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Abstract—One parameter Esscher transformed Laplace dis-
tribution is a tilted version of the standard symmetric Laplace
distribution introduced by Sebastian and Dais (2012) through
Esscher transformation, a concept introduced by Esscher (1932).
This distribution is a sub-class of one parameter exponential fam-
ily and a possible alternative to the distributions with Pareto tails.
In this article, we introduced a three parameter Esscher trans-
formed Laplace distribution which is the location scale family
of the one parameter Esscher transformed Laplace distribution.
The various representations and properties of the distribution are
derived and the estimation methods are discussed. The estimation
problem of R = P (X > Y ), when X and Y are two independent
but not identically distributed random variables belonging to
three parameter Esscher transformed Laplace distribution, using
the method of moments is also studied and analyzed the results
using simulation studies. We also consider the application the
distribution in finance using real data.

Index Terms—Convolutions, Entropy, Estimation, Hazard Rate
Function, Reliability, Three Parameter Esscher Transformed
Laplace Distribution.

I. INTRODUCTION
The one parameter Esscher transformed Laplace distribution
is a new class of asymmetric Laplace distributions introduced
by Sebastian and Dais (2012), through Esscher transformation.
The various representations, properties and applications of
the distribution are studied for more details see Dais George
and Sebastian George (2011) and Sebastian George and Dais
George (2012). The Marshall-Olkin generalization of this
distribution with application in time series analysis and the
distribution of eX , where X follows Esscher transformed
Laplace distribution are also studied, see George and George
(2013) and Sebastian George et al.(2016).

In this paper we introduced a three parameter Esscher
transformed Laplace distribution, by adding the location
parameter(µ) and scale parameter(σ) in the ETL(τ )
distribution, we obtain the three parameter Esscher
transformed Laplace distribution, which we denote by
ETL(τ, µ, σ).

The probability density function and distribution function of
the ETL(τ, µ, σ) distribution are as follows:

f(x, τ, µ, σ) =


(1−τ2)

2σ exp[( x−µ
σ )(1 + τ)], x < µ,

|τ | < 1, σ > 0
(1−τ2)

2σ exp[(µ−x
σ )(1 − τ)], x ≥ µ,

(I.1)
and

F (x) =


(1−τ)

2 exp[( x−µ
σ )(1 + τ)], x < µ,

|τ | < 1, σ > 0

1 − 1+τ
2 exp[(µ−x

σ )(1 − τ)], x ≥ µ,

.

(I.2)

Graphs of the pdf of ETL(τ, µ, σ) for µ = 5 and for various
values of τ and σ are given in Figure 2.1.

Figure 2. 1: Densities of Esscher Transformed Laplace
Distribution for

(a)σ = 0.5 and τϵ(−1, 0), (b) σ = 0.5 and τϵ(0, 1), (c)
τ = −0.6 and

Various Values of σ and (d) τ = 0.6 and Various Values of σ.

From the graph it is clear that the distribution is a heavy-tailed
distribution. That is, when τ is negative, it is left heavy-tailed
and when τ is positive, it is right heavy-tailed. In practical
we are mostly dealing with heavy-tailed distributions (left
heavy-tailed and right heavy-tailed), three parameter Esscher
transformed Laplace distribution serve as a competing model
when considering data related with biomedical sciences,
climatology, environmental, financial, image processing,
signal processing and telecommunications.

The mean, variance, median, characteristic function,
moments, moment generating function, cumulants, quantiles,
Coefficient of variation, skewness, kurtosis and hazard
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Figure 2. 1(a)

Figure 2. 1(b)

function of the ETL(τ, µ, σ) distribution are given by

Mean =µ+ 2τσ
1−τ2 ,

Variance = 2σ2(1+τ2)
(1−τ2)2 ,

Median =


µ+ σ

1+τ log
(

1
1−τ

)
, τ < 0

µ− σ
1−τ log

(
1

1+τ

)
, τ ≥ 0

,

Characteristic function,
ϕXτ

(t) = eitµ

1− 2itτσ
1−τ2 + t2σ2

1−τ2

,

nth moment about µ
= n!σn

2

[
1+τ

(1−τ)n + (−1)n (1−τ)
(1+τ)n

]
,

for any integer n > 0

rthabsolute moment about µ
= r!σr

2

[
1−τ

(1+τ)r + (1+τ)
(1−τ)r

]
,

any integer, > −1

MGF,MX(t) = etµ

1− 2tτσ
1−τ2 + t2σ2

1−τ2

cumulants,
KX(t) = µt− log

(
1 + σt

1+τ

)
− log

(
1− σt

1−τ

)
,

Figure 2. 1(c)

