S.K.Singh

Professor
Ph D (BHU)
Contact Information:
Tel: +91-9415272835 (M);
Email Id:singhsk64@gmail.com

 
Academic Qualifications:
S. No.DegreeInstitutionYear
1.B.Sc. (Hons.)Gorakhpur University1983
2.M.Sc.Gorakhpur University1985
3.Ph.D.Banaras Hindu University1989
 
Professional Employments:

S. No.Name of the Post Name of the DepartmentName of the Inst./UnivDuration
5.ProfessorDepartment of StatisticsBanaras Hindu University (India) 2008-Present
4.Associate ProfessorDepartment of StatisticsBanaras Hindu University (India)2007-2008
3.Associate ProfessorDepartment of StatisticsU.P. Autonomous College, Varanasi (India)2001-2007
2.ReaderDepartment of StatisticsU.P. Autonomous College, Varanasi (India)1998-2001
1.LecturerDepartment of StatisticsU.P. Autonomous College, Varanasi (India)1988-1998

Brief writeup on area of specialization/awards/achievements:
My area of interest is Statistical Inference. Area of Statistical inference is very vast and divided into two paradigms namely frequentist and Bayesian. The frequentist approach depends upon the repeated sampling concepts and rely only on the observation however the Bayesian concept utilizes both the observation and believes of the experimenter. The importance of Bayesian inference is getting high tide in the field of research because of its direct probabilistic interpretations. The use of Bayesian technique in the field of estimation, hypothesis testing, prediction and projection is more reliable technique in comparison of frequentist technique. Presently I am using Bayesian principle in life testing and reliability estimation, analyzing the demographic data and making projections based on the technique.
 
Contact Information: Deptt. Of Statistics, Faculty of Science, Banaras Hindu University, Varanasi-221005
Tel: +91-9415272835 (M)
E-mail: singhsk64@gmail.com
Home: S 1/121 B-3A Chuppeypur, Gilat Bazar, Varanasi,221002
 

List of 10 major Publications: (in order of importance)

  1. 1. Basu, S., Singh, S. K., & Singh, Umesh (2018). Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data. Methodology and Computing in Applied Probability, 1-18.

  2. 2. Maurya, S. K., Kaushik, A., Singh, S. K., & Singh, Umesh (2017). A new class of distribution having decreasing, increasing, and bathtub-shaped failure rate. Communications in Statistics-Theory and Methods, 46(20), 10359-10372.

  3. 3. Basu, S., Singh, S. K., & Singh, Umesh (2017). Bayesian inference using product of spacings function for Progressive hybrid Type-I censoring scheme. Statistics, 52(2), 345-363.

  4. 4. Basu, S., Singh, S. K., & Singh, Umesh (2017). Parameter estimation of inverse Lindley distribution for Type-I censored data. Computational Statistics, 32(1), 367-385.

  5. 5. Kaushik, A., Singh, Umesh, & Singh, S. K. (2017). Bayesian inference for the parameters of Weibull distribution under progressive Type-I interval censored data with beta-binomial removals. Communications in Statistics-Simulation and Computation, 46(4),3140-3158.

  6. 6. Singh, S. K., Singh, Umesh, & Kumar, M. (2016). Bayesian Estimation for Poisson-exponential Model under Progressive Type-II Censoring Data with Binomial Removal and Its Application to Ovarian Cancer Data. Communications in Statistics-Simulation and Computation, 45(9), 3457-3475.

  7. 7. Sharma, V. K., Singh, S. K., Singh, Umesh, & Merovci, F. (2016). The generalized inverse Lindley distribution: A new inverse statistical model for the study of upside-down bathtub data. Communications in Statistics-Theory and Methods, 45(19), 5709-5729.

  8. 8. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2013). Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively Type-II censored sample where removals follow the beta-binomial probability law. Applied Mathematics and Computation, 222, 402-419.

  9. 9. Singh, S. K., Singh, Umesh, & Kumar, D. (2013). Bayesian estimation of parameters of inverse Weibull distribution. Journal of Applied statistics, 40(7), 1597-1607.

