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Abstract: Monogenetic diseases associated with chromosome 15 

pose diagnostic challenges due to their intricate inheritance 

patterns. A novel framework is needed to address the complex 

challenges. Hence, two novel deep learning approaches have been 

proposed for the diagnosis with the aim of improving accuracy: an 

alignment-free method using mean shift clustering, one-hot 

encoding, and a Convolutional Neural Network (CNN) – Bi-

directional Long-Short term Memory (BiLSTM) architecture 

optimized by Elephant Herd Optimization (EHO), and an 

alignment-based method employing the Needleman-Wunsch 

algorithm, CNN-BiLSTM, and Horse Herd Optimization (HHO). 

The nature-inspired genetic optimization techniques, EHO and 

HHO optimizes model performance by effectively exploring the 

search space. The above deep learning frameworks are evaluated 

on UBE3A and FBN1 datasets and simulation results produce 

77.5% and 89.2% accuracy respectively in classifying Marfan 

syndrome and Angelman syndrome. The results show the 

significance of deep learning combined with optimization improves 

the diagnosis and genetic counseling of monogenetic diseases. 

Future research will focus on identifying specific mutation variants 

within the Deoxyribonucleic acid (DNA) sequence of chromosome 

15 that are responsible for diseases like Rett syndrome and Prader-

Willi syndrome paving the way for personalized medicine. 

Index Terms: Convolutional Neural Network, Elephant Herd 

Optimization, Horse Herd Optimization, Long-short term memory, 

Monogenetic disorders 

I. INTRODUCTION 

Monogenetic diseases caused by mutations of a single gene 

(Antonarakis, 2016) pose significant diagnostic challenges. 
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Mutations in genes associated with chromosome 15 are 

characterized by intellectual disability seizers and delays and if 

unattended leads to brain disorders and tissue related disorders 

like Angelman syndrome, Marfan syndrome etc. Hence, 

Accurate diagnosis is needed to improve genetic counseling. 

The challenges associated with genetic mutations include 

genetic heterogeneity, variable expressivity, and phenotypic 

overlap. Genetic heterogeneity occurs when mutations in 

different genes affects a single phenotype, the variable 

expressivity is caused when individuals with the same genetic 

mutation presents several degrees of symptoms. Phenotypic 

overlap is raised when different genetic diseases have similar 

clinical features. 

DNA sequence analysis is the first step in diagnosis of genetic 

disorders. Traditional laboratory methods are time-consuming 

(Sanger et al., 1977) and the novel deep neural network model 

has proven as an efficient and accurate approach for analyzing 

large-scale genetic data. 

DNA sequence alignment is a generic technique (Alipanahi et 

al., 2015) that compares and identifies common features of DNA 

sequences. Among the sequence alignment techniques, the 

global alignment technique identifies the overall similarity by 

considering the entire length of two sequences. The Needleman-

Wunsch algorithm is the most familiar method of global 

alignment. The Local alignment methodology identifies the most 

similar regions within two sequences regardless of their overall 

similarity. The Smith-Waterman algorithm is a well-known 

method of local sequence alignment. These alignment 

algorithms facilitate identification of conserved regions, 

functional regions and mutations within DNA sequences. 

Alignment-free techniques are an alternative approach for 

genetic sequence comparison as it reduces the computational 

overhead of sequence alignments. The simple clustering 
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technique, mean shift clustering can be used to identify regions 

of high density in the data space and assigns points to their 

nearest cluster center. This method focus on overall composition 

or other features. 

As a known fact, sequence alignment tool plays a vital role for 

analyzing DNA sequences in diagnosis, it alone may not be 

sufficient for monogenetic disorders based on mutations in 

chromosome 15 genes. Deep neural network frameworks 

automatically learn complex patterns and features from DNA 

sequences provides a more comprehensive and accurate 

approach to diagnosis. Convolutional Neural Networks (CNNs) 

are especially well-suited for processing spatial data of DNA 

sequences (Krizhevsky et al., 2012) and they extract local 

features from the input data using filters, allowing them to 

identify patterns and correlate with associated DNA sequences. 

The effectiveness of the tasks such as identifying specific 

mutation patterns or predicting the functional impact of genetic 

variants can be improved using the proposed methodology. 

The gate-based deep learning technique, Long Short-Term 

Memory’s (LSTM) analyzes long-range dependent DNA 

sequences (Schuster & Paliwal, 1997) and then CNN model 

enhances the scalability and reliability in the process of 

identifying and classifying disease-related patterns. LSTM 

networks handle sequential data with respect to long-range 

dependencies in DNA sequences. The gates used in LSTMs 

control the flow of information, capture and store of significant 

information over time. This is very important in case of DNA 

sequence analysis since the context of a specific nucleotide is 

influenced by nucleotides that are located in distant positions. 

Bi-directional LSTMs (Bi-LSTM) process DNA sequences in 

both forward and backward directions that captures information 

of past and future contexts. This facilitates identification of 

patterns and dependencies that are ignored in unidirectional 

LSTMs. 

To optimize the performance of deep neural network 

frameworks, nature-inspired optimization algorithms (Yang, 

2014) can be incorporated as a module. These algorithms 

efficiently explore and exploit the search space that leads to 

enhanced accuracy of the framework and optimized use of 

hyperparameters (Mondal et al., 2019). 

The deep neural network framework of CNN-BiLSTM 

enhances its performance for monogenetic disease classification 

using Horse Herd Optimization (HHO) and Elephant Herd 

Optimization (EHO) as these algorithms have proven 

effectiveness in global optimization tasks and balances 

exploration and exploitation (Mondal et al., 2019). Hence, these 

algorithms are better option to be embedded in the proposed 

model. 

Horse Herd Optimization (HHO) algorithm uses the hunting 

behavior of horse herds with its elaborative memory power. 

HHO combines both exploration and exploitation strategies to 

find optimal solutions. The exploration phase finds different 

regions of the search space and the exploitation phase refines the 

solution for selecting the best. 

Elephant Herd Optimization (EHO) uses the social behavior 

of elephant herds. EHO uses a hierarchical structure to find the 

optimal solutions. The leader of the herd re directs the search 

and other elephants follow and provides support to the search 

process. 

The hybrid combination of CNNs, Bi-LSTMs, and nature-

inspired optimization algorithms aims to innovate a 

methodology for classifying monogenetic diseases associated 

with chromosome 15. These novel techniques improve 

diagnostic accuracy, reduce the computational time and provide 

valuable insights into the genetic mechanisms that are essential 

for the diagnosis. 

The proposed deep neural network model can be used 

especially for monogenetic disorders in the following aspects:  

• Identify disease-causing mutations: Through patient’s 

DNA sequences clustering and alignment specific mutations 

responsible for monogenetic diseases are detected. 

• Improve diagnostic accuracy: These models provide 

more accuracy in diagnoses than traditional methods that in turn 

reduces the risk of misdiagnosis. 

• Enable earlier diagnosis: The deep neural network 

model is adaptable and reliable with respect to diagnosis thereby 

aids in effective treatment.  

• Support personalized medicine: The specific genetic 

variants are identified in early stage and supports personalized 

care and treatment.  

The important aspects of this paper are: 

• Monogenetic Disorder Detection Model: Two deep 

neural network models are proposed for classification of 

Angelman syndrome and Marfan syndrome: (i) An alignment-

free model with mean shift clustering, CNN-BiLSTM, and EHO 

and (ii) An alignment-based model with Needleman-Wunsch 

algorithm, CNN-BiLSTM, and HHO.   

• Identifying Disease-Causing Mutations in Chromosome 

15 Genes:  The proposed models specifically identify disease-

causing mutations in the locations 15q11-q13 meant for 

Angelman syndrome and 15q21.1 associated with Marfan 

Syndrome. 

• Improved Diagnostic Performance for Angelman and 

Marfan Syndromes: The performance of model are evaluated 

using the metrics accuracy, recall, specificity, precision, and F1-

score in classifying Angelman Syndrome and Marfan Syndrome 

for UBE3A and FBN1 datasets. 

The specific monogenetic disorder, Angelman syndrome is 

often realized by intellectual disability, seizures, and speech 

impairment and Marfan syndrome, a connective tissue disorder 

directly affects cardiovascular and skeletal systems. This paper 

focuses on accurate detection of such disorders. 

This paper is organized in the following manner: The next 

section, Section II reviews existing methods for single gene 

sequence analysis associated with disorders. The Section 3 

describes the datasets UBE3A and FBN1 associated with 

Angelman and Marfan syndrome and the proposed models 

comprising of alignment-based and alignment-free deep neural 

network models. Then Section 4 elaborates the two proposed 

frameworks with algorithms and their work flow.  Next, Section 

5 presents the experimental evaluations and simulations of the 

proposed work. Finally, to conclude, the Section 6 summarizes 

the key findings and outlines potential future research directives. 
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II. RELATED WORK 

This section presents comprehensive reviews on the existing 

approaches of traditional and conventional sequence alignment 

techniques, deep learning techniques and optimization 

techniques in genetic domain classification and identification of 

monogenetic disorders. The rapid advancements in deep learning 

have revolutionized the field of computational biology, offering 

novel and powerful approaches to address complex challenges in 

genomics. 

A. Traditional Machine Learning Techniques for Sequence 

Analysis 

Machine learning techniques evolved into many algorithms 

and methods for DNA sequence analysis addressing the issues 

associated sequence mutations. To be more specific, clustering 

algorithms are scalable and data-driven approach that have been 

widely used to group similar sequences based on their local and 

global features. 

K-means clustering, the most familiar algorithm find its 

significance place (Timothy Chappell et. al, 2017) in sequence 

analysis. This algorithm first converts the sequences into an 

intermediate binary format and uses Hamming distance to 

compute the partitions of k clusters, where k is a predefined 

number and iteratively assigns sequences to the nearest cluster 

centroid, updating the centroids until convergence. The k-means 

is simple and efficient, and the challenging issue is the choice of 

k and non-spherical clusters handling. 

Hierarchical clustering (Dan Wei et. al, 2012) also plays a 

significant role in bio-sequence analysis. This paper transformed 

DNA sequences into the feature vectors and identify occurrence, 

location and order relation of k-tuples. Then clustering on 

sequences are done based on the feature vectors. It constructs a 

hierarchy of clusters, starting with each sequence as a separate 

cluster and merging them based on their similarity. This 

methodology is applying either as agglomerative (bottom-up) or 

divisive (top-down) approach. This methodology of clustering is 

computationally expensive for large datasets. 

