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Abstract—The aim of this research paper is to derive a
variety of some novel analytical solutions to the Benny–Luke
Equation by using the similarity transformations method via
Lie-symmetry analysis. The equation is a nonlinear dispersive
wave occurring at a beach. It results after the interaction of
long waves of small amplitudes in a finite-depth water wave,
and exists where surface tension is near to zero. The solutions
are derived with an appropriate choice of arbitrary constants
to proceed integration in the similarity reduction. A numerical
simulation of the solutions is also performed in order to show
their dynamics. The dynamical behavior of solutions reveals
traveling, stationary, periodic, and parabolic profiles based on
their graphical representations. Novelty of solutions confirmed by
comparing them with the results established in reported works.

Index Terms—Benny–Luke equation, Similarity reduction,
Lie–symmetry analysis, Shallow water wave, Similarity solutions

I. INTRODUCTION

A. Scope

The study of nonlinear wave interactions in water waves
has became more attractive due to their wide applications
for solving nonlinear partial differential equations (NPDEs)
arising in real-world nonlinear phenomena, notably in ocean
science, mathematical physics, electromagnetism, plasmas,
etc. Researchers employed a variety of tools/methods to solve
them using different issues. Some of them are cited as
Hamiltonian structure and failure of the variational (Quintero
& Grajales, 2008), Tanh–Coth (Gözükizil & Akcagil, 2012),
high–accurate Fourier spectra (Grajales, 2009), Jacobi elliptic
functions and the Tanh–Coth (Gündoĝdu & Gözükizil, 2021),
Hamiltonian systems (Grillakis et al., 1987), Lie group for-
malism (Bruzón, 2016), Ansatz (Triki et al., 2012), enhanced
(G′/G)–expansion (Islam et al., 2017), modified simple equa-
tion (Akter & Akbar, 2015), enhanced (G′/G)–expansion
(Kazi Sazzad Hossain & Ali Akbar, 2017), improved (G′/G)–
expansion (Islam et al., 2017), (G′/G)–expansion (Khan et al.,
2017), (1/G′)–expansion (Durur & Yokuş, 2021), (G′/G2)–
expansion (Sirisubtawee & Koonprasert, 2018), generalized ra-
tional (Ghanbari et al., 2019), homogeneous balance (Ibrahim
et al., 2019), classical variational (Mizumachi et al., 2013)

and many others. In this article, the Benney–Luke equation
(BLE) is solved analytically by using a powerful tool, i.e., the
similarity transformations method (STM) via Lie–symmetry
analysis.

B. Origin of the problem

The BLE was derived in 1964 by David J. Benney and J.
Luke to observe three–dimensional weakly nonlinear shallow
water waves. The BLE has inspired to research community due
to its wide range of applications in physical situations where
long waves of short amplitude interact on flat beaches and
the propagation of Tsunamis occurs [1–17]. The BLE exists
where surface tensions are comparatively weaker. The BLE is
governed by

utt − uxx + 2ux uxt + ut uxx + a uxxxx − b uxxtt = 0, (1)

where u = u(x, t) is the water wave amplitude depending
upon space variables x, and temporal t. Other symbols a, and
b, being are positive numbers. Formally, the BLE (1) is a two-
way approximation of long water waves of finite depth.

C. Literature survey

The recently updated literature related to the BLE is avail-
able in [1–17] and described as:

The Generalized BLE (GBLE) is a two–way approximation
of water wave models Quintero & Grajales (2008), usually
familiar as Sobolev equation. The Sobolev equation is an
NPDE in which time and space derivatives appear in the
highest order (Gözükizil & Akcagil, 2012).

The GBLE is explored by

utt −△u+ α(a△2u− b△utt)

+ϵ
(
ut△n u+

(
2

n+1

)
|∇n+1

2 u|2t
)
= 0, (2)

where |∇ru| =
√
|∂xu|2r + |∂yu|2r and

△nu = ∇.(∇nu) = ∂x|∂xu|n + ∂y|∂yu|n.
For r = 1, ∇r and △r are the gradient and Laplacian
operators, respectively and upon space variables y. Other
symbols n, α, ϵ being positive numbers.
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In particular, Quintero and Grajales (Quintero & Grajales,
2008) used Hamiltonian structure and failure of the variational
method. They (Quintero & Grajales, 2008) implemented a
finite difference numerical scheme to find a solitary wave for
the following, the one-dimensional version of BLE (2).

utt−uxx+nut (ux)
n−1 uxx+2(ux)

n uxt+a uxxxx−b uxxtt = 0,
(3)

where a, b are taken as a − b = Γ − 1/3, in which Γ is a
dimensional less number, known as the inverse bond number.
Γ describes the effect of surface tension and gravity force.
Grajales (Grajales, 2009) attained a periodic traveling wave so-
lution to show the orbital stability by using the high–accurate
Fourier spectra method. Gündoĝdu and Gözükizil (Gündoĝdu
& Gözükizil, 2021) employed Jacobi elliptic functions as well
as the Tanh–Coth method and obtained trigonometric, elliptic,
and hyperbolic solutions of Eq. (3). Grillakis et al. (Grillakis et
al., 1987) studied that BLE (3) does not belong in the class of
Hamiltonian systems under the restrictions c2 > Max{1, a

b }
and n ≥ 1, where c is wave speed.