  10. 10.Singh, S. K., Singh, Umesh, & Kumar, D. (2013). Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors. Journal of Statistical computation and simulation, 83(12), 225 8-2269.

Full List of publications:

  1. 1. Kumar, Dinesh, Kumar, Pradip, Singh, Sanjay & Singh, Umesh. (2019). A New Asymmetric Loss Function: Estimation of Parameter of Exponential Distribution. Journal of Statistics and Applications & Probability Letters, 6, 37-50.

  2. 2. Kumar, Dinesh, Singh, Umesh, Singh, Sanjay & Chaurasia, Prashant. (2018). A New Lifetime Distribution: Some of its Statistical Properties and Application. Journal of Statistics Applications & Probability Letters, 7, 413-422.

  3. 3. Vishwakarma, P. K., Kaushik, A., Pandey, A., Singh, Umesh, & Singh, S. K. (2018). Bayesian Estimation for Inverse Weibull Distribution under Progressive Type-II Censored Data with Beta-Binomial Removals. Austrian Journal of Statistics, 47(1), 77-94.

  4. 4. Kumar, Dinesh, Singh, S. k., Singh, Umesh & Chaurasia, Prashant. (2018). Statistical Properties and Application of a Lifetime Model Using Sine Function. International Journal of Creative Research Thoughts, 6(2), 992-1001.

  5. 5. Chaturvedi, A., Singh, S. K., & Singh, Umesh. (2018). Statistical Inferences of Type-II Progressively Hybrid Censored Fuzzy Data with Rayleigh Distribution. Austrian Journal of Statistics, 47(3), 40-62.

  6. 6. Yadav, A. S., Saha, M., Singh, S. K., & Singh, Umesh (2018). Bayesian estimation of the parameter and the reliability characteristics of xgamma distribution using Type-II hybrid censored data. Life Cycle Reliability and Safety Engineering, 1-10

  7. 7. Basu, S., Singh, S. K., & Singh, Umesh (2018). Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data. Methodology and Computing in Applied Probability, 1-18.

  8. 8. Yadav, A. S., Bakouch, H. S., Singh, S. K., & Singh, Umesh (2018). Power Maxwell distribution: Statistical Properties, Estimation and Application. arXiv preprint arXiv:1807.01200.

  9. 9. Yadav, A. S., Singh, S. K., & Singh, Umesh (2018). Estimation of stress strength reliability for inverse Weibull distribution under progressive type-II censoring scheme. Journal of Industrial and Production Engineering, 1-8.

  10. 10. Singh, R. K., Singh, S. K., & Singh, Umesh (2018). Estimation of Reliability Characteristics using Product Spacings Method for Progressively Type II Censored. International Journal of Statistics & Economics, 19(1), 93-109.

  11. 11. Maurya, S. K., Kumar, D., Singh, S. K., & Singh, Umesh (2018). One Parameter Decreasing Failure Rate Distribution. International Journal of Statistics & Economics, 19(1), 120-138.

  12. 12. Singh, R. K., Kaushik, A., Singh, S. K., & Singh, Umesh (2018). Product Spacings for the Estimation of the Parameters of the Exponentiated Pareto Distribution. International Journal of Applied Mathematics and Statistics, 57(3), 79-95.

  13. 13. Kumar, M., Singh, S. K., & Singh, Umesh (2017). Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal. International Journal of System Assurance Engineering and Management, 1-15.

  14. 14. Kumar, Dinesh & Yadav, Abhimanyu & Kumar, Pawan & Singh, S. K. & Singh, Umesh. (2017). Transmuted Inverse Lomax Distribution: Statistical Properties and Application. Journal of Advanced Computing.

  15. 15. Maurya, S. K., Kaushik, A., Singh, S. K., & Singh, Umesh (2017). A new class of distribution having decreasing, increasing, and bathtub-shaped failure rate. Communications in Statistics-Theory and Methods, 46(20), 10359-10372.

