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Abstract: The Allee effect, which describes a positive link 

between individual fitness and population density, is a key 

conceptual framework in conservation biology. While the 

diminishing Allee effect reduces the danger of extinction in low-

density populations, it also benefits by restricting establishment 

success or the spread of invading species. Our purpose is to find the 

normal form and behavior of the equilibrium point at infinity in a 

predator-prey population dynamics model that takes Allee effects 

on the prey population. For an explanation of these terms, we use 

the Rosenzweig-MacArthur model to describe them. We also show 

the stability of the R-M model and the R-M model with the Allee 

effect. 

Index Terms: Allee effect, Normal form, Poincaré 

compactification, R-M. Model, Local and global stability. 

I. INTRODUCTION 

The Allee effect is a biological phenomenon that 

explains how a population's fitness depends on its size or 

density. In other words, it demonstrates how certain populations 

benefit from increased density, while others suffer from 

insufficient density. Ecological and genetic factors can be 

categorized as Allee effect mechanisms. Predator-prey 

interactions, cooperative behavior, mate restriction, and 

environmental conditioning are examples of ecological factors. 

Inbreeding depression, genetic drift, and loss of genetic diversity 

are all genetic variables. Depending on the species and the 

environment, these characteristics may have varying effects on 

an individual's fitness. Allee effect is named after Warder Clyde 

Allee, a zoologist and animal ecologist at the University of 

Chicago. He was born in 1885 and passed away in 1955. In the 

1930s, Warder Clyde Allee investigated the goldfish survival 

rate in various tank sizes. Numerous researchers have since 

investigated the causes, effects, and uses of the Allee effect in 

various biological systems. The Allee effect may have 

significant effects on population dynamics, invasion ecology, 

and conservation biology (Courchamp, 2008). The name "Allee 

principle" was first used in the 1950s, when the ecology 

community was intensively emphasizing the importance of 

competition between and among species  (Stephens, 1999). 

According to the traditional theory of population dynamics, a 

population will grow more quickly overall at lower densities and 

less rapidly overall at greater densities due to competition for 

resources. However, the Allee effect theory offered the notion 

that the opposite is true when the population density is low. 

Individuals within a species frequently depend on other 

individuals for reasons other than just reproduction in order to 

survive. Lewis and Kareiva provided one of the first 

mathematical models that includes the Allee effect in 1993  

(Lewis, 1993). They proposed using an Allee term to capture 

cooperative behaviors such as group defence or foraging in a 

logistic model. They demonstrated that the Allee effect can 

cause multiple equilibria and hysteresis in population dynamics, 

as well as alter population persistence and spread in varied 

environments. Wang et al. produced another major mathematical 

model that included the Allee effect in 2002 (Wang, 2002). They 

investigated a predator-prey model that included an Allee effect 

on both prey and predator populations. They demonstrated that 

the Allee effect can generate complicated dynamics including 

chaos, In recent years, mathematical models that took the Allee 

effect into account have been used to study a variety of 

biological systems and situations, including invading species, 

top predators, infectious illnesses, and conservation biology. 

Insights into the causes, effects, and uses of the Allee effect in 

mathematical biology and ecology have been greatly benefited 

by these models. The Allee effect and its implications for 

population dynamics can be studied via mathematical modelling. 

The Allee effect is included in many models, including logistic 

Normal form and Poincaré compactification of 

Predator-prey model with Allee Effect in Prey. 
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models, predator-prey models, invasion models, and spatial 

models. These models are capable of capturing the nonlinear and 

complex behaviors of populations affected by the Allee effect, 

including biostability, extinction thresholds, invasion thresholds, 

pattern development, and traveling waves. 

Mathematical representations of dynamical systems 

known as normal forms. Which is obtain by applying finite 

number of co-ordinates transformation (Wiggins, 2003). The 

method of reducing system to normal form by means of a near 

identity transformation of co-ordinate which simplify non-linear 

term of given dynamical system. The term in given system 

which cannot eliminate by the non-linear transformation of co-

ordinate such term is referred to resonance term (Perko, 

2013).The method of normal transformation is local in the sense 

that coordinate transformations are produced in the 

neighborhood of known solution. For our purposes, the known 

solution will be fixed point. By resolving a series of linear 

problems, the coordinate transformation is discovered. It should 

be emphasized that the normal form's structure is fully 

dependent on the characteristics of the linear component of 

vector field. In mathematical biology normal form use to explain 

the behavior of biological systems close to critical or transitional 

points. Normal forms are helpful because they make it easier to 

analyze complicated biological systems by distilling them into 

more straightforward and generic forms that reflect the key 

characteristics of the system close to the crucial point or 

transition. According to their traits and qualities, such as 

stability, symmetry, dimensionality, etc. Poincare (Chenciner, 

2012) introduce the concept of the normal form transformation 

in his the Ph.D. thesis. Many authors have embraced it (  

(Birkhoff, 1927), (Moser, 2001), others). The method was first 

used by Andronov. The technique for reducing to normal form is 

relatively systematic, involving a step-by-step deletion of non-

resonant terms. ( (Wiggins, 2003), (Perko, 2013), (Nayfeh, 

2011)). Normal form theory of dynamical system uses to study 

qualitative behavior of dynamical system as well as bifurcation 

analysis. 