Mean shift clustering (Hani Z Girgis, 2022), an unsupervised 

learning technique is a non-parametric algorithm shifts data 

points iteratively to form clusters with regions of higher density. 

Unlike k-means, mean shift does not require the initial value of 

number of clusters in prior. It is a better option to choose this 

type of clustering when the distribution of feature vectors is 

highly impossible to determine. The mean shift vector for each 

data point is computed from the difference between the point's 

current location and the weighted average of its neighbors within 

a specific range. The data points are continuously shifted 

towards the mean shift vector. The final positions of the points 

determine the cluster centers. The most significant factor 

concerned with mean shift clustering is that it handles non-linear 

shaped clusters and discover clusters of different densities.  

The traditional clustering algorithms with respect to genetic 

sequence analysis pose the following challenges: 

• Parameter Selection: The challenge in determining the 

total number of clusters, k. 

• Noise and Outliers: Noise and Outliers of datapoints 

distort the distribution and formation of clusters. 

• Shape and Density: Non-linear feature vectors pose a 

significant challenge in generating clusters. 

• Computational Cost: Clustering algorithms are 

computationally expensive for large datasets. 

B. Conventional Sequence Alignment Techniques 

Sequence alignment is a fundamental and the most significant 

technique in bioinformatics used to identify similarities and 

differences between biological sequences especially DNA. By 

aligning sequences, geneticist find evolutionary relationships, 

functional similarities, and potential disease-causing mutations. 

Basically, there are two types of sequence alignments: 

Pairwise Sequence Alignment (PSA) for aligning two DNA 

sequences (Hasna El Haji et al. 2020) to find the best possible 

arrangement that maximizes their similarity and Multiple 

Sequence Alignment (MSA) that aligns more than three 

sequences simultaneously (Kouser et al. 2015) to identify 

conserved regions and evolutionary relationships. Pairwise 

Sequential Alignment is further subdivided into local alignment 

(Waqar Haque et al. 2009) that identifies regions of high 

similarity, allows gaps, mismatches in other parts and globally 

aligns that entire length of both the sequences by considering the 

gaps. 

The well-known algorithms of dynamic programming (Jean-

Michel Richer et al. 2007) such as Smith-Waterman algorithm 

and Needleman-Wunsch algorithm are used for local and global 

sequence alignment respectively. DNA sequence alignment uses 

the scoring matrix (Jian-Jun et al. 2012) that assigns a positive 

value to the match, negative value to the mismatch, and a 

negative to the gap penalty. It is a usual practice to keep the 

residues and gaps together, and considers the frameshift of the 

mutations thereby identifies the mutation variant responsible for 

genetic diseases. 

The Needleman-Wunsch Algorithm (NWA) is the first 

sequence alignment algorithm Maros et al. (2021) used as a 

biological sequence alignment. Mutation variant can be fixed 

through external conditions such as Ultraviolet (UV) light, X-

rays or various chemicals. Matching certain letters in the 

sequence is assigned a higher score than matching other letters. 

The Alignment for small gaps starts with a gap penalty. NWA 

sets up the objective function that is used to maximize the 

alignment score for two sequences of same length and it is also 

necessary to observe the mutation probability (Henikoff et al. 

1992). Scoring Matrix can also be determined using Manhattan 

distance (Chen et al. 2005). The scoring system need to consider 

probabilities with which different proteins (Amr Ezz El-Din 

Rashed et al. 2021) can be substituted. 

The Smith-Waterman Algorithm Sudha et al. (2014) is a 

dynamic programming strategy to perform the similarity match. 

It generates the score for contextual and evolutionary 

relationship establishment. The scoring matrix is non-symmetry. 

During the comparison of each character position, the score is 

determined a match/mismatch score or an insertion/deletion 

(indel) or shift penalty along with a match/mismatch score. This 

search is to find the muted gene of the DNA sequence. This is a 

sensitive algorithm aids in construction of accurate phylogenetic 

trees (Daiki Okada et al. 2015). 

C. Deep Learning Techniques  
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The self-learning algorithms in the deep neural network for 

automated learning of sequence structure are made possible 

using Convolutional Neural Network (CNN). However, deep 

learning approaches (Alexandra Miere et al. 2020) require large 

volumes of high-quality training data, which may be a 

challenging premise in a clinical setting. These high volumes of 

data are even more difficult to obtain in the case of monogenetic 

disorders during the earlier stage in the prenatal investigation 

due to the rareness of genetic conditions. Data augmentation can 

be done on the training dataset to reduce overfitting of data 

(Taeho Jo et al. 2022). Softmax function must be used along 

with the test data to assess the uncertainty of the model. 

Convolution Neural Network algorithm is a promising 

algorithm that performs non-linear transformations on aligned 

DNA sequences and extracts features from such high-

dimensional data (Michael Wainberg et al. 2018). Deep learning 

is challenging in this era in Genome-Wide Association Studies 

(GWAS) handling high-dimensional genomic data. The three 

step approach for identification of genetic variants (Taeho Jo et 

al. 2022) using CNN to identify phenotype-related Single 

Nucleotide Polymorphisms (SNPs) has been applied in 

implementing accurate disease classification models. CNN has 

the ability to capture the mutation that regulates the genetic 

expression (Scherer et al. 2021) and thus it identifies the 

structure that is responsible for genetic diseases. Initially the 

whole genome is divided into non-overlapping fragments with 

an optimal size. Then CNN selects phenotype-associated 

fragments for each fragment. A Sliding Window Association 

Test (SWAT) is used in CNN (Annalisa Buniello et al. 2019) to 

estimate Phenotype Influence Scores (PIS) and identifies 

phenotype-associated SNPs based on PIS. Finally, the 

classification process proceeds with all identified SNPs. 

Deep learning techniques use one Single Nucleotide 

Polymorphism (SNP) at a time on the whole genome (Jian Yan 

et al. 2021) to find population-based genetic risk variation for 

genetic diseases. However, it produces a challenging task of 

handling high-dimensional low-sample size (Auton et al. 2015) 

on GWAS that has direct impact on mutation variant. Hence, it 

is necessary to perform feature reduction (Makoto Yamada et al. 

2019). Rectified Linear Unit (ReLU) is preferable to use as 

activation function to overcome the gradient vanishing problem. 

Adam is most suitable to use as an optimization function 

(Sutskever et al. 2013) that uses Stochastic Gradient Descent 

(SGD) algorithm to update the weights of Convolution Neural 

Network during training. CNN uses multiple hidden layers 

(Shuchao Pang et al. 2018) to observe feature space of sequence 

data thereby performs the feature extraction at all levels of 

abstraction with improved performance. 

Recurrent Neural Network (RNN) is another deep learning 

technique most suited for DNA sequence analysis (Lei Chen et 

al. 2019) and classification. The input layer of RNN captures the 

aligned sequences. RNN with Long Short-Term Memory 

(LSTM) finds the long-term dependent sequences that are the 

pivot sequences containing the mutation variant essential for 

genetic diseases. Global pooling layer of RNN learns the 

features and the fully connected layer performs the classification 

of genetic diseases. The output layer assigns the class probability 

for the corresponding genetic disease. 

D. Nature-Inspired Optimization Techniques 

The solution in the search space is initialized randomly, 

proceed towards feasible solution as iterated through the fitness 

function and finally the best or optimal solution is chosen among 

the feasible solutions. The fitness function is designed in such a 

way that it improves the search space in each run. The Particle 

Swarm Optimization (PSO) algorithm uses each particle to 

represent a solution and it gets updated according to the 

historical behavior of the flights. In each iteration, the particle 

flies (Eberhart et al. 2001) towards better search space. Each 

particle learns from its own experience (Cheng et al. 2012) and 

its companion experiences. 

The Elephant Herd Optimization algorithm (EHO) (Monalisa 

Nayak et al. 2020) solves optimization problems by considering 

the assumptions that elephants are grouped as clans and their 

leader is a Matriarch. The older elephants stay away from their 

family group and these two behaviors of the elephant group lead 

to two operators: clan updating operator and separating operator. 

The algorithm simulates the herding behavior of elephants, 

where they stay close to the leader while still exploring the 

environment to find better food sources. Thus, the search space 

is exploited according to the availability of food source. 

The Horse Herd Optimization algorithm aims at complex 

optimization problems such as feature selection (Esin Ays et al. 

2023) and designed as per the herd behavior of horses. This 

algorithm classifies the horses as alpha, beta, gamma and delta 

as per their age and ranks by their performance. This algorithm 

exhibits six different behaviours of horses, they are, (i) Grazing: 

horses used to move freely, (ii) Hierarchy: Strong horses are the 

leaders and the rest are followers, (iii) Sociability: Some horses 

are in contact with other animals, (iv) Imitation: Younger horses 

imitate the behaviours such as finding the right position of 

pasture, defence mechanism, etc. from adult horses, (v) Defense: 

Horses either flee from the attack or live in harmony with the 

aggressor and (vi) Roaming: Horses used to explore variety of 

new places in search of nearby pastures. The fitness value 

evaluates and ranks the horses according to their positions, age 

and behaviour and gets updated in each iteration. The Horse 

Herd Optimization provides better search space in analyzing 

gene sequencing. 

      Thus, a retrospective review is conducted on several 

researches on DNA sequence analysis, sequence alignments, 

sequence classification and predictive analysis on mutations. 

Each research has introduced new facts, solution to the existing 

issues and open issues or scope of future research. The review 

also suggested that engrossing programming methodology of 

dynamic programming of Needleman-Wunsch algorithm for 

global sequence alignment, the fascinating technology of deep 

learning, especially convolution neural network, recurrent neural 

network with long short-term memory for sequence 

classification and the enthralling field of applying heuristic 

search by nature-inspired optimization algorithms such as 

Elephant-herd, Horse-herd algorithms are applied in sequence 

analysis may produce optimized results on monogenetic 

diagnosis. With this review, the proposed research work uses the 

mentioned algorithms and methodologies in performing the 
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sequence analysis for identifying the mutant variant of the gene 

that is responsible for monogenetic disorders.  

III. DATA AND METHODS 

A. Dataset Description 

The datasets associated with the field of genetics are valuable 

resources for understanding the basis of genetic disorders, 

identifying the causative mutations and for developing 

diagnostic and therapeutic strategies. There exist many public 

repositories that contain freely distributed microarray, next-

generation sequencing, and other forms of high-throughput 

functional genomics data submitted by the research community. 

