional partial differential e
function; wavelets Galerkin methods. 

1. INTRODUCTION 

Wavelet-based method has been used for better approximate 
numerical solution of tangled partial differential equation 
(PDEs), which was introduced around 30 years ago by a few 
mathematical researchers, and it has been extensively applied in 
distinct studies in the domains of mathematics [1, 2]
science [3], mathematical physics [4, 5], and 
etc. Wavelets are a set of orthogonal functions, which are 
considered efficient for solving PDEs and provide best 
approximate solutions. Wavelet analysis contributes to a fast 
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we can't always extract exact solutions for these PDEs through 
numerical methods. So, it is very important to present the best 
solution for these kinds of PDEs via wavelet- based numerical 
method. Furthermore, we can see that the basis function used in 
the finite element method (FEM) has a less compact support, and 
extremely weak continuity property, whereas spectral bases have 
global support, but they are infinitely differentiable. Similarly, 
spectral methods perform well in terms of spectral localization 
but perform poorly in terms of spatial localization, whereas FEM 
performs well in terms of spatial localization. And wavelet basis 
fulfill the specific advantages of both spectral and FEM basis. In 
addition, one- dimensional PDEs also occur frequently in 
electronics and electrical engineering [19-22]. Particularly, 
resistor (or capacitor) networks model is defined by the well-
known Laplace equation in the field of electronic and electrical 
circuits, which is a well-known second-order PDE. Resistor (or 
Capacitors) network plays an important role in basic electronics. 
Figure.1, illustrates the Resistor/Capacitors networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Resistor/Capacitor network [19]. 
In this work, the main objective is to give better approximate 

solution for one- dimensional PDEs. An efficient orthogonal 
Taylor wavelet Galerkin numerical method is introduced for 
solving this kind of one- dimensional PDEs. In this method 
orthogonal Taylor wavelets (OTWs) basis is new, which is to 
combine Galerkin method in solving one- dimensional PDES. 
This method is directly based on series approximation for the 
numerical study by OTWs with unknown parameters. Galerkin 
method is extremely good method of the ‘weighted’ residual for 
calculating numerical solution to one- dimensional PDEs. The 
proposed method accuracy can be found clearly for solving one- 
dimensional PDEs, which is demonstrated in numerical test 
problems. 

Rest part of our paper arranged in following way, Section 2 
deal with basic definition of wavelets and OTWs. Function 
approximation is given in section 3 and Section 4 consist 
procedure of solution of orthogonal Taylor wavelet Galerkin 
numerical method (OTWGNM). In section 5, Numerical 

problems are demonstrates. Finally, a significance and 
conclusion of the propose work is discussed. 

2. BASIC DEFINITION OF WAVELETS 

A family of functions, which is got from the single function 
by dilation (scaling) and translation, is named mother wavelet 
(or wavelet). If the dilation (scaling) parameter s  and translation 

(sifting) parameter r  vary continuously then we get the family 
of continuous wavelets [23] as 
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and, if both scaling and sifting parameters s  and r  replace by 

discrete values as ,, 000
dd srmrss   0,1 00  rs  and 

Zdm , then it is recognized as discrete wavelet. The family 

of discrete wavelets is written with the help of above equation as  
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                                                                                               (2)                    

where,  zmd ,  is  wavelet basis in )(2 RL . 

Remark: Since Taylor wavelet [23] is not orthogonal in interval
]1,0[ , so we orthogonalized it by using the orthogonalization 

processes of Gram-smith on normal Taylor polynomial 

   zTqzT qq 12
~

  where, 12 q normality coefficient and 

  zzT q
q   is Taylor polynomial of order q .See ref. [24]. 

 
2.1  ORTHOGONAL TAYLOR WAVELETS 

Orthogonal Taylor wavelets (OTWs)    zqpdzqp ,,,,
   

have four arguments same as Taylor wavelets: 

,,2...,,2,1,1 1 Zdppp d  
 where 1...,,1,0  Qq  is the 

order and z  is normalized time for orthogonal Taylor 
polynomials (OTPs) which is defined on interval ]1,0[  as  

  ,

,0
22

1
),12(2 11

11

,




 




 


otherwise

p
z

p
ifpzU

z dd
d

q
d

qp    

                                                                                               (3) 

where  zU q  are OTPs defined on  1,0  can be calculated by  

using the orthogonalization processes of Gram-smith on  zTq
~

or directly obtained by the following relation: 
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where, symbol !  represent factorial sign and  zLq  is well 

known Legendre polynomial [25]. 
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Figure 2: six OTWs for 1p , and 1d . 