Poincaré compactification is a method to study the 

behavior of the vector field near infinity on the compact 

manifold, the Poincaré compactification is a technique for 

extending a vector field on Euclidean space to a vector field on 

the sphere  (Perko, 2013). The plan is to extend the vector field 

to the lower hemisphere via symmetry after using a 

diffeomorphism (a smooth and invertible mapping) to translate 

Euclidean space to the upper hemisphere of the sphere. The 

poles of the sphere stand in for single points in the vector field, 

while the equator represents the directions at infinity. The 

stability, bifurcations, and singularities of the vector field may 

be studied using the Poincaré compactification ( (Roeder, 2003), 

(Poincaré, 1881), (Priyadarshi, 2014)). Henri Poincaré, a French 

mathematician and physicist, developed the Poincaré 

compactification while researching dynamical systems and 

celestial mechanics. He applied this method to research the 

gravitational effects on the motion of planets, comets, and 

asteroids. He also used it in the study of electromagnetism and 

fluid dynamics, among other branches of physics. In 

mathematical biology, the Poincaré compactification is 

frequently used to model and comprehend a variety of 

phenomena, including population dynamics, pattern creation, 

oscillations, and chaos. 

II. BACKGROUND 

The American biologist and ecologist Warder Clyde 

Allee, who first noticed and investigated this effect in the 1930s, 

is remembered by the term's etymology. Goldfish (Allee, 1932) 

were used in tests, and Allee discovered that grouping them 

together increased their chances of survival compared to keeping 

them alone. He came to the conclusion that certain creatures gain 

from social interactions and cooperation, and that these 

advantages could have played a significant role in their 

development. For the management and protection of invasive or 

endangered species, the Allee effect may have major 

consequences. The critical population size or threshold below 

which a species cannot survive or recover may exist for species 

that display substantial Allee effects. The danger of extinction 

from random occurrences or environmental changes may thus be 

higher for tiny or isolated populations. Conversely, animals with 

weak Allee effects may have an advantage in colonizing new 

habitats or extending their range because they can gain from 

positive feedbacks between population expansion and individual 

fitness. As a result, once invasive species reach a specific 

population size or density, they may have a greater chance of 

establishing themselves and outcompeting native species. 

Depending on the species and habitat, there are several methods 

and causes for the Allee effect (Sun, 2016), (Kramer, 2009) 

(Berec, 2007), (Courchamp, 2008). Some potential mechanisms 

include: 

• Mate finding: Some species have trouble finding 

partners when there is a low population density, 

particularly if they have particular mating habits or 

preferences. When there are few individuals in a big 

region, hormonal signals used by some insects to attract 

mates may be diluted or lost. 

• Cooperative defense: In order to defend themselves 

from predators or competitors, certain animals come 

together, herd, or mob. They could be more susceptible 

to attacks or harassment when there is a low population 

density. For instance, some birds create mixed-species 

flocks to lower the danger of predation, but this tactic 

would not be effective if there are few members of each 

species. 
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• Cooperative feeding: Some animals get an advantage 

from group foraging, such as hunting, scavenging, or 

sex changing knowledge about food sources. They 

could have limited access to food or get it less 

effectively when their population density is low. For 

instance, some wolves hunt in groups to take down 

huge prey, but this may not be practical when there are 

few wolves in a region. 

• Environmental modification: Some species change the 

environment to make it a better place for themselves or 

future generations, such as by constructing coral reefs, 

nests, burrows, or dams. When their population density 

is low, they might not be able to create enough changes 

or keep them safe from environmental hazards. For 

instance, certain coral reef fish rely on the structure and 

variety of corals for protection and food, yet same 

corals may suffer when there aren't enough fish to feed 

on algae and avoid overgrowth. 

Allee effects are two types 

A. Component Allee effect: the component Allee effect is the 

correlation between population size or density and any 

characteristic of an individual's fitness (such as survival, 

reproduction, or growth). 

B. Demographic Allee effect: Demographic Allee effect is 

the term used to describe the correlation between population size 

or density and overall individual fitness, which is often 

calculated using the per capita population growth rate. 