This section presents the dataset UBE3A and FBN1 associated 

with Angelman Syndrome and Marfan Syndrome especially 

connected with Chromosome 15.  

i. UBE3A Dataset 

Angelman Syndrome (AS) is caused by maternal deletions at 

15q11-q13, Paternal Uniparental Disomy (UPD) of chromosome 

15, or imprinting mutations especially mutations occurred at 

Ubiquitin Protein Ligase E3A (UBE3A). The data table 

associated with UBE3A dataset of GeneID:7337 is shown in 

Figure 3.1. This data represents expression levels of a specific 

gene (GeneID 7337) across several human tissues. The gene is 

most highly expressed in the brain (10.1) and least expressed in 

the urinary bladder (2.46).  

Dataset Size: The UBE3A dataset include data comprising of 

more than 20 tissue types from 50,000 samples. For detection of 

mutations responsible for Angelman Syndrome, the dataset was 

split into three subsets: 60% (approximately 30,000 samples) 

allocated for training, 20% (around 10,000 samples) for 

validation, and 20% (approximately 10,000 samples) for testing. 

Characteristics: The dataset represent the quantitative 

expression levels of several tissues associated with Angelman 

Syndrome. The dataset represents 10.1 brain expression and 2.46 

with respect to the urinary bladder. Thus insights of the gene's 

variability across tissue types is represented in this dataset. 

 

#GeneID adrenal appendix bone marrow esophagus 

7337 7.66 6.84 3.64 7.53 

 

#GeneID brain colon duodenum endometrium 

7337 10.1 7.12 5.34 8.24 

 

#GeneID 

f

at gall bladder 

hea

rt 

kidn

ey 

7337 

6

.71 6.97 

6.9

1 7.11 

 

#GeneID liver lung 

lymph 

node ovary pancreas 

7337 4.53 5.83 7.62 7.33 1.33 

 

#GeneID prostate Urinary bladder skin 

7337 8.05 2.46 6.38 

 

Figure 3.1 Data table of UBE3A Dataset 

Preprocessing Steps: Normalization is applied over the 

samples to remove tissue-specific variations. Thereafter, Noise 

filtering and outlier detection were also implemented for 

addressing any aberrant expression levels due to technical or 

biological variability. Moreover the dataset includes a FASTA 

format DNA sequence (Figure 3.2), a large file containing 

nucleic acid sequences used for sequence alignment and 

mutation analysis. 

>NC_000015.10:c25439056-25333728 UBE3A 

[organism=Homo sapiens] [GeneID=7337] [chromosome=15] 

GCTGCCTGCCGGGATACTCGGCCCGCCCAGCCAGTCCT

CCCGTCTTGCGCCGCGGCCGCGAGATCCGTGT 

GTCTCCCAAGATGGTGGCGCTGGGCTCGGGGTGACTAC

AGGAGACGACGGGGCCTTTTCCCTTCGCCAGG 

ACCCGACACACCAGGCTTCGCTCGCTCGCGCACCCCTC

CGCCGCGTAGCCATCCGCCAGCGCGGGCGCCC 

GCCATCCGCCGCCTACTTACGCTTCACCTCTGCCGACC

CGGCGCGCTCGGCTGCGGGCGGCGGCGCCTCC 

TTCGGCTCCTCCTCGGAATAGCTCGCGGCCTGTAGCCC

CTGGCAGGAGGGCCCCTCAGCCCCCCGGTGTG 

GACAGGCAGCGGCGGCTGGCGACGAACGCCGGGATTT

CGGCGGCCCCGGCGCTCCCTTTCCCGGCCTCGT 

TTTCCGGATAAGGAAGCGCGGGTCCCGCATGAGCCCC

GGCGGTGGCGGCAGCGAAAGAGAACGAGGCGGT 

GGCGGGCGGAGGCGGCGGGCGAGGGCGACTACGACCA

GTGAGGCGGCCGCCGCAGCCCAGGCGCGGGGGC 

GACGACAGGTCAGTGTTGCCGCGGCCTGCGCCAGGCG

GCGCTGGCTCCCCTCCGTCACTCGGCCGGCCTT 

CGGGGCCCGCTGTGGCGAGGTCGACACCCCCCTTCCCC

GCCCCCCGCCGCCGAGGCGAGTGTTTGGGGGC 

Figure 3.2 FASTA format of DNA Sequence Alignment File 

 

Figure 3.3 shows the location (marked Red) indicating the 

presence of the Angelman Syndrome in chromosome 15 in 

UBE3A dataset.   

 

 
Figure 3.3 Chromosome location of Angelman Syndrome 

  

ii. FBN1 Dataset 

 Marfan Syndrome (MS) is an autosomal dominant 

monogenetic disorder caused by mutations on the FBN1 gene on 

chromosome 15. FBN1 is the encoded protein called fibrillin 

resulting in the formation of elastic fibres found in connective 

tissue. The structural support of fibrillin may weaken the tissues 

leading to severe consequences. Figure 3.5 shows the location 

indicating the mutation in the FBN1 gene. 

    
Figure 3.5  (a) Muted location of Marfan Syndrome and 



Journal of Scientific Research, Volume 68, Issue 3, 2024 

   24 
Institute of Science, BHU Varanasi, India 

(b) Normal sequence in an unaffected family member 

Dataset Size: The FBN1 dataset comprises of 50,000 base 

pairs in the FASTA format with nearly 50,000 samples (see 

Figure 3.6), each sequence has the genetic code and known 

mutation locations, associated with Marfan Syndrome. The 

dataset was split into three subsets: 60% (approximately 30,000 

samples) allocated for training, 20% (around 10,000 samples) 

for validation, and 20% (approximately 10,000 samples) for 

testing and detection of Marfan Syndrome.  

Characteristics: Each sequence has the genetic code that 

represent mutation locations for identifying variations associated 

with Marfan Syndrome. The dataset contains data with respect to 

mutation types, mutation positions and associated phenotypic 

impacts. 

The FASTA format DNA and protein sequence alignment of 

FBN1 gene is shown in Figure 3.6. 

 

>NC_000015.10:c48645709-48408313 FBN1 [organism=Homo 

sapiens] [GeneID=2200] [chromosome=15] 

AGAGACTGTGGGTGCCACAAGCGGACAGGAGCCACAG

CTGGGACAGCTGCGAGCGGAGCCGAGCAGTGGC 

TGTAGCGGCCACGACTGGGAGCAGCCGCCGCCGCCTC

CTCGGGAGTCGGAGCCGCCGCTTCTCCAGTGGG 

TGCAGCCGGGGTCCCGACGGGGGTCGGGCGGCCACCG

GGGCTGGAGCTGCGGCCACGGAGGCTTTTGCGT 

TTGCGCCGCGCCGAGGGCAGGGACAGGGACTGGGGTG

AGGGGCTGTCCCGGAACGTCCACAGCTGGCGCT 

GGCCCTCCCCTGCCTGACAGCTTCCTGGCCCGGGGCTC

TTGGTGCCGGGCTCCGCGTCAGATGTTCGGGG 

GGCGGTGGCATCGCCCGGAGTCGGCGGGGACGGCGCG

GCTGGCTTCCAGCCTGGCGGAGAGGGCAGGCTG 

AGGAGTGGGGCGTTCAGAGCGCGCATCGCGCGCAATT

CGTGCCGCTAAAAAAAATAAACCCAGAGAGCTC 

GCCCGGGGCTTAGGACCGCTGGGGATATGGGTACTTTG

CGCCGCGCTCTTCTGGCGGGGCCCGGGAGGCC 

GAGGGATCGGCCGGGGCTGCTGCCGCCGGGGGCCTGG

GCTTTCCAGCCAGCTGTGGACCAAACGGTCTTC 

CCTTACCCAAATTAACTGCGCCACGCGCAGGCGGCGCA

CGGGTTGGGCTTGGGAATGGGGACCGCGAGGC 

Figure 3.6 FASTA format of DNA sequence alignment file of 

FBN1 

Preprocessing Steps: To ensure the quality of data, the 

following preprocessing steps were carried out. (1) Sequence 

Alignment: The DNA sequences were aligned to identify 

location and type of mutations with respect to Marfan 

Syndrome. (2) Noise Reduction:  

Filtering techniques are applied to preserve biologically relevant 

mutations responsible for the disorder. (3) Normalization: The 

sequences were normalized to a standard scale reducing 

biological differences. 

Even after preprocessing the data that is being used for the 

process of prediction and classification of monogenetic disorders 

seems to be crucial because of sparse data, uncertainty, 

overlapping features, rapid changes, physical structure, initial 

noise, non-linear characteristics, non-homogenous 

characteristics etc. To handle these issues, efficient and hybrid 

technology is essential to improve the performance in the data 

preprocessing, prediction and classification of monogenetic 

diseases.  

   The data associated with DNA sequences, which have vast 

feature space and comprise of redundant features with 

irrelevance information, lead to overfitting and affect the 

performance of diagnosis. Hence, it is essential to perform 

feature selection of genes that regulates and contributes to the 

target feature space relevant to diagnosis of genetic disorders. 

 

B. Proposed Methodology   

 The proposed work presents two novel hybrid models 

to classify monogenetic disorders. This section narrates a 

comprehensive overview of the proposed methodology. Figure 

3.7 depicts an abstract view of the proposed research work. 

 
Figure 3.7 Architecture of Proposed Work of Monogenetic 

Disorder Classifications 

i. Alignment-Free Model 

The first model performs sequence analysis and clustering 

using a single novel algorithm, Mean Shift Clustering 

(MeShClust) algorithm, to generate the identity scores among 

the similar sequences and forms a cluster with similar sequences. 

The cluster of sequences is the input to the neural network 

models that integrates convolution neural network and recurrent 

neural network with long short-term memory to select relevant 

features that plays a vital role in identification of monogenetic 

disorders. The hyperparameters are tuned with optimization 

algorithm for better convergence. The sequences with 

dissimilarity are given as input for the CNN and then it selects 

features from those sequences and convolves with the kernel 

filters to extract local and relevant features. The Pooling layer of 

CNN reduces the dimension of features, and activation function 

produces the classified results. In order to find the dependencies 

among the long-term sequences, LSTM is used. Then the 

optimization algorithm, Elephant Herd Optimization, selects the 

best classified output from all available feasible solutions. This 

model is tested with the UBE3A gene dataset associated with 

Angelman Syndrome of chromosome 15. 

ii. Alignment-Based Model 

The second model of framework uses the global alignment 

algorithm, Needleman Wunsch algorithm, to find the highest 

score of sequences. These sequences are provided as input to the 

CNN and RNN model to generate the significant feature set that 

are responsible for the genetic mutation causing genetic 
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disorders. Forward propagation performs analysis on input 

sequences from the previous layer, transfers them to the output 

layer through the hidden layers and then transfers to the output 

layer with a final nonlinear activation function to generate the 

feature map signifying the muted genes that are relevant for 

classification. The Horse herd optimization identifies the best 

classification among the feasible solutions in short time. 