3. FUNCTION APPROXIMATION 

 A function    RLzv 2 defined on  1,0  can be express as 

linear combination of orthogonal Taylor wavelets (OTWs) series 
as  

         zbzv qp
p q
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,                (5) 

where , 

              zzvb qpqp  ,, ,  and symbol .,.  indicate the inner 

product. If the given infinite series in above equation (5) is 
truncated, it could be written as: 
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where, 

B and )(z  are 12 1  Qd  matrices defined by as 
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3.1  CONVERGENCE OF ORTHOGONAL TAYLOR 
WAVELETS 

Theorem: If any continuous function )()( 2 RLzv   be 

bounded and described on )1,0[ , such that   ,dzv   then the 

OTWs series expansion of  zv  uniformly convergent [26]. 

Proof: Let the continuous function  zv  be bounded function 

on )1,0[  then OTWs coefficients of  zv  is defined by 
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Now, putting npzd  12 1   in eq. (9) we get,  
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By applying generalized mean value (GMV) theorem, 
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Since continuous function  zv is bounded, then the series 




0,
,

qp
qpb  is absolutely convergent. Hence the OTWs series of 

continuous function  zv  is uniformly convergent. 

 

4. PROCEDURE OF SOLUTION 

Consider one- dimensional PDEs is of the form, 

,)(
2

2

zgv
z

v

z

v








               (11) 

with the conditions 
bvav  )1(;)0( ,              (12) 

Where  ,  are either constant or a function of z  or function of 

v  and the function )(zg is continuous. 
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The above equation (11) is now written as 

)()(
2

2

zgv
z

v

z

v
z 








  ,             (13)  

where, 

)(z  is the residual for equation (11). When 0)(  z , for the 

exact solution, )(zv  only which satisfy the given boundary 

conditions. Let test series solution of given One- dimensional 
PDE (11), a function )(zv defined over )1,0[  may be express 

approximately by using orthogonal Taylor wavelets (OTWs) 

series with weight function )1()( zzzw   as  
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where      zzwz qpqp  ,,   and sb qp ', are unknown 

parameters to be find out. If we take higher degree orthogonal 
Taylor wavelets polynomials then solution accuracy definitely 
increased. Differentiating equation (14) twice with respect to z  

and putting the values of v
z

v

z

v
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2

2







 in eq. (13). To find sb qp ',

we chose weight function as supposed bases elements and 
integrating on boundary values together with the residual to zero 
[15] 
i.e.,   

  ,...2,1,0,0)(
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,1  qdzzzq .              (15) 

Thus we obtain system of linear equations with unknown 
parameters, on solving obtained system we get unknowns. Then 
substitute these unknowns’ parameters in test solution, 
approximate solution of eq. (11) is received. 
 

Algorithm: 

Input: Qqpd ,,,  

Step1: Define OTWs  zqp , by using equations (3) and (4). 

Step 2: define unknowns OTWs coefficients sb qp ', . 

Step 3: Consider one- dimensional PDE is of the form 
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Step 5: Choose weight function )1()( zzzw   as supposed 

basis element to satisfy boundary conditions given in 
equation (12). 

Step 6: Take new OTWs basis as      zzwz qpqp  ,,  . 

Step 7: Approximate )(zv  by using equation (14). 
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Step 9: Take algebraic system 

        ,...2,1,0,0)(
1

0
,1   qdzzzq by using equation (15). 

Step 10: Solve algebraic system given in step 9 to find 
unknowns coefficients sb qp ', . 
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5. NUMERICAL PROBLEMS 

Problem 5.1 Consider one - dimensional PDE as [27, 28] 
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Taken problem 5.1 has exact solution:  
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The executions of equation (16) as per the proposed OTWGNM 
of solution described in above section 4 are as follows. The 
“residual” of equation (16) can be written as: 
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Let the solution of (16) for 1d  and 3q  is given by  
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Differentiating eq. (20) twice w .r. t. z we get, 
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Using eq. (20) and (22), then eq. (18) becomes,  

)(sin2

)]1()
6

1
(5

)1()
2

1
(3)1([(

)
3

57
512512(

)3336()2()(

2

2
21

1101
2

2
21

1101

πzπ

zzzzb

zzzbzzbπ

zzb

zbbz

,

,,

,

,,











 