Depending on whether the population growth rate turns negative 

or positive at low densities, the demographic Allee effect further 

divided in two parts 

1) Strong Allee: Strong Allee effects are a particular kind of 

Allee effect that take place when a population reaches a 

threshold size or density below which it cannot live or 

reproduce. A strong Allee effect can come from a variety of 

processes, including mate seeking, cooperative defense, 

cooperative feeding, and environmental alteration. These 

methods are dependent on the presence or availability of other 

members of the same species and may become inefficient or 

impossible when population density is too low. Strong Allee 

effects can have significant effects on the management and 

conservation of invasive or endangered species. Strong Allee 

effects may indicate that a species is less immune to unexpected 

events or environmental changes that lower its population size or 

density below the extinction threshold. Strong Allee effects, 

however, may also reduce a species' likelihood of expanding into 

new environments or extending its range since they may be 

unable to establish themselves or produce when their population 

size or density is too low. 

 

2) Weak Allee effects: Weak Allee effects arise when a 

population has a positive relationship between its per capita 

growth rate and its size or density, but there is no critical 

threshold below which it cannot live or reproduce. A weak Allee 

effect can have significant consequences for endangered or 

invasive species conservation and management. When compared 

to species with significant Allee effects, species with modest 

Allee effects may be at a lesser risk of extinction owing to 

stochastic occurrences or environmental changes that reduce 

population size or density. Species with moderate Allee effects, 

on the other hand, may have a better chance of invading new 

habitats or expanding their range because they can benefit from 

positive feedback loops between population expansion and 

individual fitness, as opposed to species with no Allee effects. 

III. MODEL FORMULATION 

The Lotka-Volterra equation is the first model of prey-

predator interaction that explains fluctuations in the fish 

population in the Adriatic Sea. This equation was first derived 

by Alfred Lotka in 1925 and Vito Volterra in 1926 ( (Lotka, 

1925), (Veit, 1996), (Volterra, 1926)). The Lotka-Volterra 

model is a set of nonlinear coupled differential equations of first 

order with a linear functional response. Rosenzweig and 

MacArthur's model is an extension of the Lotka-Volterra model. 

Rosenzweig and MacArthur (1963) formulated and studied the 

qualitative behaviors of a di-trophic food chain model  

(Rosenzweig, 1963), with Holling type II functional response. In 

this paper, we study qualitative behaviors of the MacArthur 

model at infinity by using normal form theory and Poincaré 

compactification at different sets of parameters. Let 𝑥  is prey 

density and 𝑦 is predator density then prey predator Rosenzweig 

MacArthur model for two species given as 

�̇� = 𝑟𝑥 (1 −
𝑥

𝑘
 ) −

𝑎𝑥𝑦

1+𝑥
   (1) 

 �̇� =
𝑏𝑥𝑦

1+𝑥
− 𝑑𝑦            (2) 

 Where 𝑎, 𝑏, 𝑑  all are positive parameter. 𝑎  is capture rate of 

prey, 𝑏 is predator conversion rate, 𝑑 natural death rate and 𝑘 is 

Fig.1 Strong Allee effect  

Fig.2 Weak Allee Effect effect 
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saturation constant. Thus, equilibrium points of equation (1-2)  

given as  

{𝐸0 = (0, 0), 𝐸1 = (𝑘, 0), 𝐸2 = (
𝑑

𝑏−𝑑
,
𝑏(−𝑑+𝑏𝑘−𝑑𝑘)𝑟

𝑎(𝑏−𝑑)2𝑘
)}              (3)  

Point 𝐸2 exist if  𝑏 ≥ 𝑑 

Stability analysis 

The stability of the equilibrium points represented by (3) is 

investigated using real portions of eigenvalues of the related 

Jacobian matrix around the equilibrium point. The Jacobian 

matrix  𝐽 of the system at any equilibrium point (𝑥, 𝑦) is given 

as: 

𝐽(𝑥, 𝑦) = [
𝑟 −

2𝑟𝑥

𝑘
+

𝑎𝑥𝑦

(1+𝑥)2
−

𝑎𝑦

1+𝑥
−

𝑎𝑥

1+𝑥

𝑏𝑦

1+𝑥
−𝑑 +

𝑏𝑥

1+𝑥

] (4)  

 

THEOREM 2.1. The trivial equilibrium point (0, 0) of the system 

(1-2) is a saddle point. 

PROOF. The Jacobian matrix (4) about the trivial equilibrium 

point (0, 0) is given as 

𝐽(0,0) = [
𝑟 0
0 −𝑑

] 

Here, it is obvious that the above-mentioned Jacobian matrix 

has one positive and one negative eigenvalue. Therefore, the 

trivial equilibrium point (0,0) is a saddle point. 

 

THEOREM 2.2. The axial equilibrium point (𝑘, 0) of the system 

(1-2) is a saddle point for (
𝑏𝑘

1+𝑘
− 𝑑) > 0 and stable node for 

(
𝑏𝑘

1+𝑘
− 𝑑) < 0. 