Optimization Algorithms: The traditional optimization 

algorithms such as Genetic Algorithms (GA) or Particle Swarm 

Optimization (PSO), EHO and HHO are nature-inspired 

algorithms. EHO utilizes the social structure and movement 

patterns of elephant herds, with effective search in large spaces 

by overcoming local minima. Similarly, HHO models adapts the 

natural behavior of horses in herds, that performs both local 

refinement and global exploration efficiently. These 

characteristics make EHO and HHO particularly suited for the 

irregular and high-dimensional search space involved in tuning 

hyperparameters for DNA sequence analysis. 

The above methodology is elaborated in the next session of 

the paper.         

IV. PROPOSED METHODS OF ANALYSIS ON DNA 

SEQUENCES   

The proposed methodology for identifying the mutation 

causing the monogenetic disorder is (i) Cluster-based method 

that focuses on sequence density alone for identifying the 

mutation, more specifically for detection of Angelman 

Syndrome. (ii) Alignment-based model that uses the Needleman-

Wunsch algorithm for aligning sequences globally to identify the 

similarities that supports the diagnosis of Marfan syndrome. 

With these methods of framework, accurate detection of 

monogenetic disorders is made possible.  

A. Alignment-free Methodology using MeShClust 

The process of sequence analysis is essential as it finds the 

common evolutionary descendent and common structural 

functions. The Mean Shift Algorithm (MeShClust) performs 

sequence analysis and clusters the similar sequences. Traditional 

sequence alignment algorithms are slow in nature (Benjamin T 

James et al. 2018) and its greedy nature does not guarantee with 

optimal clusters (Chen 1995). However, MeShClust is flexible in 

producing the identity score. 

The four letters of alphabet A, C, G, T form the basis to 

construct the genetic word of different lengths and q-nucleotide 

word or the short subsequence of length k is referred to as k-mer. 

k-mer is then built as a quaternary number of k digits and used to 

construct histograms. The pseudo count of k-mer in the histogram 

is initialized to 1 or 0. The MeShClust evaluates the value of k 

(Brian B Luczak et al. 2019) by taking the log4 of the average 

sequence length, and then by subtracting 1. The algorithm uses 

four features to estimate the similarity among the sequences: (i) 

The product of sequence length difference Equation (4.2) and 

Czekanowski similarity Equation (4.1), (ii) The product of length 

difference2 and Manhattan distance2 Equation (4.3), (iii) Pearson 

coefficient Equation (4.4) and (iv) Kulczynski coefficient 

Equation (4.5). In the Equations (4.1 to 4.5), A and B represent 

the histograms of two sequences and Ai and Bi are the ith k-mer of 

A and B. A and B are the average counts of histograms A and 

B respectively. The four features are scaled between 0 and 1 and 

converted to the similarity measure. The overview of the 

MeShClust algorithm is depicted in Figure 4.1.  

 

Figure 4.1 Overview of MeShClust algorithm 

The selection of cluster center and sequence for the cluster 

depends upon the Czekanowski similarity index and it is an 

iterative process till all the sequences are analyzed. 

The Czekanowski similarity index is measured as per equation 

(4.1) and is given as,  
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 The sequence length difference is evaluated by equation 

(4.2) and is given as, 

 
)()(),( BlengthAlengthBALD 

   
The Manhattan distance is given by equation (4.3) and 
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           The Kulczynski coefficient is given by Equation (4.5) 
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Initially the input sequences are sorted in increasing order of 

their length. The shortest sequence forms the center of initial 

cluster. Then MeShClust is implemented on the sequences of the 

current cluster to calculate and update its center. This update 

determines the sequence closest to the updated center.  This 

process is iterated to determine of new centers to form a cluster 

with similar sequences. These iterations stop when no more 

sequences are left out. The algorithm, MeShClust for creating 

the clusters and generating the optimal cluster with its center 

point is shown in Algorithm 4.1 and Algorithm 4.2. 

 

 

(4.1) 

(4.2) 

(4.3) Manhattan (A,B) 

(4.4) 

(4.5) 



Journal of Scientific Research, Volume 68, Issue 3, 2024 

   26 
Institute of Science, BHU Varanasi, India 

 

 

 

 

Algorithm 4.1 MeShClust algorithm for generating clusters of 

similar sequences 

 

Algorithm 4.2 MeShClust algorithm for updating center point of 

clusters  

 

 The MeShClust algorithm does not require any pre-

specified number of clusters. It is non-parametric, it is robust to 

noise and outliers, and is dependent on the density of the data. 

MeShClust deals with feature space derived from k-mers and 

their data density. This algorithm is an alignment-free technique 

that uses distribution of DNA sequences in high-dimensional 

feature space. This algorithm handles the sequences containing 

gaps, sequences of variable length, and sequences of complex 

patterns. 

 The resultant optimal cluster from MeShClust 

algorithm can be further used to identify recurrent sequence 

motifs that may be the regulatory elements, muted motifs that 

are the traits of genetic diseases.  

The success of MeShClust depends on the selection of the value 

of k as given in Equation (4.6) containing n: number of 

sequences in the set S. 
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 Training deep convolution neural network from scratch 
is a challenging task as it leads to overfitting resulting in poor 
memory and computational resources. Data augmentation such 
as rotation, scaling or transformation has the ability to synthesis 
the data and such data has to be transferred to the input layer of 
CNN to avoid overfitting.  

 The convolution layer performs the convolution 
operation among the array of features referred to as kernel and 
input array that result in a feature map. This feature map 
contains the local features of the DNA sequences. At this stage, 
the activation function, either tangent (tanh) or Rectified Linear 
Unit (ReLU) evaluates the function’s non-linearity. Nearly 2 to 5 
CNN layers are considered. 

 The next layer is the Pooling layer that reduces the 
dimension of the input layer. The max, min or average pooling 
can be used for dimensionality reduction.  

 The fully connected layer connects every local input 
from the previous layer to every output resulting in a single 
dimensional vector consisting of probability of each feature 
belonging to a class. It contains learnable weights using the 
softmax or dropout function that maps input to the desired 
output. 

 Recurrent Neural Network learns the temporal features 
while Convolution Neural Network learns the local features of 
DNA sequences.  

 The parameters associated with RNN are input size, 
batch size and time step. There exist two LSTM layers in every 
memory block with two hidden layers. The time-dependent input 
sequences are obtained via these LSTM layers. The depth of 
LSTM layers or blocks again is 2 to 5 layers. 

 Optimization changes parameters in each node as per 

the gradient descent method and reiterates the process from 

convolution to the output layer. Optimization tunes the 

hyperparameters and makes efficient classification of 

monogenetic disorders such as Angelman Syndrome. Figure 4.2 

depicts the overall architecture of CNN-RNN with LSTM model 

gets optimized with EHO algorithm. 

 

Figure 4.2 Overview of CNN-RNN with LSTM and EHO 

 The data associated with DNA sequences, which have 

vast feature space and comprise of redundant features with 

irrelevance information, lead to overfitting and affect the 

performance of diagnosis. Hence, it is essential to perform 

feature selection of genes that regulates and contributes to the 

(4.6) 
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target feature space relevant to diagnosis of genetic disorders. 

This step of feature selection is automated in CNN. 

 This model takes the clusters from MeShClust 

algorithm, and initialized hyperparameters as input and proceeds 

with CNN-RNN LSTM model to generate the classified output 

of Angelman Syndrome. 

 The initial assumptions of Elephant Herd optimization 

algorithm are (i) Elephant population is a group of elephants, d 

(ii) Matriarch is the leader (iii) Elephants live together in a group 

as per Matriarch’s instructions (iv) At each generation, some 

elephants leave the group. Then the two operators, group 

updating operator and selection operator plays a vital role. 

               Elephants change their position with regard to the 

Matriarch position ( p

cebestA ,
) using the Equation (4.7) and is 

referred to as a clan updating operator. 
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              Here ‘n’ is the total number of elephants in a group, ‘c’ 

is the total number of groups, β is the scaling factor [0,1], r is the 

uniformly distributed random number [0,1], and p

cnA ,
 is the 

current position of the elephant considered. 

 
 The Matriarch in each clan is updated as per the 

equation (4.7) and Equation (4.8), where  is the scaling factor 

with a range [0, 1], 
p

ccenA ,
 is the center position of the clan in 

Equation (4.9) and 
cnA ,

is the position of individual elephants in 

the clan and F is the total number of elephants in the clan. 
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                The separating operator is used to attain the worst 

fitness value of clan c, and is given by the Equation (4.10) where 

lowb and upb is the lower bound and upper bound of elephants 

position and r is the random variable that is uniformly distributed 

over [0,1]. 

            XrlowuplowA bbbce worst )1(,   
            The algorithm of hyperparameters tuning using 

Elephant Herd Optimization algorithm is shown in Algorithm 

4.3. The fitness function is given by Equation (4.11), where α is a 

constant factor that scales the term ρT(C), µ is also the constant 

term, M is the total number of features and T is the selected 

number of features. 

 M

T
cTFitness   )(

 
               The convolution operation is mathematically 

represented in equation (4.12) and it uses sigmoid function on 

the weight factor
)(1 L

KJW  on the bias function 
)(1 L

Jb on the input 

sequence 1L

KN  and on Kth and Jth Node of convolution layer. 
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                The activation function called softmax function decides 

the target class of probability using exponentiation (ex) with I, 

the total no of clans and is given in Equation (4.13).  
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Algorithm 4.3 EHO for hyperparameter tuning in CNN-RNN 

with LSTM 

 

            The forward LSTM is denoted by ],1[, LtRt   and the 

backward LSTM is ]1,[,' LtRt   where L is the time-series 

length. The hidden layer includes the forward state 
td

 

given by Equation (4.14) and the backward state 
td

 

specified in Equation (4.15). 

               
],1[),,,( 11 LtsydLSTMd

tttt 
              
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             The above Equations (4.14) and (4.15) consider the 

input, yt, as the state of cells, st and data from hidden layers, dt. 

B. Alignment-based Methodology using Needleman Wunsch 

Algorithm 

               The main objective of sequence alignment is to find 

similar sequences in the homologous gene sequences and return 

the longest subsequence with highest score. Let S = {S1, S2, …, 

Sm} and T = {T1, T2, … Tn} are the two sequences, d is the gap 

penalty cost, s(x, y) is the score of aligning a base x from S and a 

base y from T and F is matrix where F (x, y) refers to the xth 

place in S and the yth place in T. 