  16. 16. Maurya, S. K., Kaushik, A., Singh, S. K., & Singh, Umesh (2017). A new class of exponential transformed Lindley distribution and its Application to Yarn Data. International Journal of Statistics & Economics, 18(2), 135-151.

  17. 17. Maurya, Sandeep K, Kumar, Pradip, Patel, Gopal, Praveen, Sultan, Srivastava, Nishant K, Kumar, Dinesh, Singh, Sanjay K & Singh, Umesh (2017). DUS Exponential Distribution: Some Recent Development and Application. International Journal of Trend in Research and Development. 4(4), 397-402.

  18. 18. Basu, S., Singh, S. K., & Singh, Umesh (2017). Bayesian inference using product of spacings function for Progressive hybrid Type-I censoring scheme. Statistics, 52(2), 345-363.

  19. 19. Basu, S., Singh, S. K., & Singh, Umesh (2017). Parameter estimation of inverse Lindley distribution for Type-I censored data. Computational Statistics, 32(1), 367-385.

  20. 20. Sharma, V. K., Singh, S. K., & Singh, Umesh (2017). Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data. Communications for Statistical Applications and Methods, 24(3), 193-209.

  21. 21. Sharma, V. K., Singh, S. K., Singh, Umesh, & Ul Farhat, K. (2017). Bayesian estimation on interval censored Lindley distribution using Lindleys approximation. International Journal of System Assurance Engineering and Management, 8(2), 799-810.

  22. 22. Kaushik, A., Singh, Umesh, & Singh, S. K. (2017). Bayesian inference for the parameters of Weibull distribution under progressive Type-I interval censored data with beta-binomial removals. Communications in Statistics-Simulation and Computation, 46(4),3140-3158.

  23. 23. Kaushik, A., Pandey, A., Maurya, S. K., Singh, Umesh, & Singh, S. K. (2017). Estimations of the parameters of generalised exponential distribution under progressive interval type-I censoring scheme with random removals. Austrian Journal of Statistics, 46(2), 33-47.

  24. 24. Vishwakarma, Pradeep Kumar, Singh, Umesh, & Singh, S. K. (2017). Bayesian Estimation of Inverted Exponential Distribution Based on Record values. Journal of Applied Probability and Statistics, 12(1), 67-87.

  25. 25. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2017). Bayesian estimation of Lomax distribution under type-II hybrid censored data using Lindley's approximation method. International Journal of Data Science, 2(4), 352-368.

  26. 26. Kumar, D., Singh, Umesh, & Singh, S. (2017). Lifetime distribution: derived from some minimum guarantee distribution. Sohag Journal of Mathematics, 4(1), 7-11.

  27. 27. Kumar, D., Singh, Umesh, Singh, S. K., & Mukherjee, S. (2017). The new probability distribution: an aspect to a life time distribution. Mathematical Sciences Letters, 6(1), 35-42.

  28. 28. Basu, S., Singh, S. K., & Singh, Umesh (2016). A Study of Age Distribution of Prostate Cancer Detection. Journal of Data Science, 14(3), 539-552.

  29. 29. Singh, R. K., Yadav, A. S., Singh, S. K., & Singh, Umesh (2016). Marshall-Olkin Extended Exponential Distribution: Different Method of Estimations. Journal of Advanced Computing, 5(1), 12-28.

  30. 30. Kumar Singh, R., S. k., & Singh, Umesh (2016). Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under Progressive Type II Censoring. Journal of Statistics and Management Systems, 19(2), 219-245.

  31. 31. Kaushik Arun, Sharma, Vikash Kumar, Singh, Rajwant, Kumar, Singh, Sanjay, Kumar Singh & Singh, Umesh (2016). Improving the Efficiency of Estimator by Using the Predicted Values of Censored Observations. J. Adv. Res. Appl. Math. Stat., 1(2), 1-8.

  32. 32. Maurya, S. K., Kaushik, A., Singh, R. K., Singh, S. K., & Singh, Umesh (2016). A new method of proposing distribution and its application to real data. Imperial Journal of Interdisciplinary Research, 2(6), 1331-1338.