Figure 2. 1(d)

−
(
1+τ
σ

)
< t <

(
1+τ
σ

)
,

nthcumulant,

Kn = (n− 1)!σn

[(
( 1

1−τ )
(1− σt

1−τ )

)n

+

(
( −1

1+τ )
(1+ σt

1+τ )

)n]
,

ξq be the qth quantile,

ξq =


µ+ σ

√
1−τ√

2
√
1+τ

log
(

2
1−τ

q
)
, qϵ(0, 1−τ

2
)

µ− σ
√
1−τ√

2
√
1+τ

log 2
1+τ

(1− q), qϵ( 1−τ
2

, 1)

,

Coefficient of variation =
√
1+τ2
√
2τ

,

Coefficient of skewness, γ1 =
√
2τ(3+τ2)

(1+τ2)
3
2

,

Coefficient of Kurtosis,
γ2 = 3(1+τ2)5(1+6τ2+τ4)

16τ3(3+τ2) − 3 and

Hazard rate function,

H(x) =

{
(1−τ2) exp[α(τ)]

σ(2−(1−τ) exp[α(τ)])
, x < µ,

(1−τ)
σ

, x ≥ µ,

where α(τ) = (x−µ
σ )(1 + τ).

A. Some Properties and Representations of the Distribution

Being a sub class of asymmetric Laplace distribution, the
three parameter Esscher transformed Laplace distribution sat-
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isfies all the properties of asymmetric Laplace distribution.
1) Properties: P1. Infinite divisibility:
The three Esscher transformed Laplace distribution is infi-

nite divisible. The characteristic function of ETL(µ, τ, σ) is

Φx(t) =
eitµ

1− 2itτσ
1−τ2 + t2σ2

1−τ2

= eitµ

( 1

1− iσt
1−τ

) 1
n
(

1

1 + iσt
1+τ

) 1
n

n

(I.3)

= [Φn(t)]
n. (I.4)

(I.5)

for each integer n ≥ 1. Φn(t) is the characteristic function
corresponding to the random variable

µ

n
+ σ

(
1

1− τ
G1 +

1

1 + τ
G2

)
(I.6)

where G1 and G2 are independently and identically distributed
Gamma Γ( 1n , 1) random variables with density

f(x) =
1

Γ 1
n

x
1
n−1e−x, x > 0. (I.7)

P2. The characteristic function of X where X ∼
ETL(µ, τ, σ) random variable admits the Levy-Khinchine
representation:

Since the ETL(µ, τ, σ) is infinitely divisible, the charac-
teristic function of this distribution can be written uniquely in
the form

Ψ(t) = exp{itµ+

∫
R

(eitµ − 1)λ(u)du} (I.8)

where

λ(u) =
1

|u|

{
e−( 1−τ

σ )|u| for u > 0

e(
1+τ
σ )|u| for u < 0

P3. Geometric Infinite Divisibility:
The Esscher transformed Laplace laws with mode equal to

zero are geometric infinitely divisible as well, as shown by the
following result.

Proposition 1.1: If Y ∼ ETL(0, τ, σ) then Y is geometric
infinitely divisible since for all P ∈ (0, 1), it satisfies the
relation

Y
d
=

γp∑
i=1

Y (i)
p (I.9)

where γp is a geometric random variable with mean 1
p .

The random variable Y
(i)
P are independently and identically

distributed random variables ETL (0,
√
pτ,

√
pσ) for each p,

γp and Y i
p ’s are independent.

P4. Self-decomposability:
A random variable Y is self-decomposable, if for each c ∈

(0, 1) we have

Y
d
= CY +X

where X and Y are independent random variables. All AL
distributions are self-decomposable, Ramachandran(1997).

Here for the three parameter ETL distribution, if

Y ∼ ETL(µ, τ, σ) then for any c ∈ (0, 1) we have

Y
d
= CY + (1− C)µ+ σ

(√
1 + τ√
1− τ

δ1W1 −
√
1− τ√
1 + τ

δ2W2

)
(I.10)

where δ1, δ2 are dependent Bernoulli random variable’s taking
on values of either zero or one with the probabilities.

