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Abstract—We introduce a new family of distributions using
truncated discrete Mittag- Leffler distribution called Discrete
Mittag- Leffler Cauchy (DMLC) distribution. It can be consid-
ered as a generalization of the Marshall-Olkin family of distribu-
tions. Some properties of this new family are derived. Expressions
for the quantiles, mode, mean deviation and distribution of order
statistics are derived. The tail behaviour of DMLC distribution
is discussed. Parameters of new distribution are estimated by the
method of quantile least square, Cramer-Von Mises and method
of maximum likelihood. Monte Carlo simulation is performed
in order to investigate the performance of quantile least square
estimates, Cramer-Von Mises and maximum likelihood estimates.
An application of a real data sets shows the performance of the
new model over other generalizations of Cauchy distribution.

Index Terms—Cramer-Von Mises method, Discrete Mittag-
Leffler Distribution, Marshall-Olkin Family of Distributions,
Maximum likelihood estimation, Method of quantile least square.

I. INTRODUCTION

The Cauchy distribution was first appeared in works
of Pierre de Fermat. The Cauchy distribution named after
Augustin Cauchy, is a continuous probability distribution. It
also known as Lorentz distribution or Breit-Wigner distribu-
tion. It is also the distribution of the ratio of two independent
normally distributed random variables with mean zero. It is
one of the distribution that is stable. Stable distributions are
a special family of probability distributions appropriate for
modeling data that are heavy tailed and skewed. The Cauchy
distribution resembles the normal distribution family of curves,
While the resemblance is there it has a taller peak than normal.
Thatmeans it is a heavy tail probability distribution and unlike
the normal distribution it’s fat tails decay much more slowly.
The Cauchy distribution has no moments, and therefore the
law of large numbers does not apply, motivates researchers to
generalize the Cauchy distribution. Alshawarbeh et al.(2013)
used the beta family studied by Eugene et al.(2002) to generate
the so called Beta Cauchy distribution. A detailed study of the
generalized Cauchy family of distributions with applications
has been studied by Alzaatreh et al. (2016).

The Cauchy distribution is used in statistics as the canonical
example of pathological distribution since both its expected
value and its variance are undefined. The Cauchy distribution
has been used in many applications such as mechanical and
electrical theory, physical anthropology, measurement prob-
lems, risk and financial analysis, Spectroscopy, hydrology etc;
Marshall and Olkin (1997) introduced a new family of distribu-
tions by adding a parameter to a given family of distributions.
They started with a parent survival function F̄ (x) = 1−F (x)
and considered a family of survival functions given by

Ḡ(x) =
αF̄ (x)

F (x) + αF̄ (x)
, α > 0. (1)

They constructed their family of distributions in the follow-
ing way. Let X1, X2, . . . be a sequence of independent and
identically distributed (i.i.d) random variables with survival
function F̄ (x). Let N be a geometric random variable with
probability mass function (p.m.f) Pr(N = n) = α(1−α)n−1,
for n = 1, 2, . . . and 0 < α < 1. Then the random variable
UN = min{X1, X2, . . . XN} has the survival function given
by Eqn. 1. If α > 1 and N is a geometric random variable
with p.m.f Pr(N = n) = 1

α (1 − 1
α )

n−1, n = 1, 2, ...then
the random variable VN = max{X1, X2, ..XN} also has the
survival function as in Eqn.1.
Many authors have studied various univariate distributions
belonging to the Marshall-Olkin family of distributions; see
Ristic et al. (2007), Jose et al. (2010) and Cordeioro and
Lemente (2013). Jayakumar and Thomas (2008) proposed a
generalization of the family of Marshall-Olkin distribution as

Ḡ(x;α, γ) =

[
αF̄ (x)

1− (1− α)F̄ (x)

]γ
, (2)

for α > 0, γ > 0 and xϵR.
Nadarajah et al. (2013) introduced a new family of life time
models as follows:

Let X1, X2, ..be a sequence of independent and identically
distributed random variables with survival function F̄ (x). Let

DOI: 10.37398/JSR.2022.670213



Journal of Scientific Research, Volume 67, Issue 2, 2023

N be a truncated negative binomial random variable with
parameters αϵ(0, 1) and θ > 0. That is,

Pr(N = n) =
αθ

1− αθ

(
θ + n− 1

θ − 1

)
(1− α)n, n = 1, 2, ...

Consider UN = min{X1, X2, ..XN}. Then,

Pr(UN > x) =ḠU (x)

=
αθ

1− αθ

∞∑
n=1

(
θ + n− 1

θ − 1

)
((1− α)F̄ (x))n.