  33. 33. Yadav, A. S., Singh, S. K., & Singh, Umesh (2016). Bayes estimator of the parameter and reliability function of Marshall-Olkin extended exponential distribution using hybrid type-II censored data. Journal of Statistics and Management Systems, 19(3), 32 5-344.

  34. 34. Yadav, A. S., Singh, S. K., & Singh, Umesh (2016). On Hybrid Censored Inverse Lomax Distribution: Application to the Survival Data. Statistica, 76(2), 185.

  35. 35. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2016). Reliability Estimation for Inverse Lomax Distribution Under Type II Censored Data Using Markov Chain Monte Carlo Method. International Journal of Mathematics and Statistics, 17(1), 128-146.

  36. 36. Singh, S. K., Singh, Umesh, & Kumar, M. (2016). Bayesian Estimation for Poisson-exponential Model under Progressive Type-II Censoring Data with Binomial Removal and Its Application to Ovarian Cancer Data. Communications in Statistics-Simulation and Computation, 45(9), 3457-3475.

  37. 37. Kumar, M., Singh, S. K., & Singh, Umesh (2016). Extension of Exponential Count Model and Its Application to Emissions of Beta Particles from a Nuclear Reaction. Journal of Advanced Statistics, 1(3), 137.

  38. 38. Kumar, M., Singh, S. K., & Singh, Umesh (2016). Reliability Estimation for Poisson-exponential model under Progressive type-II censoring data with binomial removal data. Statistica, 76(1), 3-26.

  39. 39. Singh, S. k., Singh, Umesh, & Sharma, V. K. (2016). Estimation and prediction for Type-I hybrid censored data from generalized Lindley distribution. Journal of Statistics and Management Systems, 19(3), 367-396.

  40. 40. Sharma, V. K., Singh, S. K., Singh, Umesh, & Merovci, F. (2016). The generalized inverse Lindley distribution: A new inverse statistical model for the study of upside-down bathtub data. Communications in Statistics-Theory and Methods, 45(19), 5709-5729.

  41. 41. Mohammadi, M., Rai, P., Singh, Umesh, & Singh, S. K. (2016). Investigation of cycle time segments of dragline operation in surface coal mine: A statistical approach. Geotechnical and Geological Engineering, 34(6), 1765-1774.

  42. 42. Singh, S. K., Singh, Umesh, Yadav, A. S., & Vishwakarma, P. K. (2015). On the estimation of stress strength reliability parameter of inverted exponential distribution. International Journal of Scientific World, 3(1), 98-112

  43. 43. Sharma, V. K., Singh, S. K., Singh, Umesh, & Agiwal, V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3), 162-173.

  44. 44. Singh, S. K., Singh, Umesh, Sharma, V. K., & Kumar, M. (2015). Estimation for flexible Weibull extension under progressive Type-II censoring. Journal of Data Science, 13(1), 21-41.

  45. 45. Sharma, V. K., Singh, Umesh, Singh, S. K., & Merovci, F. (2015). Inference of Transmuted Rayleigh wind speed model. Journal of Applied Probability and Statistics, 10(2), 1-13.

  46. 46. Singh, S. K., Singh, Umesh, Yadav, A., & Vishwakarma, P. K. (2015). On the estimation of stress strength reliability parameter of inverted exponential distribution. International Journal of Scientific World, 3(1), 98-112.

  47. 47. Kumar, D., Singh, Umesh, & Singh, S. K. (2015). A method of proposing new distribution and its application to Bladder cancer patients data. J. Stat. Appl. Pro. Lett, 2(3), 235-245.

  48. 48. Kumar, D., Singh, Umesh, & Singh, S. K. (2015). A New Distribution Using Sine Function-Its Application to Bladder Cancer Patients Data. Journal of Statistics Applications & Probability, 4(3), 417.

  49. 49. Singh, Umesh, Singh, S. K., &Yadav, A. S. (2015). Bayesian Estimation for Exponentiated Gamma Distribution under Progressive Type-II Censoring Using Different Approximation Techniques. Journal of Data Science, 13(3), 551-567.