P (δ1 = 0, δ2 = 0) = C2, P (δ1 = 1, δ2 = 1) = 0

P (δ1 = 1, δ2 = 0) = (1− C)

(
C +

(1− C)(1 + τ)

2

)
P (δ1 = 0, δ2 = 1) = (1− C)

(
C +

(1− C)(1− τ)

2

)
W1 and W2 are standard exponential variables and Y, W1,
W2 and (δ1, δ2) are mutually independent. Hence we say Y
is self-decomposable.

P5. Maximum Entropy Property
According to the maximum entropy principle, of all

distributions that satisfy certain constraints, one should
select the one with the largest entropy. Here for the
ETL(µ, τ, σ)distribution with density f given by (I.1), the
entropy of X is
H(X)= -ClnC σ

(1+τ) + C σ
(1+τ)

− C lnC σ
(1−τ) + C σ

(1−τ) , where C = (1−τ2)
2σ

= ln (1− τ2)− ln(2σ) + 1.
Theorem

Consider the class C of all Continuous random variable
with non-vanishing densities on (−∞,∞) such that

E(X) = C1 ∈ R and E|X| = C2 > 0 for X ∈ C

where

|C1| < C2.

Then the maximum entropy is attained for the ETL(µ, τ, σ)
random variable X with density (I.1) where µ = 0

τ =
C2 ±

√
C2

2 − C2
1

C1
(I.11)

and

σ =
C2[C12 − C22 − C2

√
C2

2 − C2
1 ]

[C2
2 + C2

√
C2

2 − C2
1 ]

. (I.12)

2) Representations: The three parameter Esscher trans-
formed Laplace variable X ∼ ETL(τ, µ, σ) can be represented
as mixtures of various distributions. The representations are
R1. Mixture of Normal Distributions:

Esscher transformed Laplace random variable can be con-
sidered as a Gaussian random variable with mean zero and
stochastic variance which has an Exponential distribution. An
ETL(µ, τ, σ) random variable Y with characteristic function
(I) admits the representation,

Y
d
= µ+ τW + σ

√
WZ (I.13)

where Z is standard normal and W is standard exponential.
R2. Relation to 2×2 Normal Determinants:
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ETL(µ, τ, σ) admits the representation given by the fol-
lowing proposition.

Proposition 1.2: Let Y ∼ ETL(µ, τ, σ) with µ = 0 and
σ = 1 and let (U1, U2) and (U3, U4) be independently and
identically distributed bivariate normal random variables with
vector mean zero and variance-covariance matrix∑

=

√
1 + τ√
1− τ

[
1

(1+τ) − (τ)
(1+τ)

− (τ)
(1+τ)

1
(1+τ)

]
(I.14)

then,
Y

d
= U1U2 + U3U4. (I.15)

R3. Convolution of Exponential Distribution:
An ETL(µ, τ, σ) random variable Y with characteristic

function (I) admits the representation

Y
d
=µ+ σ

(√
1 + τ√
1− τ

W1 −
√
1− τ√
1 + τ

W2

)
(I.16)

where W1 and W2 are independently and identically dis-
tributed standard exponential random variable.
Remark:

If we put Hi = 2Wi, i=1,2 in (I.16), we have

Y
d
=µ+

σ

2

(√
1 + τ√
1− τ

H1 −
√
1− τ√
1 + τ

H2

)
(I.17)

where H1 and H2 are independently and identically distributed
chi-square random variables with two degrees of freedom.
Remark:

Since a standard exponential random variable W has the
same distribution as − logU , where U is a standard uniform
variable, through the following representation, Y can be ex-
pressed in terms of two iid standard Uniform variables U1 and
U2.

Y
d
= µ+ σ log

U1

√
1−τ√
1+τ

U2

√
1+τ√
1−τ

 (I.18)

II. PARAMETER ESTIMATION

In this section we are estimating the parameters of three
parameter Esscher Transformed Laplace distribution through
method of maximum likelihood and method of Moments.