That is,

ḠU (x) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1]. (3)

Similarly, if α > 1 and N is a truncated negative binomial
random variable with parameters 1

α and θ > 0, then VN =
max{X1, X2, ..., XN} also has the survival function (3). This
implies that we can consider a new family of distributions
given by the survival function

ḠU (x;α, θ) =
αθ

1− αθ
[(F (x) + αF̄ (x))−θ − 1];

Where α > 0,θ > 0 and xϵR. Note that ḠU (x;α, θ) −→
F̄ (x) as α −→ 1. This family of distributions is a generaliza-
tion of the Marshall-Olkin family, in the sense that the family
is reduced to the Marshall-Olkin family of distributions, when
θ = 1.

Pillai and Jayakumar (1995) introduced the discrete
Mittag-Leffler distribution and studied its properties. The
mathematical origin of the discrete Mittag-Leffler distribution
can be described as follows:

Consider a sequence of independent Bernoulli trails in
which the kth trail has probability of success α

k with 0 <
α < 1 and k = 1, 2, 3, . . .. Let N be the trail number in which
the first success occurs. Then the probability that {N = r} is
given by

pr = (1− α)(1− α

2
)(1− α

3
)...(1− α

r − 1
)
α

r

=
(−1)rα(α− 1)(α− 2)...(α− r + 1)

r!
(4)

Probability generating function (pgf) of N is given by G(z) =
1−(1−z)α. Let X1, X2, ..., Xn be independent and identically
distributed random variables as N and let X0 = 0. Let M be
geometric distributed random variable with parameter p, ie.
Pr(M = k) = qkp, k = 0, 1, 2, ...; 0 < p < 1, q = 1− p.
Then X1 +X2 + ...+XM has generating function

P (z) =
p

1− q(1− (1− z)α)
=

1

1 + c(1− z)α
(5)

with p = 1/(1 + c). The distribution with pgf (5) is known
as Discrete Mittag-Leffler distribution with parameters α and
c. Sankaran and Jayakumar (2016) introduced the truncated
discrete Mittag-Leffler distribution as follows:
Let a new random variable Y such that

P (Y = x) =
P (X = x)

1− p0
; x = 1, 2, ...

Then

H(s) = E(sY ) =

∞∑
y=1

syp(X = y)

1− p0

=
1 + c

c

[
1

1 + c(1− s)α

]
− 1

c

Therefore

H(F̄ (x)) =
1 + c

c

[
1

1 + c(1− F̄ (x))α

]
− 1

c
.

Hence the new family of distributions with parameters α and
c having survival function

Ḡ(x) =
1− Fα(x)

1 + cFα(x)
. (6)

The corresponding distribution function is given by

G(x) =
(1 + c)Fα(x)

1 + cFα(x)
. (7)

This truncated discrete Mittag-Leffler distribution can be
considered as a generalization of Marshall-Olkin family of
distributions since it reduces to Marshall-Olkin family when
α = 1. In Eqn. 7, when F(x) is exponential, G(x) becomes the
Marshall-Olkin generalized exponential distribution studied in
Ristic and Kundu (2015). When F(x) in Eqn.7 is Weibull, G(x)
reduces to Marshall-Olkin exponentiated Weibull distribution
studied in Bidram et al. (2015). Hence Eqn. 7 is a rich class
in the sense that it leads to various generalizations of existing
distributions that have the capability of modeling real data
sets.
The main contribution of this work is the introduction of a
new distribution that performs its base distribution as well as
other distributions in applications. This demonstrates the need
to investigate more general distributions used in engineering
and scientific applications.
The paper is Organized as follows. In section 2, We intro-
duce a new family of univariate distribution which contains
Cauchy distribution and Marshall-Olkin family of distribution
and discuss the analytical shape of the density function and
distribution function of the model under study. We derive
its median, mode, quantiles, distribution of order statistics
in section 3. In section 4, we discuss the tail behaviour of
DMLC distribution. We study the estimation of parameters
of DMLC by the method of the quantile least square estima-
tion, Cramer-Von Mises estimation and maximum likelihood
estimates(MLEs) in section 5. We analyze a real data set to
illustrate the usefullness of the proposed distribution in section
6. Conclusions are presented in Section 7.