 The Needleman Wunsch Algorithm works as 

follows, 

(i) A scoring function,  has to be defined (+1 for match and -1 

for mismatch) for the DNA sequence. 

(ii) A gap penalty, d for insertion or deletion for the bases in the 

sequence. 

(iii) Initialize F matrix as F(0,0)=0, F(i,0)=F(i-1,0)-d, 

F(0,j)=F(0,j-1)-d. 

(iv) Fill up the matrix, F recurrently using the below equation 

(4.16). 

}})1,({},),1({)},,()1,1(max{{),( djiFdjiFTiSijiFjiF    

(4.7) 

(4.9) 

(4.11) 

(4.12) 
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(4.14) 

(4.15) 

(4.8) 

(4.10) 
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(v) Traceback the above matrix from the bottom right F(m,n) to 

the top left F(0,0) in order to find the best alignment. 

 
Figure 4.3 Overview of CNN-RNN with LSTM and HHO 

                The above figure 4.3 shows the overview of 

alignment-based deep neural network model for sequence 

analysis to predict monogenetic disorders. The Bi-LSTM of 

Recurrent Neural Network trains the input sequences in both 

forward and backward directions to learn the temporal features. 

The three gates- update, forget and output gate of Bi-LSTM are 

represented mathematically in Equations (4.17), (4.18) and 

(4.19) which holds the current state sequence, 
tx , bias, ub , 

activation output, 
 1ta and weight function, uW . Bi-LSTM 

generates two output cells, the activation value, 
 1ta  and the 

candidate value, 
 1tc  which is specified in Equation (4.20) 

and (4.21) using the three gates. 
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The Convolution Neural Network is used to extract the local features from the aligned DNA sequences. The convolution layer us

     The Convolution Neural Network is used to extract the local 

features from the aligned DNA sequences. The convolution layer 

uses convolution operation that uses ReLU (Rectified Linear 

Unit) function on the input sequence, 
1L

KF  and kernel filter 

with weight factor, 
)(1 L

KJW and bias function, 
)(1 L

Jb is defined in 

equation (4.22). 
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               The ReLU function is given in equation (4.23) 

        ReLU(x) = x, if x ≥ 0 , ReLU(x) = 0, if x < 0   
              

              The max pooling function is implemented in the 

pooling layer of CNN as specified in equation (4.24). 

       ),...,2,1max()( xnxxxpooling       

              Hence, the fully connected layer extracts the significant 

features of the input DNA sequences that signify the mutant 

gene responsible for monogenetic disease. 

              The Horse Herd Optimization, a nature-inspired 

algorithm, is implemented as the behaviour and motion of a 

horse in the search space of identifying the best hyperparameters 

is necessary to establish the neural  

network architecture using CNN and RNN.  

The hyperparameters such as learning rate, filter or kernel size, 

strides, activation function, pooling operations, and dropout rates 

are associated with the different ages and various mechanisms of 

horses to select the optimal values as per HHO algorithm. 

             The velocity of horses’ motion in each of the iteration 

(itr) according to their ages (,, and ) is represented in 

equation (4.25), (4.26), (4.27), and (4.28) 

that are dependent on velocity of grazing ( ageitr
mG

, ), defense 

( ,itr
mD

 ), hierarchy ( ,itr
mH

 ), sociability    

( ,itr
mS

 ), imitation ( ,itr
mI

 ) and roaming          

( ,itr
mR

 ) mechanisms. 
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    The grazing mechanism is followed at all ages (, ,  and ) 

and is represented in Equation (4.29) that uses the previous 

position grazing represented in Equation (4.30). 
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      The hierarchy mechanism is followed at ages , , and  by 

strong horses and is represented in Equation (4.31) that uses the 

previous position of previous stronger horses represented in 

Equation (4.32). 
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The sociability mechanism is followed at ages  and  by the 

horses and is represented in Equation (4.33) that uses the 

previous position biased by the weight factor, ws represented in 

Equation (4.34). 
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The imitation mechanism is followed at age,  by the young 

horses and is represented in Equation (4.35) that uses the 

previous position biased by the weight factor, wi represented in 

Equation (4.36). 

]
1

[ 1

1

1,1, 



   itr

m

N

j

itr

j
ageitr

mi
ageitr

mI
xx

N



  

i

ageitr

m

ageitr

m Xwii ,1, 
 

The defense mechanism is followed at ages , , and  by the 

horses during fights and is represented in Equation (4.37) that 

uses the previous position biased by the weight factor, wd 

represented in Equation (4.38). 
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The roaming mechanism is followed at ages  and  by the 

horses and is represented in Equation (4.39) that uses the 

previous position biased by the weight factor, wd represented in 

Equation (4.40). 
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Thus, the implementation of the above mechanisms of horses in 

the search space of hyperparameters enhances the search and 

leads to optimal value thereby improving the performance of the 

entire framework. 

The optimization algorithms decide the choice of 

hyperparameters such as activation function, dropout rate, 

pooling function to avoid the convergence problems, overfitting 

issues, etc. CNN automates feature selection thereby overcome 

overfitting and down-samples the data thus reducing the 

dimensions. The training phase of CNN uses Random rotations, 

flips or shifts are applied as data augmentation technique in 

order to increase the quantity of training data to prevent 

overfitting and increase robustness of the model. Thus, CNN 

models are used to discover the regulatory variants that play a 

causative role in the increase of risk in genetic disorders crossing 

underlying issues associated with gradient and overfitting 

problems.  

C. Biological Interpretability Analysis 

To improve the interpretability of the CNN-BiLSTM model 

for DNA sequence analysis, we incorporated a saliency mapping 

technique. Saliency mapping highlights the most influential 

regions of input sequences that contribute to the model's 

predictions. This was achieved by calculating the gradients of 

the output with respect to the input sequences, identifying which 

nucleotides or motifs significantly impact the predicted 

outcomes. 

  Grad-CAM (Gradient-weighted Class Activation 

Mapping) is used to generate heatmaps and thereby saliency 

mapping presents the most significant regions of DNA 

sequences responsible for genetic disorders. Biological 

validation was performed by comparing the highlighted regions 

with known pathogenic loci or motifs associated with Angelman 

and Marfan syndromes. 

The motifs identified in the UBE3A gene associated with 

Angelman Syndrome comprises of deletions in exons 3-9, splice 

site mutations in the intron 2-3 region and variants in the 3' 

untranslated region (UTR).  

On the other hand, the motifs in FBN1 gene responsible for 

Marfan Syndrome include mutations in exons 24-32, splice site 

mutations in the intron 24-25 region, variants in the 5' 

untranslated region (UTR) and EGF-like motifs in exons 10-15.  

 

V. RESULTS AND DISCUSSIONS 

   The proposed models of alignment-free framework is 

evaluated using UBE3A dataset and alignment-based framework 

on FBN1 dataset to identify the mutant gene responsible for 

monogenetic disorders like Angelman syndrome and Marfan 

syndrome respectively with the below given hardware setup 

(Table 5.1). 

Table 5.1 Hardware Setup of the Proposed Model 

Aspect 

Alignment-Free 

Model (UBE3A 

Dataset) 

Alignment-Based Model 

(FBN1 Dataset) 

Hardware 

Setup 

NVIDIA Tesla 

V100 GPU (32 

GB), Intel Xeon 

CPU 

NVIDIA Tesla V100 GPU 

(32 GB), Intel Xeon CPU 

Training Time 

(per epoch) 
Approx. 5 hours Approx. 7 hours 

Memory 

Consumption 

~10 GB GPU 

memory 
~15 GB GPU memory 

Scalability 

Efficient on 

medium-sized 

datasets (up to 

100,000 samples) 

Handles medium datasets 

well; large datasets (>1 

million samples) may 

require distributed training 

and memory optimizations 

     To scale the proposed methodology for larger datasets, we 

suggest employing distributed computing techniques, such as 

parallelizing the alignment-free model across multiple CPU 

cores or utilizing GPU acceleration for the alignment-based 

model. Additionally, model compression techniques, pruning is 

applied to reduce the memory footprint and computational 

requirements of the models. 

 

   The saliency maps and feature importance graphs for the 

UBE3A and FBN1 genes provide valuable insights into the key 

regions and features contributing to the diagnosis of 

monogenetic disorders. The saliency maps (Figure 5.1) highlight 

the importance of specific nucleotide positions in the UBE3A 

and FBN1 gene sequences, respectively. The feature importance 

graphs (Figure 5.2 (a) and (b)) reveal the significance of 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 
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different feature types, such as exons, introns, and splice sites, in 

the UBE3A and FBN1 genes. These visualizations demonstrate 

that certain regions and features are more crucial than others in 

determining the genetic basis of monogenetic disorders. 

   Saliency Map presents Heatmap with nucleotide positions on 

x-axis and importance score on y-axis. Red indicates high 

importance, blue indicates low importance. Bar chart with 

feature types (exon, intron, splice site) on x-axis and importance 

score on y-axis. Red indicates high importance, blue indicates 

low importance. 

 

Figure 5.1 Saliency Map of UBE3A 

 

Figure 5.2 (a) Feature Importance Graph (UBE3A Gene) 

 

Figure 5.2 (b) Feature Importance Graph of FBN1 Gene 

 

    To validate the choice of Elephant Herd Optimization (EHO) 

and Horse Herd Optimization (HHO) for hyperparameter tuning, 

a comparative analysis is conducted with Genetic Algorithms 

(GA) and Particle Swarm Optimization (PSO). The experiments 

focused on convergence rate, computational time, and result 

stability using the UBE3A and FBN1 datasets. As summarized 

in Table 5.2 (a), EHO and HHO demonstrated faster 

convergence and lower computational overhead compared to GA 

and PSO, particularly in complex parameter spaces and depicted 

in the figure 5.2 (c). Additionally, both algorithms exhibited 

higher stability across multiple runs, suggesting better 

robustness in optimizing deep learning models for monogenetic 

disorder classification. These findings reinforce the suitability of 

EHO and HHO for the proposed work. 

Table 5.2 (a) Comparative Analysis of Optimization techniques 

Algorithm 
Convergence 

Rate (iterations) 

Computational 

Time (seconds) 

Accuracy 

(%) 

Stability 

(Std. Dev.) 

EHO 150 45 92.5 0.8 

HHO 140 43 91.8 0.7 

GA 180 65 89.2 1.5 

PSO 170 60 90.1 1.3 

 

 

Figure 5.2 (c) Comparative analysis of Optimization techniques 
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   The performance metrics used to evaluate the model are 

accuracy, mean absolute error (MAE) and mean squared error 

(MSE) for alignment-free model and alignment-based model is 

shown in Table 5.2(b).  