A. Maximum Likelihood Method
Let X1, X2, ..., Xn be an independently and identically

distributed random sample from an ETL(τ, µ, σ) distribution
with density f(x; τ, µ, σ) given by (I.1) and let x1, x2, ..., xn
be their particular realization.The likelihood function is

L(X; τ, µ, σ) =
(1 − τ2)n

2nσn
exp

−(
1 + τ

σ

) n∑
i=1

(xi − µ)
− −

(
1 − τ

σ

) n∑
i=1

(xi − µ)
+


(II.1)

where

(xi − µ)+ =

{
xi − µ xi ≥ µ
0 xi < µ

and

(xi − µ)− =

{
µ− xi xi < µ
0 xi ≥ µ

and the log-likelihood function is

logL(X; τ, µ, σ) = nlog(1− τ2)− nlog2− nlogσ −D/σ. (II.2)

Here

D = D(τ, µ) = (1− τ)α(µ̂n) + (1 + τ)β(µ̂n) (II.3)

where,

α(µ) =
1

n

n∑
i=1

(xi − µ)+ and β(µ) =
1

n

n∑
i=1

(xi − µ)−. (II.4)

The ML estimates of µ, τ and σ are given in Table 2.1.
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Summary of Estimation through Seven Cases.

Cases Parameters Estimates Asympt.variance
1 µ is unknown µ̂n = Xj(n):n. 1−τ2

2σ2

(σ, τ known) wherej(n) =
[
[n(1−τ)

2

]
] + 1,

[[x]]denote the integral part of x
2 σ is unknown σ̂n = 1

n

(
(1− τ)

∑n
i=1(xi − µ)+

+(1 + τ)
∑n

i=1(xi − µ)−
)

2σ2

1−τ2

(τ, µ is known)
3 τ is unknown τ̂nis unique solution (1−τ)

(1+τ)2+1

(µ, σ is known) g(y, α, β) = log(1− y2)− (1− y)α
+(1 + y)β = 0
α(µ̂n) =

1
n

∑n
i=1(xi − µ)+

β(µ̂n) =
1
n

∑n
i=1(xi − µ)−

4 µ, σ are unknown µ̂n = Xj(n):n Σ =

[
σ2

(1−τ2)
0

0 2σ2

(1−τ2)2

]
τ known σ̂n = 1

n

[
(1− τ)

∑n
i=1(xi − µ)+

+(1 + τ)
∑n

i=1(xi − µ)−
]

5 µ, σ is unknown τ̂n = 4

√
β(µ̂)
α(µ̂)

Σ = σ2

8
(1 + (1− τ)2)2

[
a c

b

]
τ is known σ̂n = 4

√
α(µ̂) 4

√
β(µ̂)(

√
α(µ̂) +

√
β(µ̂)) a = 1

σ2

c =

√
(1+τ)√
(1−τ)

1
σ

τ
2−τ

b = (1+τ)(2−τ2)
(1−τ)

6 µ, τ is unknown α(µ̂) = 1
σ

1
n

∑n
i=1(xi − µ)+

and β(µ̂) = 1
σ

1
n

∑n
i=1(xi − µ)−.

σ is known R× J1, R× J2...R× Jn Σ = σ2

2
(1− τ)

[
a c

b

]
(0, 1

n−1
]; Jn = [n− 1,∞) where, a = 2−τ2

1−τ

(µ1, τ1)(µ2, τ2)...(µn, τn) b = 2
σ2(1+τ)

c = 1
σ

find 1 ≤ r ≤ nsuch that Σ = σ2

4

 a b c
d e

f


h(xr:n) ≤ h(xj:n)for j = 1, 2, ......., n where where, a = 4

h(µ̂) = log(
√

α(µ̂) +
√

β(µ̂) +
√

α(µ̂)
√

β(µ̂)) b = 1
σ

2
(1+τ)

7 µ, σ, τ is known µ̂n = Xr:n c = 2
√
2τ√

(−τ2)

τ̂n =
4
√

β(µ)

4
√

α(µ)
d = 4

σ2(1+τ)2

σ̂n = 4
√

α(µ) 4
√

β(µ)(
√

α(µ) +
√

β(µ)) e = 4τ

σ(1+τ)
√

1−τ2

where
α(µ̂n) =

1
n

∑n
i=1(xi − µ)+

β(µ̂n) =
1
n

∑n
i=1(xi − µ)−
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B. Method of Moments

Here we find the estimates by equating the population and
sample raw moments. The moment estimates of τ and σ, when
µ is known are

τ̂ = ± m′
1 − µ√

2m′
2 + 3µ(m′

1)
2 + 3m′

1 − µ2
(II.5)

and

σ̂ = ±2m′
2 + 2µm′

1 − 3(m′
1)

2 − µ2 −m′
1 + µ

2
√
2m′

2 + 2µm′
1 − 3m′2

1 − µ2
.(II.6)

III. APPLICATION IN FINANCE

In order to study the application in finance we consider a
real data set consisting of 272 weekly prices of Gold/gm, from
01/09/2010 to 29/05/2015. Heavy-tailed distributions had
attracted series attention of researchers for modeling financial
data. A secondary data from the Statistical Department of
Kerala, Kottayam district is collected.
The descriptive statistics of the data are given in Table 4.1.
First we construct the histogram as shown in Figure 4.1.