 PROOF. The Jacobian matrix (4) about the trivial equilibrium 

point (0, 0) is given as 

𝐽(𝑘, 0) = [
−𝑟 −

𝑎𝑘

1 + 𝑘

0
𝑏𝑘

1 + 𝑘
− 𝑑

] 

Jacobian matrix as two eigen value 

𝜆1 = −𝑟, 𝜆2 =
𝑏𝑘

1 + 𝑘
− 𝑑 

There are two cases 

CASE 2.2.1. If 𝜆2 > 0  then the above-mentioned Jacobian 

matrix has one negative eigenvalue and one positive. Therefore, 

the axial equilibrium point (k,0) is a saddle point. 

CASE 2.2.2. If 𝜆2 < 0  then the above-mentioned Jacobian 

matrix has two negative eigen value. Therefore, the axial 

equilibrium point (k,0) is a stable node. 

 

THEOREM 2.3. The planer equilibrium point (𝑥∗, 𝑦∗) =

(
𝑑

𝑏−𝑑
,
𝑏(−𝑑+𝑏𝑘−𝑑𝑘)𝑟

𝑎(𝑏−𝑑)2𝑘
)  of the system (1-2) is stable if 𝑇 < 0 and  

𝐷 > 0 . Where 𝐷 denote the determinant of 𝐽 and 𝑇 denote the 

trace of 𝐽. 

 PROOF. The Jacobian matrix (4) about the co-axial equilibrium 

point (𝑥∗, 𝑦∗) is given as 

 

𝑱(𝑥∗, 𝑦∗) =

[
 
 
 𝑟 −

2𝑑𝑟

(𝑏 − 𝑑)𝑘
−

𝑑(−𝑑 + 𝑏𝑘 − 𝑑𝑘)𝑟

b𝑘
−

𝑎𝑑

𝑏
(−𝑑 + 𝑏𝑘 − 𝑑𝑘)𝑟

𝑎𝑘
0 ]

 
 
 
 

Were 

𝐷 = 𝑑𝑟 −
𝑑2𝑟

𝑏
−

𝑑2𝑟

𝑏𝑘
 

𝑇 = 𝑟 −
2𝑑𝑟

(𝑏 − 𝑑)𝑘
−

𝑑(−𝑑 + 𝑏𝑘 − 𝑑𝑘)𝑟

b𝑘
 

Then by stability criteria system is stable if 𝑇 < 0 and 𝐷 > 0.   

IV. ROZENWEIG MACARTHURMODEL WITH ALLEE 

EFFECT 

�̇� = 𝑟𝑥1𝛼(𝑥) (1 −
𝑥

𝑘
 ) −

𝑎𝑥𝑦

1+𝑥
 (5)  

�̇� =
𝑏𝑥𝑦

1+𝑥
− 𝑑𝑥   (6) 

Where the term 𝛼(𝑥) = (
𝑥

𝑚+𝑥
) denotes the Allee effects in the 

prey species and m denotes Allee effects constant. Note that 

biological facts lead us to the following assumptions about the 

function α(x): 

I. If 𝑥 =  0  then 𝛼(𝑥)  =  0 , that is, there is no 

reproduction without partners; 

II. If 𝛼′(𝑥) > 0  for 𝑥 ∈ (0,∞) , that is, the Allee effect 

decreases as density increases; 

III. lim
𝑥→∞

𝛼(𝑥) = 1, that is, the Allee effect vanishes at high 

densities 

Other terms are same as describe above. Now equilibrium 

points of equation (5-6) is 

{𝐸0
∗ = (0, 0), 𝐸1

∗ = (𝑘, 0), 𝐸2
∗ = (

𝑑

𝑏−𝑑
,

𝑏𝑑(−𝑑+𝑏𝑘−𝑑𝑘)𝑟

𝑎(𝑏−𝑑)2𝑘(𝑑+𝑏𝑚−𝑑𝑚)
) } (7)           

Point 𝐸2 exist if  𝑏 > 𝑑 and 𝑘 ≥
𝑑

𝑏−𝑑
 , 𝑑 + 𝑏𝑚 − 𝑑𝑚 ≥ 0 

5. Stability analysis of R-M. Model with Allee effects 

The stability of the equilibrium points represented by 

the set (7) is investigated using real portions of eigenvalues of 

the related Jacobian matrix around the equilibrium point. The 

Jacobian matrix  𝐽 of the system at any equilibrium point (𝑥, 𝑦) 

is given as: 

𝐽(𝑥, 𝑦) = [

𝑟𝑥(𝑘(2𝑚+𝑥)−𝑥(3𝑚+2𝑥))

𝑘(𝑚+𝑥)2
−

𝑎𝑦

(1+𝑥)2
−

𝑎𝑥

1+𝑥

−
𝑏𝑦

1+𝑥
−𝑑 +

𝑏𝑥

1+𝑥

]       (8) 

 

THEOREM 3.1. The trivial equilibrium point (0, 0) of the system 

(5-6) is a saddle point 

PROOF. The Jacobian matrix (8) about the trivial equilibrium 

point (0, 0) is given as 

𝐽(0,0) = [
0 0
0 −𝑑

] 
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Here, it is obvious that the above-mentioned Jacobian matrix 

has one positive and one negative eigenvalue. Therefore, the 

trivial equilibrium point (0,0) is a saddle point. 