    Accuracy is the metric used to assess the correctness of the 

classification or prediction and the corresponding formula is 

given as :  

Accuracy=(no. of correct predictions / Total no. of predictions) ×  

                                                                                 100 

   However, all nuances of prediction errors should also be 

considered. Hence, Mean Absolute Error (MAE) and Mean 

Squared Error (MSE) quantifies the average magnitude of errors 

in predictions without considering their direction. It is calculated 

as: 

 

where the difference is computed between actual values and 

predicted values. MSE is computed using the below given 

formula between predicted and actual values and it signifies 

more weight to larger errors.  

 

To evaluate the models’ performance few more metrics are 

included and are precision, recall, F1 score and ROC-AUC as 

consideration of clinical impacts on false positives and false 

negatives play a vital role. 

The Precision is evaluated as a proportion of true positive 

predictions among all positive predictions. Higher precision is 

essential for reducing misdiagnoses, which is especially needed 

for identifying mutations linked to disorders like Angelman and 

Marfan syndromes. Its formula is: 

 

The Recall or sensitivity is computed as a proportion of true 

positives among all actual positives and is given by: 

 

The F1-Score is the harmonic mean of precision and recall, as it 

considers both false positives and false negatives. 

 

The ROC-AUC is a measure that differentiates positive and 

negative classes and ranges from 0 to 1. 

The alignment-free model on the UBE3A dataset has produced 

(0.81, 0.78,0.79, 0.86) as (precision, recall, F1-score, ROC-

AUC) respectively and for the alignment-based model, it is 

(0.89, 0.91, 0.90, 0.93) on the FBN1 dataset. Below figure 5.3 

represents the evaluation metrics of proposed models against 

existing models. 

 

Figure 5.3 Performance analysis in terms of Precision, recall, f1-

score and ROC-AUC 

 

Table 5.2 (b) Performance Analysis of the Proposed Models 

with respect to accuracy and loss 

Epoch 

Alignment-free Model Alignment-based Model 

Accuracy (%) MAE MSE Accuracy (%) MAE MSE 

1 77.4 0.047 0.003 83.2 0.095 0.114 

2 77.2 0.046 0.003 85.1 0.109 0.130 

3 77.0 0.045 0.003 85.3 0.103 0.123 

4 77.3 0.044 0.002 83.5 0.119 0.143 

5 77.1 0.043 0.002 83.7 0.091 0.109 

6 77.5 0.042 0.002 85.5 0.106 0.126 

7 77.3 0.041 0.002 85.7 0.099 0.119 

8 77.2 0.040 0.002 84.1 0.114 0.136 

9 77.0 0.039 0.002 87.3 0.087 0.104 

10 77.5 0.038 0.001 89.2 0.087 0.104 

 

    The above analysis shows that the process of identification of 

mutant gene in a DNA sequence that is responsible for 

monogenetic disorder especially on Chromosome 15 is more 

accurate (89.2%) when alignment-based technique of 

Needleman Wunsch algorithm combined with deep neural 

network model of CNN and Bi-LSTM. Since the model is 

optimized through the high memory power Horse Herd 

Optimization algorithm. 

   The below table (Table 5.3) shows the significance of 

hyperparameter tuning associated with learning rate, drop outs, 

activation function etc. using Elephant Herd Optimization and 

Horse Herd Optimization algorithms on UBE3A and FBN1 

dataset in monogenetic disorder diagnosis framework. 
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Table 5.3 Hyperparameter tuning using EHO and HHO  

Hyperparameter Options 
Optimal 

(HHO) 

Optimal 

(EHO) 

Activation 

Function 

ReLU, Sigmoid, 

Tanh 
ReLU Sigmoid 

Dropout Rate 0.1, 0.01, 0.001 0.01 0.1 

Pooling Type 
Max, Min, 

Average 
Max Average 

Learning Rate 0.1, 0.01, 0.001 0.001 0.01 

Batch Size 16, 32, 64 32 16 

Optimizer 
Adam, SGD, 

RMSprop 
Adam SGD 

Number of Layers 2, 3, 4 3 2 

Units per Layer 64, 128, 256 128 64 

Regularization 

(L2) 

0.01, 0.001, 

0.0001 
0.001 0.0001 

Epochs 50, 100, 150 100 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Overall Performance in terms of accuracy and error of 

proposed models 

    The sensitivity analysis of Horse Herd Optimization algorithm 

on the hybrid deep learning framework comprising of 

convolutional neural network and bi-directional long-short term 

memory model is shown in figure 5.3. 

 

Figure 5.3 Sensitivity Analysis of Hyperparameters of CNN-

BiLSTM using HHO Algorithm 

   The work does not gets completed if not analyzed with other 

existing models. Hence, the comparison is done with other 

machine learning models on the same dataset and the following 

Table 5.2 shows the result. 

Table 5.2 Comparative Analysis on Monogenetic disorder 

analysis 

Model Accuracy (%) MAE MSE 

Support Vector Machine 75.9 0.155 0.191 

Random Forest 78.2 0.142 0.173 

CNN 80.8 0.129 0.157 

CNN-LSTM 84.2 0.102 0.123 

CNN-Bi-LSTM (Proposed) 89.2 0.087 0.104 

 

     The proposed model, CNN-Bi-LSTM has the highest 

accuracy and the lowest MAE and MSE as shown in figure 5.4 

indicating it outperforms the other models in this comparison. 

The Support Vector Machine model has the lowest performance 

among the models listed. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Comparative Analysis with other Machine Learning 

Models 

 (a) Alignment-free Model’s Performance Analysis 

(b) Alignment-based Model’s Performance Analysis 
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The comparative analysis against the benchmark DNA sequence 

analysis (BLAST) is presented in the below table. 

Model 
Accuracy 

(%) 
Precision Recall 

F1-

Score 

ROC-

AUC 

Standard CNN 80.8 0.82 0.79 0.80 0.83 

RNN 81.5 0.83 0.81 0.82 0.85 

BLAST 

(Alignment 

Technique) 

75.3 0.78 0.76 0.77 0.80 

CNN-Bi-LSTM 

(Proposed) 
89.2 0.89 0.91 0.90 0.93 

 

      The below given table (Table 5.3) provides the metrics 

associated with training, validation and testing phases carried out 

using the proposed methodology from an external dataset of 

monogenetic disorders, dbGaP (Database of Genotypes and 

Phenotypes) providing a diverse genetic profile for testing. 

Table 5.3 Training, Validation and Testing Performance metrics 

Metric Dataset Training Validation Testing 

Accuracy UBE3A 77.5% 76.3% 76.0% 

 FBN1 89.2% 88.5% 88.0% 

 dbGaP 72.7% 73% 73% 

Precision UBE3A 0.81 0.79 0.78 

 FBN1 0.89 0.88 0.87 

 dbGaP 0.77 0.73 0.77 

Recall UBE3A 0.78 0.77 0.76 

 FBN1 0.91 0.90 0.89 

 dbGaP 0.72 0.75 0.73 

F1-Score UBE3A 0.79 0.78 0.77 

 FBN1 0.90 0.89 0.88 

 dbGaP 0.742 0.775 0.673 

ROC-AUC UBE3A 0.86 0.85 0.84 

 FBN1 0.93 0.92 0.91 

 dbGaP 0.72 0.75 0.73 

MAE UBE3A 0.038-0.047 0.040-0.050 0.042-0.052 

 FBN1 0.087-0.119 0.089-0.121 0.091-0.123 

 dbGaP 0.032 0.025 0.007 

MSE UBE3A 0.001-0.003 0.0015-0.0035 0.0018-0.004 

 FBN1 0.104-0.143 0.106-0.145 0.109-0.148 

 dbGaP 0.002 0.0015 0.0013 

 

    The Optimization algorithms incorporated in the proposed 

methodology had improved the convergence rate and the results 

are shown in the below given table (Table 5.4) 

Table 5.4 Performance of EHO and HHO against traditional 

optimization techniques 

Algorit

hm 

Conver

gence 

Speed 

Explor

ation 

& 

Exploi

tation 

Balanc

e 

Avoid

ance 

of 

Local 

Mini

ma 

Accu

racy 

(%) 

Preci

sion 

Re

call 

F1

-

Sc

ore 

M

A

E 

M

SE 

Genetic 

Algorit

hm 

(GA) 

Modera

te 

Moder

ate 

Mode

rate 
75.9 0.70 

0.6

8 

0.6

9 

0.1

55 

0.1

91 

Particl

e 

Swarm 

Optimi

zation 

(PSO) 

High Low Low 78.2 0.73 
0.7

1 

0.7

2 

0.1

42 

0.1

73 

Elepha

nt 

Herd 

Optimi

zation 

(EHO) 

High High High 80.8 0.81 
0.7

9 

0.8

0 

0.1

29 

0.1

57 

Horse 

Herd 

Optimi

zation 

(HHO) 

Very 

High 

Very 

High 

Very 

High 
89.2 0.89 

0.9

1 

0.9

0 

0.0

87 

0.1

04 

 The above data shows the improved performance rate 

of the entire framework. Additionally, to error analysis was 

conducted on the proposed framework by assessing the false 

negatives and false positives of DNA sequences. The below 

table 5.5 represents the misclassifications in clinical contexts 

that makes the detection of mutation difficult. 

Table 5.5 Error Analysis for DNA Sequence Classification 

Dataset Metric 
Training 

(%) 

Validation 

(%) 

Testing 

(%) 

UBE3A 
False 

Positives 
5.1 5.3 5.8 

 False 

Negatives 
4.2 4.5 4.9 

 Precision 0.81 0.79 0.78 

 Recall 0.78 0.77 0.76 

 F1-Score 0.79 0.78 0.77 

FBN1 
False 

Positives 
4.0 4.2 4.5 

 False 

Negatives 
3.5 3.7 3.9 

 Precision 0.89 0.88 0.87 

 Recall 0.91 0.90 0.89 
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Dataset Metric 
Training 

(%) 

Validation 

(%) 

Testing 

(%) 

 F1-Score 0.90 0.89 0.88 

       

      To evaluate the robustness of the proposed model, external 

dataset (HGMD-Human Gene Mutation Database and ClinVar) 

other than UBE3A and FBN1 dataset is also considered for 

testing. Table 5.6 shows the performance metrics associated with 

external datasets. 