II. DISCRETE MITTAG- LEFFLER CAUCHY (DMLC)
DISTRIBUTION

This article introduces a new four parameter Cauchy dis-
tribution, called truncated Discrete Mittag- Leffler Cauchy
(DMLC) distribution.
A random variable X is said to have Cauchy distribution with
parameters µ and θ , if its probability density function (pdf)
is given by

f(x) =
1

πθ

1

(1 + (x−µ
θ )2)

; (8)
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Where −∞ ≤ x ≤ ∞,−∞ ≤ µ ≤ ∞,θ > 0,
and the cumulative distribution function(cdf) of X is given by

F (x) =
1

π
arctan

(
x− µ

θ

)
+ 0.5. (9)

Using Eqn. 7, we get the distribution function G(x), for F(x)
in Eqn. 9 as

G(x) =
(1 + c)[ 1π arctan(x−µ

θ ) + 0.5]α

1 + c[ 1π arctan(x−µ
θ ) + 0.5]α

; (10)

Where xϵR, −∞ ≤ µ ≤ ∞,α,c,θ > 0,
and the pdf of DMLC(α, c, µ, θ) is obtained is

g(x) =
α(1 + c)[0.5 + 1

π arctan(x−µ
θ )]α−1

πθ(1 + (x−µ
θ )2)[1 + c[ 1π arctan(x−µ

θ ) + 0.5]α]2
.

(11)
We refer to this distribution as truncated Discrete Mittag-
Leffler Cauchy Distribution (DMLC) with parameters α, c,µ
and θ; and write it as DMLC(α, c, µ, θ).

Remark 1. When α = 1 and c −→ 0, DMLC reduces to
Cauchy distribution.

The pdf plots of DMLC(α, c, µ, θ) for various values of
the parameters are presented in Fig. 1. The cdf plots of
DMLC(α, c, µ, θ) for various choices of the values of the
parameters are presented in Fig. 2.
DMLC(α, c, µ, θ)distribution for the fact that it’s expected
value and other moments do not exist. The median,mode do
exist.

III. PROPERTIES OF THE DISCRETE MITTAG- LEFFLER
CAUCHY DISTRIBUTION

Theorem 1. The limit of the DMLC density function as x →
±∞ is zero.

Proof: Trivial and hence omitted.

Lemma 1. The qth quantile xq of the DMLC random variable
is given by

xq = µ+ θ tan

[
π

[(
q

1 + c− qc

) 1
α

− 0.5

]]
. (12)

Proof: The qth quantile xq of the DMLC random variable
is defined as

q = P (X ≤ xq) = G(xq), xq > 0

Using the distribution function of the DMLC distribution, we
have

q = G(xq) =
(1 + c)

[
1
π arctan

(
x−µ
θ

)
+ 0.5

]α
1 + c[ 1π arctan

(
x−µ
θ

)
+ 0.5]α

That is,

(1 + c)

[
0.5 +

1

π
arctan

(
x− µ

θ

)]α
= q

[
1 + c

[
1

π
arctan

(
x− µ

θ

)
+ 0.5

]α] (13)

Which implies[
0.5 +

1

π
arctan

(
x− µ

θ

)]
=

[
q

1 + c− qc

] 1
α

(14)

We get

xq = µ+ θ tan

[
π

[(
q

1 + c− qc

) 1
α

− 0.5

]]
.

This completes the proof.
Using the usual inverse transformation method, a random

number (integer) can be sampled from the proposed model. Let
U be a random number drawn from a uniform distribution on
(0,1). Then a random number X following DMLC(α, c, µ, θ)
distribution is obtained by the Eqn. (12).
In particular, median is given by,

x0.5 = µ+ θ tan

[
π

[(
0.5

1 + 0.5c

) 1
α

− 0.5

]]
. (15)

Theorem 2. The mode of the DMLC(α, c, µ, θ) is the
solution of the equation k(x) = 0, where

k(x) =(α− 1)π

[
0.5 +

1

π
arctan

(
x− µ

θ

)]
[
1 + c

(
0.5 +

1

π
arctan

(
x− µ

θ

)α)]
− 2cα

[
0.5 +

1

π
arctan

(
x− µ

θ

)]α−1

.

Proof: The critical point of DMLC density function are
the roots of the equation:

∂ log(f(x))

∂x
= 0

That is

∂ log(g(x))

∂x
=

(α− 1)

πθ2[0.5 + 1
π arctan

(
x−µ
θ

)
](1 + (x−µ

θ )2)

− 1

θ2(1 + (x−µ
θ )2)

−
2cα[0.5 + 1

π arctan(x−µ
θ )]α−1

πθ2(1 + (x−µ
θ )2)[1 + c[0.5 + 1

π arctan(x−µ
θ )]α]

(16)

The critical values of (16) are the solution of k(x) = 0.
Hence the proof.

A. Mean Deviation

The mean deviation,about the median can be used as mea-
sures of the degree of scatter in a population. Let M be the
median of DMLC distribution given by (15).
The mean deviation about the median can be calculated as

δ(X) = E|X −M | =
∫ ∞

−∞
|x−M |g(x)dx,
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Fig. 1. Plots of the pdf of DMLC(α, c, µ, θ) distribution for some parameter values;
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Fig. 2. Plots of the cdf of DMLC(α, c, µ, θ) distribution.