Bruzón (Bruzón, 2016) investigated the following gener-
alized form of BLE, and obtained the trigonometric, and
hyperbolic solutions with the help of Lie group formalism and
a non–classical approach:

utt−k2 uxx+γ ut uxx+d ux uxt+a uxxxx−b uxxtt = 0, (4)

where k, a, b, γ, and d are positive parameters. It is one of
the most general form of BLE. Triki et al. (Triki et al., 2012)
employed the Ansatz method to obtain a shock wave solution
for Eq. (4).

BLE (1) can be derived by taking n = 1 in Eq. (3) or
by taking k = γ = 1 and d = 2 in Eq. (4). The BLE
(1) can also be obtained from the three-dimensional Euler’s
equation for the irrotational and incompressible fluid flow. The
BLE exhibit in these equations and calculated by using small
amplitude and long wave assumptions (Islam et al., 2017), in
contrast with one-way approximation of long water waves like
in the Korteweg de-Vries, Benjamin–Bona–Mahony equation,
and Kadomtsev–Petviashvili equation (Quintero & Grajales,
2008).

Aktar and Akbar (Akter & Akbar, 2015) used modified
simple equation to find traveling wave for Eq. (1) and that
method is applied to two nonlinear evolution equations. Kazi
Sazzad Hossain and Ali Akbar (Kazi Sazzad Hossain &
Ali Akbar, 2017) employed the enhanced (G′/G)–expansion
method to derive hyperbolic, trigonometric solution. They
study the evolution of three–dimensional, low–amplitude water
waves when the horizontal length scale is large in comparison
to the depth. Rayhanul Islam et al. (Islam et al., 2017)
attained hyperbolic, and trigonometric solutions by using the
enhanced (G′/G)–expansion method. They (Islam et al., 2017)
used improved (G′/G)–expansion techniques to find travelling
wave and Sobolev type equations and a formally valid approxi-
mation for describing two–way water wave propagation in the
presence of surface tension. The (G′/G)–expansion method
is employed by Khan et al. (Khan et al., 2017) to obtain
a solitary wave solution. They also used fractional complex
transformation and a modified Reimann–Liouville derivative.

Durur and Yokuş (Durur & Yokuş, 2021) used (1/G′)–
expansion to obtain a hyperbolic solution. Sirisubtawee and
Koonprasert (Sirisubtawee & Koonprasert, 2018) employed
the (G′/G2)–expansion approach to find trigonometric, and
exponential solutions. Ghanbari et al. (Ghanbari et al., 2019)
attained a solitary wave solution by using a generalized ratio-
nal method. Ibrahim et al. (Ibrahim et al., 2019) employed the
homogeneous balance method to find a solitary wave solution.
Gözükizil and Akcagil (Gözükizil & Akcagil, 2012) used the
Tanh–Coth method and attained a travelling wave solution.
By applying the classical variational method, Mizumachi et
al. (Mizumachi et al., 2013) study the asymptotic stability of
solitary wave solutions for Eq. (1).

D. Motivation and objective

The author draws inspiration from the BLE qualities listed
above, as detailed in [1–17], and obtained some new varieties
of analytical solutions by using the STM. The Lie–symmetry
analysis was developed by Sophus Lie to provide an ad–hock
integration tool for the PDE. In a PDE with or without bound-
ary conditions, the STM reduces the number of independent
variables. Obviously, repeated use of the STM can transform
the PDE to an equivalent ODE. In each similarity reduction,
the PDE remains unchanged. The invariance criterion of STM
for PDEs can result in an over–determining linear system of
new PDEs with infinitesimal generators that are functions of
independent and dependent variables. Similarity variables are
produced by such modifications, using Lagrange’s equation as
a tool. Similarity functions are able to generate similar forms
of solutions. For a description of the STM and its uses, one
might look through the extensive literature [18–26] and the
references therein.

E. Out line

This article is structured as follows: In the next section,
Lie symmetry analysis is used to obtain invariant solutions.
Section 3 depicts the comparison with reported results. Section
4 includes physical analysis and discussions of solutions.
Conclusions are described in the last section of the article.