 

THEOREM 3.2.  The axial equilibrium point (k, 0) of the system 

(5-6) is a saddle point for (
𝑏𝑘

1+𝑘
− 𝑑) > 0 and stable node for 

(
𝑏𝑘

1+𝑘
− 𝑑) < 0. 

 PROOF. The Jacobian matrix (8) about the trivial equilibrium 

point (0, 0) is given as 

𝐽(𝑘, 0) = [

−𝑟𝑘

𝑚 + 𝑘
−

𝑎𝑘

1 + 𝑘

0
𝑏𝑘

1 + 𝑘
− 𝑑

] 

Jacobian matrix as two eigen value 

𝜆1 =
−𝑟𝑘

𝑚 + 𝑘
, 𝜆2 =

𝑏𝑘

1 + 𝑘
− 𝑑 

There are two cases 

CASE 3.2.1. If 𝜆2 > 0  then the above-mentioned Jacobian 

matrix has one negative eigenvalue and one positive. Therefore, 

the axial equilibrium point (𝑘, 0) is a saddle point. 

CASA 3.2.2. If 𝜆2 < 0  then the above-mentioned Jacobian 

matrix has two negative eigen value. Therefore, the axial 

equilibrium point (k,0) is a stable node. 

 

THEOREM 3.3. The planer equilibrium point (𝑥∗, 𝑦∗) =
(

𝑑

𝑏−𝑑
,

𝑏𝑑(−𝑑+𝑏𝑘−𝑑𝑘)𝑟

𝑎(𝑏−𝑑)2𝑘(𝑑+𝑏𝑚−𝑑𝑚)
) of the system represented by (5-6)   

is a stable node for 𝑇 < 0  and  𝐷 > 0 . Where 𝐷  denote the 

determinant of J and T denote the 𝑡𝑟𝑎𝑐𝑒(𝐽). 

PROOF. The Jacobian matrix (8) about the co-axial 

equilibrium point (𝑥∗, 𝑦∗) is given as 

 

𝑱(𝑥∗, 𝑦∗) = 

[
 
 
 
 
 
 
(

𝑑(𝑑3(1 + 𝑘)(−1 + 𝑚) + 𝑏3𝑘𝑚 −

𝑏2𝑑(2 + 𝑘)𝑚

+𝑏𝑑2(−1 + 𝑘 + 𝑚 − 𝑘𝑚))𝑟

)

𝑏(𝑏 − 𝑑)𝑘(𝑑 + 𝑏𝑚 − 𝑑𝑚)2
−

𝑎𝑑

𝑏
(−𝑑 + 𝑏𝑘 − 𝑑𝑘)𝑟

𝑎𝑘
0 ]

 
 
 
 
 
 

 

Were 

𝐷 = 𝑑𝑟 −
𝑑2𝑟

𝑏
−

𝑑2𝑟

𝑏𝑘
 

𝑇 =

(

𝑑(𝑑3(1 + 𝑘)(−1 + 𝑚) + 𝑏3𝑘𝑚

−𝑏2𝑑(2 + 𝑘)𝑚 +

𝑏𝑑2(−1 + 𝑘 + 𝑚 − 𝑘𝑚))𝑟

)

𝑏(𝑏 − 𝑑)𝑘(𝑑 + 𝑏𝑚 − 𝑑𝑚)2
 

Then by stability criteria, system is stable if 𝑇 < 0 and 𝐷 > 0. 

V. NORMAL FORM OF R-M MODEL WITH ALLEE 

EFFECT AND POINCARE COMPACTIFICATION 

We will first get the normal form of the equilibrium point 

whose behavior we want to see at infinity, and after that 

Poincaré compactification, we will tell the behavior of the 

equilibrium point at infinity. The methodology of normal form is 

described in the book (Wiggins, 2003). And methodology of 

Poincaré compactification described in the book (Perko, 2013) 

5.1. Normal form and behavior of equilibrium point (0,0) at 

infinity 

Here we find normal form of the system (5-6) around the 

trivial equilibrium point 𝐸0
∗ = (0,0)   for parameter value 𝑟 =

1, 𝑘 = 1,𝑚 = 0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3 . For these 

parameter value Jacobian matrices given by equation (8) have 

two different eigen value 𝜆1 = −0.3, 𝜆2 = 0. Thus, in this case 

normal form given as 

�̇� = −0.3𝑝 + 𝛼𝑝𝑞  (9) 

�̇� = 𝛽𝑞2    (10) 

Where 𝛼, 𝛽 are the constant. For further study we chose 𝛼 =

1, 𝛽 = 0.5 

Poincaré compactification: system (9-10) has one critical point 

(0,0) at finite. Thus, at a finite region we observe that (0,0) is a 

Saddle-node (see fig.3 pink triangle represent unstable point). 