Min. Q1 Median Mean Q3 Max. Var.
1015 1375 1757 1893.107 2571 3020 382593.542.

Figure 4.1. Histogram of the observed data

The graph resembles the shape of three parameter Esscher transformed Laplace distribution presented in Figure 2.1.
We estimate the values of the parameters τ , µ and σ respectively from the observed data using the method of
moments. Since the Esscher transformed Laplace distribution is a special case of the asymmetric Laplace distribution, a
comparison with both three parameter Esscher transformed Laplace distribution and three parameter asymmetric Laplace
distribution is also done by fitting these probability distributions to the same observed data. We obtain the estimators
of ETL(τ, µ, σ) distribution as τ̂ = 0.1427, µ̂ = 5, and σ̂ = 0.7843 and that of AL(µ, τ, σ) as
µ̂ = 0.073, τ̂ = 0.247, and σ̂ = 0.849. We construct frequency curve of ETL(τ, µ, σ) with these τ̂ , µ̂
and σ̂ and frequency curve of AL(µ, τ, σ) with µ̂, τ̂ and σ̂ and super impose these curves on the histogram of the
observed data. Figure 4.2 represents the histogram of the observed data, embedded three parameter Esscher transformed
Laplace frequency curve and embedded three parameter asymmetric Laplace frequency curve.
The histogram corresponding to actual data and the fitted frequency curve are superimposed and presented in Figure 4.
1. To test whether there is significant difference between for fitting the data set, first we draw the histogram of the data
set. Figures 4. 2(a)and 4. 2(b) respectively represents the embedded frequency polygon of Esscher transformed Laplace
distribution and asymmetric Laplace distribution respectively.

4.2(a)

4. 2(b)

Figures 4. 2. Embedded frequency polygon of (a) Esscher transformed Laplace distribution and (b) Asymmetric Laplace
distribution

We check the goodness of fit, using Kolmogrov distance measure. For the asymmetric Laplace, the distance measure is
0.0898 and for three parameter Esscher transformed Laplace, it is 0.0649. Critical value corresponding to the significance
level 0.01 is 0.11 showing that the three parameter Esscher transformed Laplace distribution is a better model compared to
the asymmetric Laplace model for this finance data.

IV. APPLICATION IN RELIABILITY
In this section, we consider the estimation and application of Esscher transformed Laplace distribution in reliability.

We estimate the probability R = P (X > Y ) where X and Y are independent but not identically distributed three
parameter Esscher transformed Laplace variables. Since X ∼ ETL(τ1, µ, σ1) and Y ∼ ETL(τ2, µ, σ2)
distributions,

f(x, τ1, µ, σ1) =


(1−τ2

1 )

2σ1
exp[(

x−µ
σ1

)(1 + τ1)], x < µ,

|τ1| < 1, σ1 > 0

(1−τ2
1 )

2σ1
exp[(

µ−x
σ1

)(1 − τ1)], x ≥ µ,

(IV.1)

f(y, τ2, µ, σ2) =


(1−τ2

2 )

2σ2
exp[(

y−µ
σ2

)(1 + τ2)], x < µ,

|τ2| < 1, σ2 > 0

(1−τ2
2 )

2σ2
exp[(

µ−y
σ2

)(1 − τ2)], x ≥ µ,

.

(IV.2)
Using equations (IV.1) and (IV.2), the function R will be

R = P (X > Y )

=


(1−τ2)(1−τ2

1 )σ2
4[σ1(1+τ2)+σ2(1+τ1)]

x < µ

1+τ1
2

−
(1+τ2)(1−τ2

1 )σ2
4[σ1(1−τ2)+σ2(1−τ1)]

x ≥ µ

Clearly R depends on τ1 , τ2 , σ1 and σ2 .