II. INVARIANT SOLUTIONS BY SIMILARITY
TRANSFORMATIONS METHOD

In this section, some basic steps are depicted to give a brief
idea of the STM. The author has considered the following
one–parameter (ϵ) Lie–symmetry transformations

x∗ = x+ ϵ ξ(χ) +O(ϵ2),

t∗ = t+ ϵ τ(χ) +O(ϵ2),

u∗ = u+ ϵ η(χ) +O(ϵ2),

u∗
x∗ = θx + ϵ [ηx] +O(ϵ2),

u∗
x∗x∗ = θxx + ϵ [ηxx] +O(ϵ2),

u∗
x∗t∗ = θxt + ϵ [ηxt] +O(ϵ2), etc. (5)

where ξ, τ , and η are the infinitesimals of the variables x, t
and u respectively. The notation (χ) denotes the collection of
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independent and dependent variables (x, t, u), and the vector
field V for infinitesimal transformations can be explored as:

V = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
. (6)

The invariance condition for BLE is given by

Pr(4)V
[
utt − uxx + 2ux uxt + ut uxx + a uxxxx

−b uxxtt

]
= 0, (7)

where Pr(4) is the fourth prolongation (refer to Bluman &
Cole (1974); Olver (1993)), it can be represented as

Pr(4)V = V + [ηt]
∂

∂(ut)
+ [ηx]

∂
∂(ux)

+ [ηxt]
∂

∂(uxt)

+ [ηtt]
∂

∂(utt)
+ [ηxx]

∂

∂(uxx)
+ [ηxxtt]

∂

∂(uxxtt)

+ [ηxxxx]
∂

∂(uxxxx)
. (8)

The extensions of different orders ((Bluman & Cole, 1974;
Olver, 1993)) can be represented by

[ηx] = ηx + (ηu − ξx) θx − τx θt − ξu θx
2 − τu θxθt,

[ηxt] = ηxt + (ηtu − ξtx)θx + (ηxu − τxt)θt − τxu θ2t

+(ηu − ξx − τt)θxt − ξu θxxθt − ξt θxx

+(ηuu − ξxu − τtu)θxθt − τxu θxθ
2
t − 2ξu θxtθt

−τu θxθtt − ξuu θtθ
2
x − 2τu θtθxt − τx θtt. etc. (9)

Putting the values of the extensions [ηt], [ηxt], etc. and solving
Eq. (7) under the restriction that it satisfy Eq. (1), the author
obtained the following over-determining system of PDEs.

ξx = ξt = ξu = 0, τx = τt = τu = 0, ηux = ηut = ηuu = 0.
(10)

On solving the system, it produces the following infinitesimals

ξ = a1, τ = a2, ηu = a3. (11)

The Lagrange’s characteristic equation for the test Eq. (1) is

dx

a1
=

dt

a2
=

du

a3
. (12)

Now, the following cases can be raised:
Case (I): For a2 ̸= 0, Eq. (12) yields

dx

A1
= dt =

du

A2
. (13)

where A1 =
a1
a2

, and A2 =
a3
a2

.

Integration of (13) gives the similarity variable X = x−A1t
and the similarity function is U = A2t+ F (X).

Then, similarity reduction for BLE is

α
¯̄̄̄
F − 3A1F̄

¯̄F + β ¯̄F = 0, (14)

where α = a−bA2
1, β = A2

1+A2−1. Eq. (14) on integrating,
yields

α
¯̄̄
F − 3

2
A1(F̄ )2 + βF̄ = C1, (15)

where C1 is a constant of integration.

To solve it further, A1 = 0 is taken in Eq. (15), which
recasts as

a
¯̄̄
F + (A2 − 1)F̄ = C1. (16)

Again, by integrating under the restriction a1 ̸= a2, one can
have

a ¯̄F + (A2 − 1)F = C1X + C2, (17)

where C2 is a constant of integration.

Case (Ia): The first solution of BLE (1) is given by

u1(x, t) = A2t+B1 exp
(
x
√
(1−A2)/a

)
+B2 exp

(
−x
√

(1−A2)/a
)
− (a/(1−A2)) (C1x+ C2) .

Case (Ib): Another possible solution can be obtained by
taking C1 = 0 in Eq. (17), and then integrating

(F̄ )2 +
(A2 − 1)

a
F 2 − C4

a
F =

C3

a
, (18)

where C3 and C4 are constants of integration.

The following solutions are obtained by using some
adequate restrictions on the constants A2, C3, and C4 in Eq.
(18). The constants C ′

is, 5 ≤ i ≤ 10 of integration that have
appeared below are arbitrary.