According to theorem 1 (Perko, 2013). critical point at infinity 

for this system is determined by the solution of 

𝑥1𝑄𝑑(𝑥1, 𝑥2) − 𝑥2𝑃𝑑(𝑥1, 𝑥2) = 0  

And 

 𝑥1
2 + 𝑥2

2 =  1   (11) 

By the system (9-10) we obtain 

𝑑 = max(𝑑𝑒𝑔𝑃, 𝑑𝑒𝑔𝑄) = 2 

and 

𝑃2(𝑥1, 𝑥2) = 𝛼𝑝𝑞, 𝑄2(𝑥1, 𝑥2) =  𝛽𝑞2 

Putting these values in equation (11) we have 

𝛽𝑝𝑞2 − 𝛼𝑝𝑞2 = 0        (12) 

And 

𝑝2 + 𝑞2 = 1    (13) 

By solving this equation (12-13), we have four critical point 

(±1,0,0) 𝑎𝑛𝑑 (0, ±1,0)  at infinity. According to theorem 2 

(Perko, 2013). behavior of critical point (1,0,0) is determined by 

the behaviour of the system. 

�̇� = 0.3𝑣𝑤 − 0.5𝑣2                (14) 

�̇� = 0.3𝑤2 − 𝑣𝑤   (15) 

System (14-15) has non-elementary point at the equilibrium 

point origin. Thus, the point (1,0,0)  is non-elementary at 

infinity. The behavior at the antipodal point (−1,0,0) is same as 

behavior at the point (1,0,0). Now we find behavior of point in 

neighborhood of (0,1,0) by the equivalent system by theorem 2. 

�̇� = 0.5𝑢 − 0.3𝑢𝑤       (16) 

�̇� = −0.5𝑤    (17) 

System (16-17) has saddle point at the equilibrium point (0,0). 

Thus, the point (0,1,0) is stable point at infinity. The behavior at 

the antipodal point (0, −1,0) is same as behavior at the point 

(0, −1,0). (See fig. 3 green square represent saddle point). 
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5.2. Behavior of equilibrium point (1,0) at infinity 

Here we find normal form of the system (5-6) around the axial 

equilibrium point 𝐸1
∗ = (1,0)   for parameter value 𝑟 = 1, 𝑘 =

1,𝑚 = 0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3. For these parameter value 

Jacobian matrices given by equation (8) have two different eigen 

value 𝜆1 = −0.666667, 𝜆2 = 0.05 . thus, in this case normal 

form given as 

�̇� = −0.666667𝑝  (18) 

�̇� = 0.05𝑞   (19) 

Poincaré compactification: system (18-19) has one critical 

point (0,0) at finite. Thus, at a finite region we observe that (0,0) 

is a saddle point (see fig.4 green square represent unstable 

point). According to theorem 1 (Perko, 2013). critical point at 

infinity for this system is determined by the solution of 

𝑥1𝑄𝑑(𝑥1, 𝑥2) − 𝑥2𝑃𝑑(𝑥1, 𝑥2) = 0 

and  

𝑥1
2 + 𝑥2

2 =  1    (20) 

By the system (18-19) we obtain 

𝑑 = max(𝑑𝑒𝑔𝑃, 𝑑𝑒𝑔𝑄) = 1 

and 

𝑃1(𝑥1, 𝑥2) = −0.666667𝑝, 𝑄1(𝑥1, 𝑥2) =  0.05𝑞 

Putting this value in equation (20) we have 

0.05𝑞𝑝 + −0.666667𝑝𝑞 = 0     (21) 

And 

𝑝2 + 𝑞2 = 1   (22) 

By solving this equation (21-22), we have four critical point 

(±1,0,0) 𝑎𝑛𝑑 (0, ±1,0)  at infinity. According to theorem 2 

(Perko, 2013). behavior of critical point (1,0,0) is determined by 

the behaviour of the system. 

�̇� = 0.716667𝑣      (23) 

�̇� = 0.666667𝑤              (24) 

System (23-24) has unstable node at the equilibrium point 

origin. Thus, the point (1,0,0) is unstable node at infinity. The 

behavior at the antipodal point (−1,0,0) is same as behavior at 

the point (1,0,0)  since 𝑑 = 1  is odd (see fig. 4 red square 

represent unstable node). Now we find behavior of point in 

neighborhood of (0,1,0) by the equivalent system by theorem 2  

(Perko, 2013). 

�̇� = −0.716667𝑢     (25) 

�̇� = 0.05𝑤             (26) 

System (25-26) has stable node point at the equilibrium point 

(0,0). Thus, the point (0,1,0)  is stable point at infinity. The 

behavior at the antipodal point (0, −1,0) is same as behavior at 

the point (0, −1,0) since 𝑑 = 1 is odd (see fig. 4 green square 

represent saddle point). 