Hence we obtain the following equation δ = µ−2J(M) where
J(q) is

J(q) =
α(1 + c)

πθ∫ q

−∞
x

[0.5 + 1
π arctan(x−µ

θ )]α−1

(1 + (x−µ
θ )2)[1 + c[ 1π arctan(x−µ

θ ) + 0.5]α]2
dx.

(17)

One can easily compute this integral numerically in software
such as MATLAB, Mathcad, R and others and hence obtain
the mean deviation about the median as desired.

B. Reliability Analysis

The reliability function is defined by R(t) = 1−G(t).
The Reliability function of DMLC(c, α, µ, θ) is given by,

R(t) = 1−

[
(1 + c)[ 1π arctan( t−µ

θ ) + 0.5]α

1 + c[ 1π arctan( t−µ
θ ) + 0.5]α

]
. (18)

The reliability behaviour of DMLC(α, c, µ, θ) for various
choices of the values of the parameters are presented in Fig.
3. The other characteristic of interest of a random variable is
the hazard rate function defined by

h(t) =
g(t)

1−G(t)
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α = 0.8 ,  c = 5 , µ = 1 ,  θ = 2

Fig. 3. Reliability function of the DMLC(c, α, µ, θ) distribution.

The hazard rate function of DMLC(α, c, µ, θ) is given by,

h(t) =

α(1+c)[0.5+ 1
π arctan( t−µ

θ )]α−1

πθ(1+( t−µ
θ )2)[1+c[ 1π arctan( t−µ

θ )+0.5]α]2

1−
[
(1+c)[ 1π arctan( t−µ

θ )+0.5]α

1+c[ 1π arctan( t−µ
θ )+0.5]α

] . (19)

The behaviour of hazard rate function of DMLC(c, α, µ, θ)
for various choices of the values of the parameters are pre-
sented in Fig. 4. The cumulative hazard rate function of a
DMLC distribution, H(t) is given by,

H(t) = − lnR(t)

= − ln

[
1−

[
(1 + c)[ 1π arctan( t−µ

θ ) + 0.5]α

1 + c[ 1π arctan( t−µ
θ ) + 0.5]α

]]
. (20)

It is important to know that the units for H(t) are the cumula-
tive probability of failure per unit of time, distance or cycles.

Theorem 3. The limit of the DMLC hazard function as t →
±∞ is zero.

Proof: Trivial and hence omitted.

C. Order Statistics

Let X1, X2, . . . , Xn be a random sample from
DMLC(α, c, µ, θ). Also, let X(1), X(2), . . . , X(n) denote
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Fig. 4. Hazard rate function of DMLC(α, c, µ, θ) distribution for some parameter values.
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Fig. 5. Comparison of tails of Cauchy, normal and DMLC densities.

the corresponding order statistics. Then the pdf of kth order
statistic is given by

gX(x) =
n!

(k − 1)!(n− k)!
g(x)[G(x)]k−1 [1−G(x)]

n−k

=
n!

(k − 1)!(n− k)!

α(1 + c)[0.5 + 1
π arctan(x−µ

θ )]α−1

πθ(1 + (x−µ
θ )2)[1 + c[ 1π arctan(x−µ

θ ) + 0.5]α]2[
(1 + c)[ 1π arctan(x−µ

θ ) + 0.5]α

1 + c[ 1π arctan(x−µ
θ ) + 0.5]α

]k−1

[
1−

(1 + c)[ 1π arctan(x−µ
θ ) + 0.5]α

1 + c[ 1π arctan(x−µ
θ ) + 0.5]α

]n−k

.

IV. TAIL BEHAVIOUR

Here we study the tail behaviour of DMLC distribution. Fig.
5 plots the tails of density of DMLC and compare them with
Cauchy and normal densities. The Cauchy distribution has a
thick tail, while the normal distribution has a thin tail. DMLC
distribution has tails thicker than Cauchy and normal.
We can easily shows that lim supx→∞ g(x)eλx = ∞ for any
λ > 0, Hence the density f is heavy tailed.

Definition 1. A function g is called regularly varying at
infinity with index γϵR if for any fixed a > 0,

lim
x→∞

g(ax)

g(x)
= aγ .

The following theorem establishes that the density function
given in Eqn. (11) is a function with regularly varying tails.

Theorem 4. The density function of DMLC distribution is a
function with regularly varying tails.

Proof: Using the density function 11, we have

lim
x→∞

g(ax)

g(x)

= lim
x→∞

α(1+c)[0.5+ 1
π arctan( ax−µ

θ )]α−1

πθ(1+( ax−µ
θ )2)[1+c[ 1π arctan( ax−µ

θ )+0.5]α]2

α(1+c)[0.5+ 1
π arctan( x−µ

θ )]α−1

πθ(1+( x−µ
θ )2)[1+c[ 1π arctan( x−µ

θ )+0.5]α]2

.