Table 5.6 Performance analysis on external datasets 

Metric Dataset 
Internal 

Test Set 

External Dataset 

(HGMD-Human 

Gene Mutation 

Database)) 

External 

Dataset 

(ClinVar) 

Accuracy UBE3A 77.5% 75.8% 76.2% 

 FBN1 89.2% 87.5% 88.0% 

Precision UBE3A 0.81 0.78 0.79 

 FBN1 0.89 0.87 0.88 

Recall UBE3A 0.78 0.76 0.77 

 FBN1 0.91 0.89 0.90 

F1-Score UBE3A 0.79 0.77 0.78 

 FBN1 0.90 0.88 0.89 

ROC-

AUC 
UBE3A 0.86 0.84 0.85 

 FBN1 0.93 0.91 0.92 

    As an error analysis for prediction of the weakness of the 

proposed model, false positives (instances where the model 

incorrectly predicts the presence of a disease or condition) and 

false negatives (instances where the model fails to detect a 

condition that is actually present) are focused. This type of 

analysis is particularly important in a clinical context, as 

understanding the nature of these errors can significantly impact 

the model's reliability in real-world applications. 

    For instance, false positives might lead to unnecessary 

treatments or interventions, increasing healthcare costs and 

patient stress, while false negatives could result in the missed 

diagnosis of a serious condition, delaying treatment and 

adversely affecting patient outcomes. In the context of genetic 

diseases, such as those analyzed in this study (e.g., UBE3A, 

FBN1, and monogenetic disorders), false positives might lead to 

unnecessary genetic counseling or testing, while false negatives 

could delay diagnosis and treatment for patients. The analysis 

should focus on how different genetic profiles or specific 

features might influence the occurrence of these errors. 

 

   Table 5.7 Error Analysis for False Positives and False 

Negatives 

Error 

Type 

Affected 

Dataset 
Frequency 

Clinical 

Impact 

Suggested 

Mitigation 

Approach 

False 

Positive 
UBE3A 10% 

Unnecessary 

genetic 

counseling or 
testing 

Improve feature 

selection or 
introduce stricter 

thresholds for 

classification. 

 FBN1 8% 

Incorrect 
diagnosis, 

unnecessary 

interventions 

Use ensemble 
models to combine 

predictions and 

reduce bias. 

 
dbGaP 

(Immune-
Mediated) 

12% 

Unnecessary 

treatments, 
patient stress 

Incorporate 
additional patient 

history or 

biomarkers. 

False 

Negative 
UBE3A 5% 

Missed 

diagnosis, 
delayed 

treatment 

Incorporate more 
diverse training data, 

use ensemble 

approaches for better 
coverage. 

 FBN1 4% 

Delayed 

diagnosis, 

missed early 
intervention 

Use multi-modal 

data (e.g., clinical, 

genetic) for better 
context. 

 
dbGaP 

(Cystic 
Fibrosis) 

7% 

Missed 

diagnosis of rare 

mutations, 
delayed 

treatment 

Use multi-
layered models (e.g., 

hybrid CNN-

LSTM). 

 

VI. CONCLUSION AND FUTURE ENHANCEMENTS 

It is a well-known fact that genetic factors contribute to the 
development of all diseases. The degree to which gene plays its 
role in disease susceptibility varies and taking the research 
forward towards such genetic mechanisms facilitates strategies 
for averting disease onset and reduces its impact.  

This work focussed on developing hybrid frameworks to 
efficiently perform sequence analysis on genetic sequences and 
to predict and classify the monogenetic disorders especially 
based on chromosome number 15. The sequential analysis is 
done using (i) Clustering-based method that uses Mean Shift 
Clustering algorithm that generates clusters with similar 
sequences. (ii) Alignment-based method that uses Needleman 
Wunsch algorithm to generate the longest subsequence of 
aligned sequence with highest score of similarity. The first 
method used CNN-BiLSTM neural network architecture to 
classify the monogenetic disorders and used Elephant Herd 
Optimization algorithm to tune the hyperparameters of neural 
network architecture. The second method used Horse Herd 
Optimization algorithm for hyperparameter tuning. 

The proposed method using clustering method extracts k-
mers from the DNA sequences, then uses one-hot encoding on k-
mers and gives them as input to the Mean Shift Clustering 
algorithm that generates the clusters containing similar 
sequences by shifting mean in each iteration. The cluster of 
similar sequences forms the input layer of Convolution Neural 
Network that selects the local features from the cluster. The Bi-
directional LSTM selects the temporal features which are used to 
extract the significant features for identifying monogenetic 
disorders. This work is illustrated on UBE3A dataset of NCBI 
that predicts the mutation of Angelman Syndrome and other 
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neuro diseases based on chromosome 15. This method produced 
the classification accuracy of 77.5%. 

   The later method is based on the sequence alignment method 

using Needleman Wunsch algorithm that generated longest 

subsequences of highest alignment score of similarity. These 

sequences are used as input layers for the same CNN-Bi-LSTM 

neural network architecture. This architecture classifies the 

genetic sequences by identifying the muted gene that is 

responsible for monogenetic disorders and classifies connecting 

tissue disorders and Marfan syndrome on FBN1 dataset of 

NCBI. The classification accuracy estimated by this method 

reached 89.2%. 

    The proposed model aimed to address the challenges of 

identifying DNA sequences that reproduce mutation variants and 

classifying monogenetic disorders, despite the complexities of 

genetic heterogeneity and limited data. However, the importance 

of biological interpretability cannot be overstated, particularly in 

clinical applications where understanding the underlying 

biological mechanisms is crucial. This work shows significant 

progress in developing a reliable and accurate classification 

system, overcoming the hurdles of overfitting and inconsistent 

data.  The proposed models have important implications for the 

field of genetics, enabling more precise identification of disease-

causing variants and improved diagnosis of rare genetic 

disorders. 

The model can be enhanced involving assembly of 

multidisciplinary teams by considering environmental risk factors 

associated with adults especially among genetically susceptible 

persons. The hybrid models also have a further scope to conduct 

a prolonged and progressive analysis on monogenetic disorders 

over time need to be done for better diagnosis and prognosis. 

 

 

REFERENCES 

[1] Abhay Kumar, Vinay Kumar Sharma & Prafulla Kumar 

2019, ‘Nanopore sequencing: The fourth-generation 

sequencing’, Journal of Entomology Zoology Studies, vol. 7, no. 

4, pp. 1400-1403. 

[2] Aimin Yang, Wei Zhang, Jiahao Wang, Ke Yang, Yang 

Han & Limin Zhang 2020, ‘Review on the application of 

machine learning algorithms in the sequence data mining of 

DNA’, Frontiers in Bioengineering and Biotechnology, vol. 8, 

no. 1032, pp. 1-13. 

[3] Alekseyev, YO, Fazeli, R & Yang, S 2018, ‘A next-

generation sequencing primer--how does it work and what can it 

do’, Academic Pathology, vol. 5, pp. 1-11. 

[4] Alexandra Miere, Thomas Le Meur, Karen Bitton, Carlotta 

Pallone, Oudy Semoun, Vittorio Capuano, Donato Colantuono, 

Kawther Taibouni, Yasmina Chenoune, Polina Astroz, Sylvain 

Berlemont, Eric Petit & Eric Souied 2020, ‘Deep learning-based 

classification of inherited retinal diseases using fundus 

autofluorescence’, Journal of Clinical Medicine, vol. 9, no. 10, 

pp. 1-13. 

[5] Ali, M, Ahmed, K, Bui, FM, Paul, BK, Ibrahim, SM, 

Quinn, JM & Moni, MA 2021, ‘Machine learning-based 

statistical analysis for early-stage detection of cervical cancer’, 

Computers in Biology and Medicine, Article ID. 104985, vol. 

139, pp. 1-13.  

[6] Ali Raza, Furqan Rustam, Hafeez Ur Rehman Siddiqui, 

Isabel de la Torre Diez, Begoña Garcia-Zapirain, Ernesto Lee & 

Imran Ashraf 2022, ‘Predicting genetic disorder and types of 

disorder using chain classifier approach’, Journal of Genes, vol. 

14, no. 1, pp. 1-31. 

[7] Amr Ezz El-Din Rashed, Hanan, M, Amer, Mervat EL-

Seddek & Hossom EL-Din Moustafa 2021, ‘Sequence alignment 

using machine learning-based Needleman–Wunsch Algorithm’, 

IEEE, vol. 9, pp. 109522-109535. 

[8] Annalisa Buniello, Jacqueline, AL, MacArthur, Maria 

Cerezo,  Laura W Harris, James Hayhurst, Cinzia Malangone, 

Aoife McMahon, Joannella Morales, Edward Mountjoy, Elliot 

Sollis, Daniel Suveges,  Olga Vrousgou, Patricia L Whetzel, 

Ridwan Amode, Jose A Guillen, Harpreet S Riat, Stephen J 

Trevanion, Peggy Hall, Heather Junkins, Paul Flicek, Tony 

Burdett, Lucia A Hindorff, Fiona Cunningham & Helen 

Parkinson 2019, ‘The NHGRI-EBI GWAS catalog of published 

genome-wide association studies, targeted arrays and summary 

statistics’, Nucleic Acids Research, vol. 47, pp. 1005-1012. 

[9] Arthur L Delcher, Adam Phillippy, Jane Carlton & Steven 

L Salzberg 2002, ‘Fast algorithms for large-scale genome 

alignment and comparison’, Nucleic Acids Research, vol. 30, no. 

11, pp. 2478-2483. 

[10] Auton, A, Abecasis, GR & Altshuler, DM 2015, ‘A global 

reference for human genetic variation’, Nature, vol. 526, pp. 68-

74. 

[11] Battineni, G, Sagaro, GG, Chinatalapudi, N & Amenta, F 

2020, ‘Applications of machine learning predictive models in the 

chronic disease diagnosis’, Journal of Personalized Medicine, 

vol. 10, no. 2, pp. 1-11. 

[12] Benbelkacem, S & Atmani, B 2019, ‘Random forests for 

diabetes diagnosis’, in Proceedings of the 2019 International 

Conference on Computer and Information Sciences (ICCIS), 

Saudi Arabia, pp. 1-4.  

[13] Benjamin T James, Brian B Luczak & Hani Z Girgis 2018, 

‘MeShClust: An intelligent tool for clustering DNA sequences’, 

Nucleic Acids Research, vol. 46, no. 14, pp. 1-10. 

[14] Brian B Luczak, Benjamin T James & Hani Z Girgis 2019, 

‘A survey and evaluations of histogram-based statistics in 

alignment-free sequence comparison’, Briefings in 

Bioinformatics, vol. 20, no. 4, pp. 1222-1237. 