 

 

5.3. Normal form and Behavior of equilibrium point (0.75, 

0.347222) at infinity 

Fig 3. Represents the equator of a Poincare sphere, and 

points on the boundary of the circle represent points at 

infinity. for the parameter values 𝑟 = 1, 𝑘 = 1,𝑚 =

0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3. then behavior of equilibrium 

point (0,0) (saddle node) at infinity corresponding to four 

different points (±1,0,0) and (0, ±1.0) in which (±1,0,0) 

nonelementary point and (0, ±1.0) saddle point. 

 

Fig 4. Represents the equator of a Poincaré sphere, and 

points on the boundary of circle represent points at 

infinity. for the parameter values 𝑟 = 1, 𝑘 = 1,𝑚 =

0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3 . then behavior of 

equilibrium point (0,0,0) (saddle point) at infinity 

corresponding to four different points (±1,0,0)  and 

(0, ±1,0) in which (±1,0,0) unstable node and (0, ±1,0) 

stable point 
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Here we find normal form of the system (5-6) around the co-

axial equilibrium point 𝐸2
∗   for parameter value 𝑟 = 1, 𝑘 =

1,𝑚 = 0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3. For these parameter value 

Jacobian matrices given by equation (8) have two different eigen 

value 𝜆1 = −0.309139, 𝜆2 = −0.0990236 . thus, in this case 

normal form given as 

�̇� = −0.309139𝑝  (27) 

�̇� = −0.0990236𝑞   (28) 

Poincaré compactification: System (27-28) has one critical 

point (0,0) at finite. Thus, at a finite region we observe that (0,0) 

is a stable point (see fig.5 blue square represent stable point). 

According to theorem 1. critical point at infinity for this system 

is determined by the solution of 

𝑥1𝑄𝑑(𝑥1, 𝑥2) − 𝑥2𝑃𝑑(𝑥1, 𝑥2) = 0  

 And 

 𝑥1
2 + 𝑥2

2 =  1   (29) 

By system (27-28) we obtain 

𝑑 = max(𝑑𝑒𝑔𝑃, 𝑑𝑒𝑔𝑄) = 1 

𝑃1(𝑝, 𝑞) = −0.0990236𝑝, 𝑄1(𝑝, 𝑞) = −0.309139𝑞 

Putting these values in equation (29) we have 

−0.309139𝑝𝑞 + 0.0990236𝑝𝑞 = 0      (30) 

and 

𝑝2 + 𝑞2 = 1    (31) 

By solving this equation (30-31), we have four critical point 

(±1,0,0) 𝑎𝑛𝑑 (0, ±1,0)  at infinity. According to theorem 2. 

behavior of critical point (1,0,0) is determined by the behaviour 

of the system. 

�̇� = 0.2101154𝑣                 (32) 

�̇� = 0.309139𝑤              (33) 

System (32-33) has unstable node at the equilibrium point 

origin. Thus, the point (1,0,0) is unstable node at infinity. The 

behavior at the antipodal point (−1,0,0) is same as behavior at 

the point (1,0,0)  since 𝑑 = 1  is odd (see fig. 5 red square 

represent unstable node). Now we find behavior of point in 

neighborhood of (0,1,0) by the equivalent system by theorem 2 

[16]. 

�̇� = −0.2101154𝑢       (34) 

�̇� = 0.0990236𝑤  (35) 

System ( 34-35) has stable node point at the equilibrium point 

(0,0). Thus, the point (0,1,0)  is stable point at infinity. The 

behavior at the antipodal point (0, −1,0) is same as behavior at 

the point (0, −1,0) since 𝑑 = 1 is odd (see fig. 5 green square 

represent saddle point)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSION 

system with the Allee effect on the predator species described 

in Section 5. Section 5 is further divided into three subsections, 

in which We will first get the normal form of the equilibrium 

point whose behavior we want to see at infinity, and after that 

Poincaré compactification, we will tell the behavior of the 

equilibrium point at infinity. In subsection 5.1. we see that the 

normal form of the system (5-6) is about the equilibrium point 

(0,0) for the parameter values 𝑟 = 1, 𝑘 = 1,𝑚 = 0.3, 𝑎 =

0.9, 𝑏 = 0.7, 𝑑 = 0.3 given by equation (9-10) and the behavior 

of equilibrium point (0,0) at infinity of the system (5-6) 

corresponding to four different points (±1,0,0) and (0, ±1,0) in 
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which (±1,0,0) nonelementary point and (0, ±1,0) saddle point. 