A. Application
R provides a general measure of the difference between two populations and has applications in many areas see, Bamber

(1975), Briggs and Zaretzki (2008), Dais George and Sebastain George (2011). The function P (X > Y )−P (X <
Y ) is practically important in many situations including clinical trials and genetics, where the data is mostly heavy-tailed.
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B. Simulation Study
In this section we study the performance of the point estimator for R.

The following steps will be considered for obtaining the point estimator for R.

Step I Generate 1000 random samples Xi, i=1,2,...,n from the three Esscher transformed Laplace distribution with
µ1 = 5, τ1 = 0.2, σ1 = 1.5 and µ2 = 5, τ2 = 0.4, σ2 = 1.8. The size of the samples
should be n=15,20,30,50 and 100.

Step II Using (II.5), obtain 1000 estimates of τ̂1 , σ̂1 , τ̂2 and σ̂2 .
Step III Using equation (IV.3), we obtain the estimates of R using the moment estimates of τ1 , σ1 , τ2 and σ2

respectively.
Step IV Similarly generate 1000 random samples from the Esscher transformed Laplace distribution with parameter

τ1 = 0.6, µ1 = 5, σ1 = 2.2 and τ2 = 0.4, µ2 = 5, σ2 = 1.8 for the same sample sizes
stated in Step I.

Step V We repeat Step II and Step III and thereby obtain the estimates of R.

We consider the following measures in the simulation study.

1) Average bias of the simulated N estimates of R:

1

N

N∑
i=1

(R̂i − R).

2) Average mean square error of the simulated N estimates of R:

1

N

N∑
i=1

(R̂i − R)
2
.

The results are given in Tables 1 and 2.

V. CONCLUSION
In this paper, we introduced a three parameter Esscher transformed Laplace distribution, by adding the location

parameter(µ) and scale parameter(σ) in the one parameter Esscher transformed Laplace distribution introduced by Sebastian
George and Dais George (2012), which is the Esscher transform of the classical Laplace distribution and a sub-class of one
parameter exponential family. The distribution is positively skewed and leptokurtic. The various properties of the distribution
viz infinitely divisibility, geometric infinite divisibility, self-decomposibility, maximum entropy and some representations
like relation to 2×2 Normal determinants, convolution of Exponential distribution, mixture of Normal distributions are
studied. The parameters of the distribution are estimated using maximum likelihood method and method of moments. A real
data analysis is done for a financial data and is found that the three parameter Esscher transformed Laplace distribution is a
better fit than the three parameter asymmetric Laplace distribution. Also we estimate the probability R = P (X > Y )
where X and Y are independent but not identically distributed three parameter Esscher transformed Laplace variables and
the performance of this estimate is studied using simulation. This estimate can be used either for comparing two distributions
with common base distribution (in medical studies) or as a measure of reliability when conducting stress-strength analysis.
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TABLE I
AVERAGE BIAS AND AVERAGE MSE OF THE SIMULATED ESTIMATES OF R FOR τ1 = 0.2, σ1 = 1.5 AND τ2 = 0.4, σ2 = 1.8.

τ1 = 0.2, σ1 = 1.5, τ2 = 0.4, σ2 = 1.8, R = 0.4685, k = 10
Moment Estimate of R ML Estimate of R

(n,m) ˆRmoment Bias M.S.E ˆRMLE Bias M.S.E

(15,15) 0.4716 -0.000612 0.00418 0.4896 -0.004912 0.006775
(15,20) 0.4845 -0.000223 0.00315 0.4889 -0.007112 0.006158
(15,30) 0.4774 -0.001234 0.002116 0.4885 -0.006523 0.005465
(15,50) 0.4627 -0.006152 0.004313 0.4883 -0.009153 0.004745
(15,100) 0.4806 -0.008622 0.005812 0.488 -0.009354 0.004371

(20,15) 0.4423 0.001352 0.004885 0.4878 -0.002442 0.006012
(20,20) 0.4484 0.001525 0.003275 0.487 -0.004152 0.005112
(20,30) 0.4698 0.002642 0.005665 0.4869 -0.004515 0.004453
(20,50) 0.4623 -0.006432 0.004754 0.4862 -0.005142 0.003762
(20,100) 0.4567 -0.00715 0.005524 0.4858 -0.006742 0.003315