.)(sin2

]5

52
6

57
512

6

5
512

3

57
[

]3
2

33

36
2

3
33[

2

2

42

3222

2
21

3222

2
11

222
01

πzπ

zπ

zπ)zπ(

)zπ(b

zπzπ

)π(zb

)zπzπ(b

,

,

,















       (23) 

This )(z  is the “residual” of equation (16). The “weight 

functions” are the same as the “bases functions”.  So, by the 
weighted Galerkin method (WGM), we consider the following: 
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.0280079.0

)0369508.0()0()0598755.0( 2,11,10,1



 bbb
              (27) 

We have three equations (25)-(27) with three unknown 

coefficients, i.e., .2,1,1,1,0,1 bbb  by solving this system of algebraic 

equations; we obtain the values of coefficients: 

.8796455812788749.1

,0000000000000000.0,8485537018339170.3

2,1

1,10,1





b

bb

 

So, by substituting the values of coefficients .2,1,1,1,0,1 bbb  in 

equation (20) we get the OTWGNM (approx.) solution of 
problem 5.1. Comparison between OTWGNM (approx.), exact 
and other available methods solution are given in table-1. 

Absolute error )()( zvzv ea  , (here )(zva  stand for approx. 

solution and )(zve stand for exact solution) given below in table-

2 and comparison of OTWGNM (approx.) and exact solution of 
problem 5.1 represented in figure-3. 
 

Table-1: Comparison between OTWGNM (approx.), exact 
and other available methods solution for problem 5.1 

 
z Numerical  solution Exact 

solution FDM 
in 

Ref         
[28] 

Ref   
[29] 

HWGM 
   in 
Ref 
[28] 

OTWGNM 

0.1 0.310289 0.308865 0.308754 0.308768 0.309016 
0.2 0.590204 0.587527 0.588509 0.588522 0.588772 
0.3 0.812347 0.808736 0.809554 0.809561 0.809016 

0.4 0.954971 0.950859 0.950670 0.950671 0.951056 
0.5 1.004126 0.999996 0.999123 0.999122 1.000000 

0.6 0.954971 0.951351 0.950670 0.950671 0.951056 
0.7 0.812347 0.809671 0.809554 0.809561 0.809016 
0.8 0.590204 0.588815 0.588509 0.588522 0.587785 

0.9 0.310289 0.310379 0.308754 0.308768 0.309016 
 

Table-2:  Absolute errors comparison for problem 5.1. 
 

z Absolute errors 
FDM 

in 
Ref 
[28] 

Ref 
[29] 

HWGM 
in 

Ref 
[28] 

OTWGNM 

0.1 1.27E-03 1.51E-04 2.60E-04 2.48E-04 
0.2 1.43E-03 1.25E-03 2.60E-04 2.50E-04 

0.3 3.33E-03 2.80E-04 5.40E-04 5.45E-04 
0.4 3.92E-03 1.97E-04 3.90E-04 3.85E-04 

0.5 4.13E-03 4.00E-06 8.80E-04 8.78E-04 
0.6 3.92E-03 2.95E-04 3.90E-04 3.85E-04 
0.7 3.33E-03 6.55E-04 5.40E-04 5.45E-04 

0.8 2.42E-03 1.03E-03 7.20E-04 7.37E-04 
0.9 1.27E-03 1.36E-03 2.60E-04 2.38E-04 
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Figure 3: Comparison between OTWGNM (approx.) and 
exact solution for problem 5.1. 

 
Problem 5.2 Take one- dimensional [13, 28] 

,10),1( 1
2

2








  ze
z

v

z

v z              (28) 

with conditions 
0)1(&,0)0(  vv .                                            (29) 

And exact solution to problem 5.2 is as follows: 

)1()( 1 zezzv . 
After employing the method, which is mention in section 4, we 
get these constants 

.78736350521358446.0

,72843232100496804.0,3388667966101110.0

2,1

1,10,1





b

bb

So, by substituting above coefficients values in equation (20), 
we get the OTWGNM (approx.) solution of second test problem 
5.2. Obtained OTWGNM solutions are comparing with exact 
and other established method solutions are presented in table-3 
and there absolute errors are given in table-4. Comparison of 
exact and OTWGNM solution of problem 5.2 represented in 
figure-4. 