Applying limits,the above simplifies to

lim
x→∞

g(ax)

g(x)
=

1

a2
,

Hence we arrive at the desired result.

Definition 2. A function f is long tailed iff

lim
x→∞

g(x+ y)

g(x)
= 1, for all y > 0.

Theorem 5. The DMLC distribution belongs to the class L.

Proof:

lim
x→∞

g(x+ y)

g(x)

=

α(1+c)[0.5+ 1
π arctan(

(x+y)−µ
θ )]α−1

πθ(1+(
(x+y)−µ

θ )2)[1+c[ 1π arctan(
(x+y)−µ

θ )+0.5]α]2

α(1+c)[0.5+ 1
π arctan( x−µ

θ )]α−1

πθ(1+( x−µ
θ )2)[1+c[ 1π arctan( x−µ

θ )+0.5]α]2

= 1

then f belongs to the class L.

Definition 3. A function f belong to the class D of dominated
variation distributions if there exists a > 0

lim
x→∞

g(x)

g(2x)
= a, for all x > 0.
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Theorem 6. The DMLC distribution belongs to the class D
dominated variation distributions .

Proof:

lim
x→∞

g(x)

g(2x)

= lim
x→∞

α(1+c)[0.5+ 1
π arctan( x−µ

θ )]α−1

πθ(1+( x−µ
θ )2)[1+c[ 1π arctan( x−µ

θ )+0.5]α]2

α(1+c)[0.5+ 1
π arctan( 2x−µ

θ )]α−1

πθ(1+( 2x−µ
θ )2)[1+c[ 1π arctan( 2x−µ

θ )+0.5]α]2

,

Applying limits, the above simplifies to

lim
x→∞

g(x)

g(2x)
= 22,

then f belongs to the class of dominated variation distributions.

We know that two distributions G and F are said to be tail-
equivalent if

lim
x→∞

Ḡ(x)

F̄ (x)
= aϵ(0,∞).

It can be shown that DMLC and the Cauchy distribution are
tail-equivalent.

V. PARAMETER ESTIMATION

In this section, we use Quantile least squares method,
Cramer-von Mises method and Maximum likelihood estima-
tion(MLE) procedure for estimation.

A. The Quantile least squares method and its modification

In this section the quantile least squares method and its mod-
ification is considered. The considered method can be applied
to estimation of the DMLC distribution parameters. Rejecting
extreme order statistics significantly improves the properties of
the estimators. Hence, we suggest the truncated quantile least
squares method. The quantile least squares method (QLSM)
estimates the unknown parameters θ1, θ2, ..., θs of random
variable X with cdf F by minimizing the sum of squares
of the differences between theoretical and empirical quantiles
(Gilchrist, 2000; Castillo et al., 2004). Then, the function for
which we calculate the global minimum has the following
form:

G(θ1, θ2, ..., θs) =

n∑
i=1

(Xi/n:n −Qi/n)
2, (21)

where Xi/n : n is the sample quantile of order pi =
i
n from the i.i.d. sample X1, X2, ..., Xn and Qi/n =
F−1( i

n , θ1, θ2, ..., θn).
The estimators of parameters θ1, θ2, ..., θs obtained by QLSM
are denoted by θ̂1

qls
, θ̂2

qls
, ..., θ̂s

qls
.

Using all available quantile orders can, however, in some
cases cannot be feasible. For the DMLC distribution extreme
statistics have infinite variance, which means that the mean
squared errors of estimators based on them are very large.
Therefore, the minimum and maximum statistics must be
rejected for estimation of the DMLC distribution parameters.
The suggested modification of the QLSM is rejecting a fixed

number of quantiles, which we call the truncated quantile
least squares method (TQLSM). In this case the estimators
of distribution parameters θ1, θ2, ..., θs of the random variable
X with distribution function F (., θ1, θ2, ..., θs) are statistics
θ̂1

tqls
, θ̂2

tqls
, ..., θ̂s

tqls
, for which the following expression

reaches a global minimum:

G(θ1, θ2, ..., θs) =
∑
iϵIn

(Xpi:n −Qpi
)2, (22)

where pi =
i
n and In is the subset of 1, 2, ..., n. For symmetric

or close to symmetric distributions we suggest skipping k
quantiles, where k is the even number, that is k

2 the smallest
and k

2 the largest quantiles. Then, the function (22) takes the
form:

G(θ1, θ2, ..., θs) =

n−k/2∑
i=1+k/2

(Xpi:n −Qpi)
2 (23)

is minimized.
This proposed modification can be used to estimate the DMLC
distribution parameters.
The application of the TQLSM for the DMLC distribution is
related to the minimization of the function:

G(α, c, µ, θ)

=

n−k/2∑
i=1+k/2

[
Xpi:n −

[
µ+ θ tan

[
π

[(
pi

1 + c− pic

) 1
α

− 0.5

]]]]2

.