Case (Ib1) : For A2 = 1 + ak21 , C3 = ak2, C4 = 0, k,
and k1 being arbitrary, then another solutions of BLE (1) are
represented as

u2(x, t) =
(
1 + ak21

)
t+

k
√
a

k1
sin k1 (x+ C5),

u3(x, t) =
(
1 + ak21

)
t+

k
√
a

k1
cos k1 (x+ C6).

Case (Ib2) : Treating A2 = 1 − k2, k ̸= 1, C3 = k2, and
C4 = 0, then the solution for BLE is

u4(x, t) = (1− k2)t+ sinh

(
± kx√

a
+ C7

)
.

Case (Ib3) : For A2 = 1 − k2, k ̸= 1, C3 = −k2, and
C4 = 0, the solution can be read as

u5(x, t) = (1− k2)t+ cosh

(
± kx√

a
+ C8

)
.

Case (Ib4) : For A2 = 1 − k2, k ̸= 1, C3 = 1, and
C4 = 2k, the solution can be furnished as

u6(x, t) =
(
1− k2

)
t+

1

k

[
exp (± kx√

a
+ C9)− 1

]
.

Case (Ib5) : For A2 = 1, and C3 = C4 = k, solution can
be given by

u7(x, t) = t+
1

4

(
±x

√
k

a
+ C10

)2

− 1.
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III. COMPARISON WITH REPORTED RESULTS

The result of Eq. (22) if c = 0 of Bruzón (Bruzón, 2016)
can be derived by inserting a = 1, c1 = −1, c2 = 1, C10 = 0,
k = 2, and K = 0 in the expression u7 in this work, and the
other findings in this article are absolutely different from the
reported results [1–17].

IV. ANALYSIS AND DISCUSSIONS OF SOLUTIONS

This section depicts the analysis and discussion of the
physical nature of solutions. The mathematical expressions
for the solutions are represented by u1, u2, u3, u4, u5, u6,
u7, which show exponential, trigonometric, hyperbolic, and
rational types. The solutions are different from the reported
results in [1–17]. Mathematical expressions become more sig-
nificant if those are explained by their graphical representation.
For Figs. 1–6, the profiles were plotted using the MATLAB
simulation with a space range −20 ≤ x ≤ 20, and choosing
an appropriate choice of arbitrary constants and parameter like
a = 0.9706. Dominance behavior is captured and depicted
for each one. The variation in water wave amplitude (u)
corresponds to the variation in time and is shown.

Figure 1: The water wave amplitude u1 varies traveling in
nature during 0 ≤ t ≤ 2, with A2 = 0.2785, B1 = 0.5469,
B2 = 0.9575, C1 = 0.9649, C2 = 0.1576, and a = 0.9706.

Figure 2: Setting A2 = 1+ ak21 , C3 = ak2, and C4 = 0 in
Eq. (18), u2 and u3 are derived. Both functions are periodic in
nature. Therefore, the author plotted the profile only for u2. To
achieve simulation, arbitrary values are taken as k = 0.9157,
k1 = 0.7922, and C5 = 0.9595. A periodic profile is shown
in Fig. 2.

Figure 3: A traveling wave profile is shown for u4. The
constants k = 0.9157, and C7 = 0.8003 are chosen for
numerical simulation.

Figure 4: Profile of u5 shows travelling wave nature with
an appropriate choice of k = 0.9157 and C8 = 0.8147.

Figure 5: The stationary nature of the profile is shown via
this figure for the solution u6 with k = 0.9157, and C9 =
0.9058. Solution u6 is found taking A2 = 1 − k2, k ̸= 1,
C3 = 1, and C4 = 2k in Eq. (18).

Figure 6: By taking k = 0.9157 and C10 = 0.9134, in u7,
the profiles show a parabolic nature and variations in water
wave amplitude, where the range between 0 ≤ t ≤ 4.

V. CONCLUSIONS

In this research, the author successfully applied the STM to
generate a new variety of solutions for BLE (1). The BLE ap-
pears on flat beaches where surface tensions are approximately
zero when the horizontal length scale is large in comparison to
the depth of low amplitude water waves. To employ similarity
reduction, the author had to make an appropriate choice of
arbitrary constants for further processing of the integration. All
the solutions represented by u1, u2, u3, u4, u5, u6, u7, differ
from previous results existing in [1-17]. The solutions are
analysed physically and show travelling, periodic, stationary,
and parabolic profiles. Novelty of solutions confirmed by
comparing with solutions of Bruzón (2016) and other reported

works [1-17]. In the future, this research could pave the way
of finding analytical solutions to other NPDEs.
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