Table 3:  Comparison of the exact and OTWGNM solution for 
problem 5.2 

z Numerical solution Exact 
solution FDM 

in 
Ref [28] 

Ref 
[27] 

OTWGNM 

0.1 0.061948 0.059383 0.059401 0.059343 
0.2 0.115151 0.110234 0.110119 0.110134 
0.3 0.158162 0.151200 0.150947 0.151102 

0.4 0.189323 0.180617 0.180403 0.180475 
0.5 0.206737 0.196983 0.196724 0.196735 
0.6 0.208235 0.198083 0.197866 0.197808 

0.7 0.191342 0.181655 0.181508 0.181427 
0.8 0.153228 0.145200 0.145045 0.145015 

0.9 0.090672 0.085710 0.085596 0.085646 
 

Table 4:  Comparison of absolute errors for discussed problem 
5.2. 

z Absolute error 

FDM 
in 

Ref [28] 

Ref  [27] OTWGNM 

0.1 2.61E-03 4.00E-05 5.88E-05 
0.2 5.02E-03 1.00E-04 1.54E-05 
0.3 7.14E-03 1.76E-04 7.74E-05 

0.4 8.85E-03 1.42E-04 7.23E-05 
0.5 1.00E-02 2.48E-04 1.08E-05 
0.6 1.04E-02 2.75E-04 5.82E-05 

0.7 9.92E-03 2.28E-04 8.03E-05 
0.8 8.21E-03 1.85E-04 2.97E-05 

0.9 5.03E-03 6.40E-05 4.96E-05 

 

 

Figure 4:  Comparison between OTWGNM (approx.) and 
exact solution for problem 5.2. 

 
Problem 5.3 Take another one- dimensional PDE [28, 29] 

,10,
2

2





zzv
z

v
              (30) 

with conditions, 

0)1(&,0)0(  vv .                                           (31) 

Exact solution to problem 5.3: z
z

zv 
)1sin(

)sin(
)( . 

By applying OTWGNM which is mention in section 4, we get 
the following unknown coefficients,  

.066879550104698835.0

,7871660985719971.0,4325532770345596.0

2,1

1,10,1





b

bb

So, by substituting above obtained coefficients values into 
equation (20) we get the OTWGNM (approx.) solution of 
problem 5.3. Obtained OTWGNM solutions are compared with 
exact and other established method solutions are presented in 
table 2.5. Absolute errors comparison of proposed OTWGNM 
with other available methods FDM, HWGM is provided in table 
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2.6. And graph of comparison between exact and OTWGNM 
(approx.) solution to problem 5.3, is depicted in figure 2.5. 

 
Table 2.5: Comparison between FDM, HWGM, exact and 
OTWGNM (approx.) solution for discussed problem 5.3 

z Numerical solution Exact 
solution FDM 

in 
Ref [28] 

HWGM 
in 

Ref [28] 

OTWGNM 

0.1 0.018660 0.018624 0.0186252 0.0186415 

0.2 0.036132 0.036102 0.0361054 0.0360977 
0.3 0.051243 0.051214 0.0512196 0.0511948 
0.4 0.062842 0.062793 0.0628028 0.0627829 

0.5 0.069812 0.069734 0.0697464 0.0697469 
0.6 0.071084 0.070983 0.0709979 0.0710184 
0.7 0.065646 0.065545 0.0655610 0.0655851 

0.8 0.052550 0.052481 0.0524957 0.0525025 
0.9 0.030930 0.030908 0.0309179 0.0309019 

 
Table 2.6: Absolute errors comparison of OTWGNM, FDM 

and HWGM for problem 5.3 
z Absolute error 

FDM 
in 

Ref  [28] 

HWGM 
in 

Ref  [28] 

OTWGNM 

0.1 1.80E-05 1.80E-05 1.63E-05 

0.2 3.40E-05 4.00E-06 7.77E-06 
0.3 4.80E-05 1.90E-05 2.48E-05 

0.4 5.9005 1.00E-05 1.99E-05 
0.5 6.50E-05 1.30E-05 5.86E-07 
0.6 6.60E-05 3.50E-05 2.04E-05 

0.7 6.10E-05 4.00E-05 2.41E-05 
0.8 4.80E-05 2.10E-05 6.78E-06 
0.9 2.80E-05 6.00E-06 1.60E-05 

 

Figure 2.5: Comparison between OTWGNM (approx.) and 
exact solution for problem 5.3. 