(24)

Therefore,
The estimators of α, c,µ and θ are the simultaneous solutions
of the equations ∂G

∂α = 0, ∂G
∂c = 0, ∂G

∂µ = 0 and ∂G
∂θ = 0. where

k is a fixed even number, Xpi:n is the quantile from the i.i.d.
sample X1, X2, ..., Xn and pi =

i
n for i = 1 + k

2 , ..., , n− k
2 .

B. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators are
based on minimizing the distance between the theoretical and
empirical cumulative distribution functions. Macdonald(1971)
provided empirical evidence that the bias of these estimators
is smaller than the bias of other minimum distance estimators.
The Cramer-von-Mises estimators α̂CME ,ĉCME ,µ̂CME and
θ̂CME , are the values of α, c ,µ and θ,minimizing

C(α, c, µ, θ) =
1

12n
+

n∑
i=1

[
F (ti | α, c, µ, θ, )−

2i− 1

2n

]2
.

Differentiating the above equation partially, with respect to the
parameters α, c ,µ and θ respectively and equating them to
zero, we get the normal equations. Since the normal equations
are non-linear, we can use iterative method to obtain the
solution.

C. Maximum Likelihood estimation

If the parameters of the DMLC distribution are not
known, then the maximum likelihood estimates(MLE’s) of the
parameters are given as follows. For analytical simpilicity, let
assume that µ = 0 and θ = 1.
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Consider a random sample (x1, x2, ..., xn) of size n, from the
DMLC(α, c, µ, θ) distribution where µ = 0 and θ = 1. Then,
the log likelihood function is given by,

logL =n logα+ n log(1 + c)− n log(πθ)

+ (α− 1)

n∑
i=1

log[0.5 +
1

π
arctan(xi)]

−
n∑

i=1

log(1 + x2
i )

− 2

n∑
i=1

log[1 + c[0.5 +
1

π
arctan(xi)]

α].

(25)

The likelihood equations are,

∂ logL

∂α
=
n

α
+

n∑
i=1

log[0.5 +
1

π
arctan(xi)][

1−
2c(0.5 + 1

π arctan(xi))
α

1 + c(0.5 + 1
π arctan(xi))α

]
= 0,

(26)

and

∂ logL

∂c
=

n

1 + c
−

n∑
i=1

2
[
0.5 + 1

π arctan(xi)
]α

1 + c
[
0.5 + 1

π arctan(xi)
]α

= 0.

(27)

These equations do not have explicit solutions and they have
to be obtained numerically by using statistical softwares like
nlm package in R programming.

D. Simulation study

We conduct Monte Carlo simulation studies to compare
the performance of the estimators discussed in the previous
sections and the process is repeated 10000 times. We evaluate
the performance of the estimators based on bias and mean
squared error. Methods are compared for sample sizes
n = 100 and 300.
For each estimate we calculate the bias, mean-squared error.
The statistics are obtained using the following formulae.
Bias(α̂) = 1

n

∑n
i=1(α̂−α) Bias(ĉ) = 1

n

∑n
i=1(ĉ−c)

Bias(µ̂) = 1
n

∑n
i=1(µ̂−µ) Bias(θ̂) = 1

n

∑n
i=1(θ̂−θ)

MSE(α̂) = 1
n

∑n
i=1(α̂− α)2

MSE(ĉ) = 1
n

∑n
i=1(ĉ− c)2

MSE(µ̂) = 1
n

∑n
i=1(µ̂− µ)2

MSE(θ̂) = 1
n

∑n
i=1(θ̂ − θ)2

The bias(estimate-actual) and the mean square errors(MSE)
of the parameter estimates for the truncated quantile least
squares method, method of Cramer-von-Mises and Maximum
likelihood estimation are presented in Table I and II.
From Table I and II, We note that the TQLSM method
performs well for estimating the model parameters. Also, as
the sample size increases, the biases (estimate minus actual)
and the MSEs of the average estimates of truncated quantile
least square estimates decrease as expected.
The following observations can be drawn from the Tables I
and II.
1. All the estimators show the property of consistency, i.e. the

TABLE I
SIMULATION RESULT FOR α = 1.2,c = 1,µ = 0.3 AND θ = 0.2.

n Est. TQLM TQLM CVM MLE

(k = 10) (k = 50)

100

Bias(α̂)

MSE(α̂)

Bias(ĉ)

MSE(ĉ)

Bias(µ̂)

MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

3×10−4

1.189×10−5

4.5×10−3

2×10−3

6×10−4

4.803×10−5

2×10−4

4.833×10−6

-2.5×10−3

6×10−4

-8×10−3

6.7×10−3

-2.586×10−5

6.692×10−8

-6.490×10−5

4.213×10−7

-1.5×10−3

2×10−4

-5.8×10−3

3.3×10−3

9.954×10−5

9.909×10−7

2.690×10−5

7.238×10−7

-5.134×10−6

2.636×10−9

-3×10−4

1.282×10−5

3×10−4

1.0819×10−5

1.7×10−3

2.989×10−6

300

Bias(α̂)

MSE(α̂)

Bias(ĉ)

MSE(ĉ)

Bias(µ̂)

MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

-8×10−4

2×10−4

-1.4×10−3

6×10−4

1×10−4

3.914×10−5

-2.1×10−4

1.434×10−5

-9×10−4

3.2143×10−5

-1.9×10−3

1.1×10−3

-1.1×10−3

3.767×10−6

-2.466×10−5

1.824×10−7

2×10−4

2.328×10−5

-1×10−4

1.009×10−5

-5.724×10−5

9.832×10−7

3.800×10−5

4.334×10−7

-6×10−4

1×10−4

-2.6×10−3

2.1×10−3

-1×10−4

3.951×10−6

-4.538×10−5

6.179×10−7

TABLE II
SIMULATION RESULT FOR α = 1.2,c = 1,µ = 0.3 AND θ = 0.2.

n Est. TQLM TQLM CVM MLE

(k = 10) (k = 50)

100

Bias(α̂)

MSE(α̂)

Bias(ĉ)

MSE(ĉ)

Bias(µ̂)

MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

1×10−4

1.268×10−6

-6.8×10−3

4.75×10−3

3.9×10−3

1.5×10−3

1.8×10−3

3×10−4

3×10−4

9.964×10−6

-2×10−3

4×10−4

4×10−4

2.069×10−5

2×10−4

7.023×10−6

-6×10−4

4.612×10−5

-7.8×10−3

6.1×10−3

3.454×10−5

1.193×10−7

-6.032×10−5

3.639×10−7

-2×10−4

4.422×10−6

-1.7×10−3

3×10−4

2×10−4

6.206×10−6

-1×10−4

1.739×10−6

300

Bias(α̂)

MSE(α̂)

Bias(ĉ)

MSE(ĉ)

Bias(µ̂)

MSE(µ̂)

Bias(θ̂)

MSE(θ̂)

-2×10−4

1.765×10−5

4×10−4

5.874×10−5

-1×10−4

7.402×10−6

-1×10−4

1.131×10−5

-5.312×10−5

8.467×10−7

-1.9×10−3

1×10−3

-1×10−4

7.049×10−6

5.562×10−5

9.281×10−7

2×10−4

1.374×10−5

2.7×10−3

2.2×10−3

7.353×10−5

1.622×10−6

-1.347×10−5

5.448×10−8

8.435×10−6

2.134×10−8

6×10−4

1×10−5

6.801×10−5

1.388×10−6

-2.517×10−5

1.900×10−7

MSE decreases as the sample size increases.
2. The bias of all parameters decreases with an increasing n
for all the method of estimations.
3. The bias of µ̂,β̂ generally increases with an increasing mu,
beta for any given mu, beta and n and for all methods of
estimation.

VI. APPLICATIONS

In this section we considered a real life data set and
compare the fit of the DMLC distribution with the following
distributions:
(a) Two parameter Cauchy distribution having pdf

f(x;µ, θ) =
1

πθ

1

(1 + (x−µ
θ )2)

;

Where −∞ < x < ∞,−∞ < µ < ∞,θ > 0. (b)Three
parameter Skew Cauchy (SC)distribution introduced by Be-
hboodian et al (2006) with pdf

f(x;µ, θ, λ) =
1

πθ

1

(1 + (x−µ
θ )2)

[
1 +

λ(x− µ)√
θ2 + (1 + λ2)(x− µ)2

]
;
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TABLE III
THE SUM OF SKIN FOLDS DATA

28 98 89 68.9 69.9 109 52.3 52.8 46.7 82.7 42.3 109.1 96.8 98.3 103.6
110.2 98.1 57 43.1 71.1 29.7 96.3 102.8 80.3 122.1 71.3 200.8 80.6 65.3 78
65.9 38.9 56.5 104.6 74.9 90.4 54.6 131.9 68.3 52 40.8 34.3 44.8 105.7 126.4
83 106.9 88.2 33.8 47.6 42.7 41.5 34.6 30.9 100.7 80.3 91 156.6 95.4 43.5