[15] Brudno, M, Malde, S, Poliakov, A, Do, CB, Couronne, O, 

Dubchak & Batzoglou, S 2003, ‘Glocal alignment: Finding 

rearrangements during alignment’, Bioinformatics, vol. 19, no. 

1, pp. 54-62. 

[16] Burak Gülmez 2023, ‘A novel deep learning model with 

the grey wolf optimization algorithm for cotton disease 

detection’, Journal of Universal Computer Science, vol. 29, no. 

6, pp. 595-626. 

[17] Chakraborty, F, Roy, PK & Nandi, D 2019, ‘Oppositional 

elephant herding optimization with dynamic cauchy mutation for 

multilevel image thresholding’, Evolutionary Intelligence, vol. 

12, no. 1, pp. 1-23. 

[18] Chen, L, Ozsu, MT & Oria, V 2005, ‘Robust and fast 

similarity search for moving object trajectories’, in Proceedings 

of the 2005 ACM SIGMOD International Conference on 

Management of Data, pp. 491-502. 



Journal of Scientific Research, Volume 68, Issue 3, 2024 

   36 
Institute of Science, BHU Varanasi, India 

[19] Cheng, S, Shi, Y & Qin, Q 2012, ‘Population diversity of 

particle swarm optimizer solving single and multi-objective 

problems’, International Journal of Swarm Intelligence Research 

(IJSIR), vol. 3, no. 4, pp. 23-60. 

[20] Cheng, Y 1995, ‘Mean shift, mode seeking, and clustering’, 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 17, no. 8, pp. 790-799. 

[21] Choubey, DK & Paul, S 2017, ‘GA_RBF NN: A 

classification system for diabetes’, International Journal of 

Biomedical Engineering and Technology, vol. 23, no. 1, pp. 71-

93. 

[22] Chowdary, KU & Prabhakara Rao, B 2019, ‘Performance 

improvement in mimo-ofdm systems based on adaptive whale 

elephant herd optimization algorithm’, International Journal of 

Engineering and Advanced Technology (IJEAT), vol. 9, no. 1, 

pp. 6651-6657. 

[23] Daiki Okada, Fumihiko Ino & Kenichi Hagihara 2015, 

‘Accelerating the smith-waterman algorithm with interpair 

pruning and band optimization for the all-pairs comparison of 

base sequences’, BMC Bioinformatics, vol. 16, no. 321, pp. 1-

15.  

[24] Dan Wei, Qingshan Jiang, Yanjie Wei & Shengrui Wang 

2012, ‘A novel hierarchical clustering algorithm for gene 

sequences’, BMC Bioinformatics, vol. 13, no. 174. 

[25] Dinita Rahmalia & Teguh Herlambang 2020, ‘Bat 

algorithm application for estimating super pairwise alignment 

parameters on similarity analysis between virus protein 

sequences’, Journal Ilmiah Teknik Elektro Komputer dan 

Informatika (JITEKI), vol. 6, no. 2, pp. 1-10. 

[26] Dorigo, M, Maniezzo, V & Colorni, A 1996, ‘Ant system: 

optimization by a colony of cooperating agents’, IEEE 

Transaction on Systems, Man, and Cybernetics-Part B, vol. 26, 

no. 1, pp. 29-41. 

[27] Duc-Hau Le, Nguyen Xuan Hoai & Yung-Keun Kwon 

2015, ‘A comparative study of classification-based machine 

learning methods for novel disease gene prediction’, Knowledge 

and Systems Engineering, Advances in Intelligent Systems and 

Computing Book Series (AISC), vol. 326, pp. 577-588. 

[28] Eberhart, R & Shi, Y 2001, ‘Particle swarm optimization: 

Developments, applications and resources’, in IEEE Proceedings 

of the 2001 Congress on Evolutionary Computation (CEC2001), 

pp. 81-86. 

[29] Esin Ays, Zaimoglu, Nilüfer Yurtay, Hüseyin Demirci & 

Yüksel Yurtay 2023, ‘A binary chaotic horse herd optimization 

algorithm for feature selection’, International Journal of 

Engineering Science and Technology, vol. 44, pp. 1-22. 

[30] Ghaheri, A, Shoar, S, Naderan, M & Hoseini, SS 2015, 

‘The applications of genetic algorithms in medicine’, Oman 

Medical Journal, vol. 30, no. 6, pp. 406-416. 

[31] Hakli, H 2019, ‘Elephant herding optimization using multi-

search strategy for continuous optimization problems’, 

Academic Platform Journal of Engineering and Science, vol. 7, 

pp. 261-268.  

[32] Hani Z Girgis 2022, ‘MeShClust v3.0: high-quality 

clustering of DNA sequences using the mean shift algorithm and 

alignment-free identity scores ’, BMC Genomics, vol. 23. 

[33] Hasna El Haji & Larbi Alaoui 2020, ‘A categorization of 

relevant sequence alignment algorithms with respect to data 

structures’, International Journal of Advanced Computer Science 

and Applications, vol. 11, no. 6, pp. 268-273. 

[34] Hayan Lee, James Gurtowsk, Shinjae Yoo, Maria 

Nattestad, Shoshana Marcus, Sara Goodwin, W, Richard 

McCombie &  Michael C Schatz 2016, ‘Third-generation 

sequencing and the future of genomics’, Biorxiv, pp. 1-20. 

[35] Henikoff, S & Henikoff, JG 1992, ‘Amino acid substitution 

matrices from protein blocks’, Proceedings of the National 

Academy of Sciences, vol. 89, pp. 10915-10919. 

[36] Hunkapiller, T, Kaiser, RJ, Koop, BF & Hood, L 1991, 

‘Large-scale and automated DNA sequence determination’, 

Science, vol. 254, no. 5028, pp. 59-67. 

[37] Jackins, V, Vimal, S, Kaliappan, M & Lee, MY 2020, ‘AI-

based smart prediction of clinical disease using random forest 

classifier and naive bayes’, Journal of Supercomputing, vol. 77, 

pp. 5198-5219. 

[38] Jean-Michel Richer, Vincent Derrien & Jin-Kao Hao 2007, 

‘A new dynamic programming algorithm for multiple sequence 

alignment’, Springer-Verlag, pp. 52-61. 

[39] Jian Yan1, Yunjiang Qiu, Andre M Ribeiro dos Santos, 

Yimeng Yin, Yang E Li, Nick Vinckier, Naoki Nariai, Paola 

Benaglio, Anugraha Raman, Xiaoyu Li, Shicai Fan, Joshua 

Chiou, Fulin Chen, Kelly A Frazer, Kyle J Gaulton, Maike 

Sander, Jussi Taipale & Bing Ren 2021, ‘Systematic analysis of 

binding of transcription factors to noncoding variants’, Nature, 

vol. 591, no. 21, pp. 147-151  

[40] Jian-Jun SHU, Kian Yan YONG & Weng Kong CHAN 

2012, ‘An improved scoring matrix for multiple sequence 

alignment’, Mathematical Problems in Engineering, vol. 4, pp. 

1-9. 

[41] Khawla Tadist, Said Najah, Nikola S Nikolov, Fatiha 

Mrabti & Azeddine Zahi 2019, ‘Feature selection methods and 

genomic big data: A systematic review’, Journal of Big Data, 

vol. 6, no. 79, pp. 1-24. 

[42] Kouser & Lalitha Rangarajan 2015, ‘Promoter sequence 

analysis through no gap multiple sequence alignment of motif 

pairs’, Procedia Computer Science, vol. 58, pp. 356-362. 

[43] Krishnand, KN & Ghose, KD 2006, ‘Glowworms swarm-

based optimization algorithm for multimodal functions with 

collective robotics applications’, International Journal of 

Multiagent and Grid Systems, vol. 2, no. 3, pp. 209-222. 

[44] Lei Chen, XiaoYong Pan, Yu-Hang Zhang, Min Liu, Tao 

Huang & Yu-Dong Cai 2019, ‘Classification of widely and 

rarely expressed genes with recurrent neural network’, 

Computational and Structural Biotechnology, vol. 17, pp. 49-60.  

[45] Li, JQ, Pan, S, Xie, S & Wang 2011, ‘A hybrid artificial 

bee colony algorithm for flexible job shop scheduling problems’, 

International Journal of Computers, Communications & Control, 

vol. 6, no. 2, pp. 286-296. 

[46] Li, J, Guo, L, Li, Y & Liu, C 2019, ‘Enhancing elephant 

herding optimization with novel individual updating strategies 

for large-scale optimization problems’, Mathematics, vol. 7, no. 

5, pp. 1-35.  

[47] Lossie, AC, Whitney, MM & Amidon, D 2001, ‘Distinct 

phenotypes distinguish the molecular classes of Angelman 

syndrome’, Journal of Medical Genetics, vol. 38, no. 12 pp. 834-

845. 

[48] Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P 

Xing, Masashi Sugiyama 2019, ‘High-dimensional feature 

selection by feature-wise Kernelized lasso’, Neural 

Computation, vol. 26, pp. 185-207. 



Journal of Scientific Research, Volume 68, Issue 3, 2024 

   37 
Institute of Science, BHU Varanasi, India 

[49] Manfred, G, Grabherr, Pamela Russell, Miriah Meyer, 

Evan Mauceli, Jessica Alfoldi, Federica Di Palma & Kerstin 

Lindblad-Toh 2010, ‘Genome-wide synteny through highly 

sensitive sequence alignment: Satsuma’, Bioinformatics, vol. 26, 

no. 9, pp. 1145-1151. 

[50] Mansouri Fatimaezzahra, Benchikhi loubna, Sadgal 

Mohamed & Elfazziki Abdelaziz 2017, ‘A combined cuckoo 

search algorithm and genetic algorithm for parameter 

optimization in computer vision’, International Journal of 

Applied Engineering Research, vol. 12, no. 22, pp. 12940-

12954. 

[51] Marine Poullet & Ludovic Orlando 2020, ‘Assessing DNA 

sequence alignment methods for characterizing ancient genomes 

and methylomes’, Frontiers in Ecology and Evolution, vol. 8, no. 

105, pp. 1-13. 

[52] Maros, C, Martin, D & Zoltan, B 2021, ‘Analysis and 

experimental evaluation of the Needleman Wunsch algorithm for 

trajectory comparison-science direct’, Expert Systems with 

Applications, vol. 165, no. 1, pp. 1-12.  

[53] Timothy Chappell, Shlomo Geva and James Hogan 2017, 

‘K-Means Clustering of Biological Sequences’, ACM, pp. 1-4. 

 

 

 

*** 