Problem 5.4 Finally, consider another one- dimensional PDE 
[28, 30] 

,10,3044
8 245

2

2









zzzzzzv

z

v

zz

v
  (32) 

with conditions: 

.0)1(&,0)0(  vv                               (33) 

Exact solution to problem 5.4 is 43)( zzzv  . 

By applying OTWGNM which is mention in section 4, we get 
the value of unknown coefficients 

.999574472135954.0

,8962575773502691.0,33333263333333333.0

2,1

1,10,1





b

bb
 

So, by substituting above coefficients values in equation (20) 
we obtain the OTWGNM (approx.) solution of problem 5.4. 
Obtained OTWGNM (approx.) solutions are compared with 
exact and other established methods (FDM, HWGM) solutions 
are given in table 2.7. Absolute errors comparison are provided 
in table 2.8, and figure 2.6 shows a comparison of the proposed 
OTWGNM (approx.) and the exact solution for problem 5.4. 
 

Table 2.7:  Comparison of OTWGNM (approx.) and exact 
solution for problem 5.4. 

 
z Approximate solution Exact 

solution FDM 
in 

Ref  [28] 

HWGM 
in 

Ref [28] 

OTWGNM 

0.1 0.024647 -0.000900 -0.000900 -0.000900 
0.2 0.024538 -0.006401 -0.006400 -0.006400 
0.3 0.016024 -0.018904 -0.018900 -0.018900 

0.4 -0.00072 -0.38407 -0.038400 -0.038400 
0.5 -0.022021 -0.062512 -0.062500 -0.062500 
0.6 -0.045926 -0.086417 -0.086400 -0.086400 

0.7 -0.065532 -0.102920 -0.102900 -0.102900 
0.8 -0.072190 -0.102420 -0.102400 -0.102400 
0.9 -0.054840 -0.072914 -0.072900 -0.072900 

 
Table 2.8: Absolute errors comparison for discussed problem 

5.4 

z Absolute error 
FDM 

in 
Ref  [28] 

HWGM 
in 

Ref  [28] 

OTWGNM 

0.1 2.55E-02 0 2.29E-17 
0.2 3.09E-02 1.00E-06 1.90E-17 
0.3 3.40E-02 4.00E-06 1.38E-17 

0.4 3.83E-02 7.00E-06 6.93E-18 
0.5 4.05E-02 1.20E-05 2.77E-17 

0.6 4.05E-02 1.70E-05 2.77E-17 
0.7 3.74E-02 2.00E-05 2.77E-17 
0.8 3.02E-02 2.00E-05 2.77E-17 
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0.9 1.81E-02 1.40E-05 0 

 

 
 Figure 2.6: Comparison between OTWGNM (approx.) and 

exact solution for problem 5.4. 
 

SIGNIFACENCE OF THE PROPOSED WORK 
 

There are a lot of models in electrical engineering which are 
based on the one-dimensional PDEs (or ordinary differential 
equation) such as RLC circuit[19, 31, 32] RCC circuit [19], LC 
circuit [33], RC circuit [19] etc. All these circuits are basically 
used in electronics and electrical engineering. And these PDEs 
are used to as the mathematical model of electrical circuit and 
such kind of PDEs does not have exact numerical solutions. 
Therefore, there are several numerical methods are available to 
extract the numerical solutions of these mathematical models. 
But due to occur the more numerical errors in them, these are 
decreases the performance of the electrical devices. Keeping this 
type problem in the mind, we are presenting to the proposed 
method and get more accurate numerical solutions which may be 
helpful in the removing of such type difficulties for the electrical 
circuits. It is the most significant work (or contributions) of the 
proposed OTWGNM for the results of one- dimensional PDEs. 
And proposed work is compares with some existed wavelet 
Galerkin based methods; see in references [34-37]. 

CONCLUSION 

In this paper, the certain one-dimensional PDEs have been 
solved by using OTWGNM. The derived results are compared to 
the results of other existed WGMs, FDM and exact solution, 
which demonstrate that the proposed OTWGNM is more 
credible and effective. Finally, tables and figures are used to 
provide a comparative study between exact and approximate 
solutions for discussed problems. For large value of Q  we can 

get the results closure to exact solution. Hence proposed method 
is more effective for the results of mentioned problems and other 
kind of partial differential equation. 
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