61.9 35.2 50.9 31.8 44 56.8 75.2 76.2 101.1 47.5 46.2 38.2 49.2 49.6 34.5
37.5 75.9 87.2 52.6 126.4 55.6 73.9 43.5 61.8 88.9 31 37.6 52.8 97.9 111.1
114 62.9 36.8 56.8 46.5 48.3 32.6 31.7 47.8 75.1 110.7 70 52.5 67 41.6
34.8 61.8 31.5 36.6 76 65.1 74.7 77 62.6 41.1 58.9 60.2 43.0 32.6 48
61.2 171.1 113.5 148.9 49.9 59.4 44.5 48.1 61.1 31.0 41.9 75.6 76.8 99.8 80.1
57.9 48.4 41.8 44.5 43.8 33.7 30.9 43.3 117.8 80.3 156.6 109.6 50.0 33.7 54.0
54.2 30.3 52.8 49.5 90.2 109.5 115.9 98.5 54.6 50.9 44.7 41.8 38.0 43.2 70.0
97.21 23.6 181.7 136.3 42.3 40.5 64.9 34.1 55.7 113.5 75.7 99.9 91.2 71.6 103.6
46.1 51.2 43.8 30.5 37.5 96.9 57.7 125.9 49.0 143.5 102.8 46.3 54.4 58.3 34.0
112.5 49.3 67.2 56.5 47.6 60.4 34.9

TABLE IV
THE DESCRIPTIVE STATISTICS OF DATA SET.

Min 1st Q Median Mean 3rd Q Max

28.00 43.85 58.60 69.02 90.35 200.80

TABLE V
PARAMETER ESTIMATES AND GOODNESS OF FIT FOR VARIOUS MODELS

FITTED FOR THE DATA SET.

Model parameter estimates − logL AIC AICC BIC

Cauchy
µ̂ = 55.5789

θ̂ = 16.9283
1011.7310 2027.4630 2027.5223 2034.0785

SC
µ̂ = 30.1404

θ̂ = 27.9345

λ̂ = 29.6768

972.6959 1951.3920 1957.8225 1977.2414

DMLC

µ̂ = −10.2494

θ̂ = 11.6394

α̂ = 82.2378

ĉ = 85.5034

964.0236 1936.0470 1936.2088 1949.2802

Where xϵR,−∞ < µ, λ < ∞,θ > 0. The values of the
log -likelihood functions(− ln(L)), AIC(Akaike Information
Criterion), AICC(Akaike Information Criterion with correc-
tion) and BIC(Bayesian Information Criterion) are calculated
for the three distributions in order to verify which distribu-
tion fits better to two sets of data. The better distribution
corresponds to smaller − ln(L), AIC, AICC and BIC values.
Here,AIC = −2 ln(L) + 2k, AICC = −2 ln(L) + ( 2kn

n−k−1 )
and BIC = −2 ln(L) + k ln(n), where L is the likelihood
function evaluated at the maximum likelihood estimates, k is
the number of parameters and n is the sample size.

A. Data set

The real data set corresponds to data set in table III from
Weisberg (2005), represents the sum of skin folds in 102 male
and 100 female athletes collected at the Australian Institute of
Sports.

The data is skewed-to-the right with skewness = 1.175 and
kurtosis = 1.365.
The descriptive statistics of the above data set are given in
Table IV. The values in Table V shows that the DMLC
distribution leads to a better fit to the other two models.
Fig. 6 shows the fitted density curves, Empirical and the fitted
cumulative distribution functions for the Data set.

VII. CONCLUDING REMARKS

In this paper, we introduced and studied a new family
of distribution called the truncated Discrete Mittag- Leffler
Cauchy (DMLC) distribution which extends the Cauchy distri-
bution. In the present work, we study some aspects of DMLC
distribution. We have studied the basic statistical and mathe-
matical properties of the new model. The model parameters
are estimated by methods of estimation, namely, quantile least
squares, Cramer-von Mises and maximum likelihood. We have
performed simulation study to compare these methods. We
have compared estimators with respect to bias and root mean-
squared error. The simulation results show that truncated quan-
tile least square estimators is the best performing estimator
in terms of biases and MSE. The appropriate value of the
number of rejected quantiles in the truncated quantile least
squares method lead to estimators with small bias and mean
squared error. In the case of the DMLC distribution, which
is a heavy tailed distribution, rejecting a fixed number of the
smallest and the largest quantiles significantly improves the
properties of the parameter estimators. In order to minimize
the mean squared errors of estimators, it is possible to use
different number of rejected quantiles for each estimator.
The modification of the quantile least squares method is
more convenient in applications, as it does not require any
additional assumptions about the quantile orders or the number
of rejected quantiles. Fitting the DMLC model with real data
set indicates the flexibility and capacity of the new distribution
in data modeling.
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