In subsection 5.2. we see that the normal form of the system (5-

6) about the equilibrium point (1,0) for the parameter values 𝑟 =

1, 𝑘 = 1,𝑚 = 0.3, 𝑎 = 0.9, 𝑏 = 0.7, 𝑑 = 0.3  given by equation 

(18-19) and the behavior of equilibrium point (0,0) at infinity of 

the system (5-6) corresponding to four different points (±1,0,0) 

and (0, ±1,0)  in which (±1,0,0)  unstable point and (0, ±1,0) 

stable point. In subsection 5.3. We see that the normal form of 

the system (5-6) is about the equilibrium point (0.75, 0.347222) 

for the parameter values 𝑟 = 1, 𝑘 = 1,𝑚 = 0.3, 𝑎 = 0.9, 𝑏 =

0.7, 𝑑 = 0.3 . given by equation (27-28) and the behavior of 

equilibrium point (0,0) at infinity of the system (5-6) 

corresponding to four different points (±1,0,0) and (0, ±1,0) in 

which (±1,0,0)  unstable point and (0, ±1,0)  saddle point. In 

section 3 and section 4 we show the stability of the equilibrium 

solutions of the system (1-2). After that, we evaluated the 

stability of the new steady-state solutions by applying an Allee 

effect to the system in. According to numerical calculation the 

system equilibrium depends on Allee effects constant thus we 

can say that systems equilibrium point is translated or destroyed. 

It also observes that equilibrium point changes its stability due to 

Allee effect.  

VII. REFERENCES 

Allee, W. C. (1932). Studies in animal aggregations: mass 

protection against colloidal silver among 

goldfishes. Journal of Experimental Zoology, 61(2), 

185-207. 

Berec, L. A. (2007). Multiple Allee effects and population 

management. Trends in Ecology & Evolution, 

22(4), 185-191. 

Birkhoff, G. D. (1927). Dynamical systems (Vol. 9). 

American Mathematical Society. 

Chenciner, A. (2012). Une promenade dans les Méthodes 

Nouvelles de la Mécanique Céleste. Gazette des 

Mathématicien, n 0, 134, 37-47. 

Courchamp, F. B. (2008). Allee effects in ecology and 

conservation. OUP Oxford. 

Delgado, J. L. (1993). Poincaré compactification of the 

collinear three body problem. Hamiltonian 

systems and celestial mechanics. 85-100. 

Delgado, J. L.-1. (1995). Poincaré compactification of 

Hamiltonian polynomial vector fields. In 

Hamiltonian Dynamical Systems: History, Theory, 

and Applications. New York, NY: Springer New 

York., 99-114. 

Garcia, A. P.–C.-3. (2006). A generalization of the Poincaré 

compactification. Archive for rational mechanics 

and analysis. 179, 285-302. 

Kramer, A. M. (2009). The evidence for Allee effects. 

Population Ecology. 51, 341-354. 

Lewis, M. A. (1993). Allee dynamics and the spread of 

invading organisms. Theoretical Population 

Biology, 43(2), 141-158. 

Lotka, A. J. (1925). Elements of physical biology. Williams 

& Wilkins. 

Moser, J. (. (2001). Stable and random motions in 

dynamical systems: With special emphasis. 

Nayfeh, A. H. (2011). The method of normal forms. John 

Wiley & Sons. 

Perko, L. (2013). Differential equations and dynamical 

systems (Vol. 7). Springer Science & Business 

Media. 

Poincaré, H. (1881). Mémoire sur les courbes définies par 

une équation différentielle. Journal de 

mathématiques pures et appliquées, 7, 375-422. 

Priyadarshi, A. B. (2014). Geometry of the Poincaré 

compactification of a four-dimensional food-web 

system. Applied Mathematics and Computation, 

226, 229-237. 

Roeder, R. K. (2003). On Poincaré's fourth and fifth 

examples of limit cycles at infinity. The Rocky 

Mountain journal of mathematics, 1057-1082. 

Rosenzweig, M. L. (1963). Graphical representation and 

stability conditions of predator-prey interactions. 

The American Naturalist, 97(895), 209-223. 

Stephens, P. A. (1999). What is the Allee effect? Oikos. 

What is the Allee effect? Oikos, 185-190. 

Sun, G. Q. (2016). Mathematical modeling of population 

dynamics with Allee effect. Nonlinear Dynamics. 

85, 1-12. 

Veit, R. R. (1996). Dispersal, population growth, and the 

Allee effect: dynamics of the house finch invasion 

of eastern North America. The American 

Naturalist. 148(2), 255-274. 

Volterra, V. (1926). Fluctuations in the abundance of a 

species considered mathematically. Nature, 

118(2972), 558-560. 

Wang, M. H. (2002). Integrodifference equations, Allee 

effects, and invasions. Journal of mathematical 

biology, 44(2), 150-168. 



Journal of Scientific Research, Volume67, Issue3, 2023 

   76 
Institute of Science, BHU Varanasi, India 

Wiggins, S. W. (2003). Introduction to applied nonlinear 

dynamical systems and chaos. New York: 

Springer. 

 

 

 

 

 

 

 

 

 