(30,15) 0.4619 0.000425 0.003454 0.4851 0.000945 0.00575
(30,20) 0.4803 0.000287 0.002865 0.4849 -0.0002615 0.004242
(30,30) 0.4607 -0.003112 0.004254 0.4843 -0.002965 0.003445
(30,50) 0.4429 -0.00414 0.005314 0.4839 -0.002754 0.002732
(30,100) 0.4414 -0.006442 0.006141 0.4829 -0.003956 0.002323

(50,15) 0.4624 0.001612 0.003123 0.4825 0.002112 0.004321
(50,20) 0.4505 0.001822 0.003854 0.4819 0.000468 0.003679
(50,30) 0.4510 0.001195 0.003115 0.4816 -0.000945 0.002773
(50,50) 0.4484 -0.002945 0.004378 0.4811 -0.001445 0.002015
(50,100) 0.4279 -0.003582 0.005645 0.481 -0.002078 0.001611

(100,15) 0.4196 0.001811 0.000354 0.4809 0.003188 0.003875
(100,20) 0.4233 0.001615 0.001646 0.4801 0.002321 0.003175
(100,30) 0.42967 0.001518 0.003248 0.4799 0.001712 0.002143
(100,50) 0.42923 0.00391 0.005145 0.479 -0.000313 0.001518
(100,100) 0.4418 0.00845 0.006216 0.468 -0.001442 0.00158

For τ1 < τ2 the average bias is positive and for τ1 > τ2, the average bias is negative but in both cases the average bias decreases as the
sample size increases. We can see that the absolute bias and average MSE decrease as the sample size increases.
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TABLE II
TINYAVERAGE BIAS AND AVERAGE MSE OF THE SIMULATED ESTIMATES OF R FOR τ1 = 0.6, σ1 = 2.2 AND τ2 = 0.4, σ2 = 1.8.

τ1 = 0.6, σ = 2.2, τ2 = 0.4, σ2 = 1.8, R = 0.70481, k = 10
Moment Estimate of R ML Estimate of R

(n,m) ˆRmoment Bias M.S.E ˆRMLE Bias M.S.E
(15,15) 0.6707 0.0000145 0.00000912 0.6919 0.0000132 0.00881
(15,20) 0.6821 -0.000928 0.000833 0.6915 -0.002545 0.007115
(15,30) 0.6907 -0.007941 0.007452 0.6909 -0.005263 0.00618
(15,50) 0.6850 -0.007170 0.006121 0.6902 -0.00532 0.005444

(15,100) 0.6666 -0.006911 0.005682 0.69 -0.006236 0.004722
(20,15) 0.6649 0.001318 0.000826 0.6922 0.002621 0.007192
(20,20) 0.6771 0.001644 0.004331 0.6929 0.002176 0.00613
(20,30) 0.6869 -0.00122 0.006202 0.693 -0.001403 0.005312
(20,50) 0.6804 -0.004342 0.005481 0.6933 -0.002901 0.004422

(20,100) 0.6645 -0.00608 0.004103 0.6949 -0.004712 0.003790

(30,15) 0.6750 0.002311 0.001223 0.6952 0.004961 0.006423
(30,20) 0.6873 0.003388 0.003675 0.6955 0.004115 0.005175
(30,30) 0.6971 0.000622 0.005202 0.6961 -0.000538 0.004161
(30,50) 0.6905 -0.000711 0.004809 0.6966 -0.000672 0.003343

(30,100) 0.67059 -0.003641 0.003801 0.6971 -0.002438 0.002762
(50,15) 0.5797 0.005822 0.004152 0.6976 0.006571 0.005409
(50,20) 0.5928 0.003208 0.004022 0.6988 0.003321 0.004272
(50,30) 0.6036 0.002805 0.004255 0.699 0.002224 0.003365
(50,50) 0.5963 -0.000603 0.003432 0.6999 0.000840 0.002422

(50,100) 0.5750 -0.003291 0.002701 0.7009 -0.001268 0.001822
(100,15) 0.5890 0.006312 0.003652 0.7015 0.007306 0.004818
(100,20) 0.6017 0.004509 0.004043 0.7029 0.005233 0.003821
(100,30) 0.6121 0.005421 0.005302 0.7032 0.003862 0.002741
(100,50) 0.6051 -0.002613 0.004542 0.7038 0.001501 0.001833

(100,100) 0.5844 -0.001214 0.003821 0.7041 0.000406 0.001281
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