  50. 50. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2015). Reliability estimation and prediction for extension of exponential distribution using informative and non-informative priors. International Journal of System Assurance Engineering and Management, 6(4), 466-478.

  51. 51. Kumar, D., Singh, Umesh, Singh, S. K., & Bhattacharyya, G. (2015). Bayesian Estimation of Exponentiated Gamma Parameter for Progressive Type II Censored Data with Binomial Removals. Journal of Statistics Applications & Probability, 4(2), 265.

  52. 52. Singh, G. P., Tripathi, A., Singh, S. K., & Singh, Umesh (2015). Statistical Study on the Linkage of Child (Under-5) Mortality and Bio-Demographic Variables. Journal of Informatics and Mathematical Sciences, 7(1), 13-19.

  53. 53. Singh, S. K., Singh, Umesh, Yadav, A. S., &Vishwakarma, P. K. (2014). Bayesian reliability estimation of inverted exponential distribution under progressive type-II censored data. Journal of Statistics Applications & Probability, 3(3), 317-333.

  54. 54. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2014). Bayesian reliability estimation in extension of exponential distribution for progressive type ii censored data with binomial removals using different loss functions. International Journal of Statistics & Economics, 13(1), 19-39.

  55. 55. Singh, S. K., Singh, Umesh, & Kumar, D. (2014). Bayesian estimation of the parameters of generalized inverted exponential distribution. International Journal of Statistics & Economics, 13(1), 57-69.

  56. 56. Sharma, V. K., Singh, S. K., & Singh, Umesh (2014). A new upside-down bathtub shaped hazard rate model for survival data analysis. Applied Mathematics and Computation, 239, 242-253.

  57. 57. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2014). Parameter estimation in marshall-olkin exponential distribution under type-i hybrid censoring scheme. Journal of Statistics Applications & Probability, 3(2), 117-127.

  58. 58. Singh, S. K., Singh, Umesh, &Yadav, A. S. (2014). Bayesian estimation of Marshall Olkin extended exponential parameters under various approximation techniques. Hacettepe Journal of Mathematics and Statistics, 43(2), 347-360.

  59. 59. Singh, S. K., Singh, Umesh, & Kumar, M. (2014). Bayesian inference for exponentiated Pareto model with application to bladder cancer remission time. Statistics in Transition, 15(3), 403-426.

  60. 60. Singh, S. K., Singh, Umesh, Kumar, M., &Vishwakarma, P. K. (2014). Classical and Bayesian inference for an extension of the exponential distribution under progressive type-II censored data with binomial removals. Journal of Statistics Applications and probability letters, 1(3), 75-86.

  61. 61. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2014). Bayesian estimation and prediction for the generalized Lindley distribution under asymmetric loss function. Hacettepe Journal of Mathematics and Statistics, 43(43), 661-678.

  62. 62. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2014). Estimation on system reliability in generalized Lindley stress-strength model. Journal of Statistics Applications & Probability, 3(1), 61-65.

  63. 63. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2014). The truncated Lindley distribution: Inference and application. Journal of Statistics Applications & Probability, 3(2), 219-228.

  64. 64. Singh, S. K., Singh, Umesh, & Kumar, M. (2014). Estimation for the parameter of Poisson-exponential distribution under Bayesian paradigm. Journal of Data Science, 12(1), 157-173.

  65. 65. Singh, Umesh, Singh, S. K., & Singh, R. K. (2014). A comparative study of traditional estimation methods and maximum product spacings method in generalized inverted exponential distribution. Journal of Statistics Applications & Probability, 3(2), 153-169.

  66. 66. Singh, Umesh, Singh, S. K., & Singh, R. K. (2014). Product spacings as an alternative to likelihood for Bayesian inferences. Journal of Statistics Applications & Probability, 3(2), 179-188.

  67. 67. Singh, S. K., Singh, Umesh, & Kumar, M. (2013). Estimation of parameters of generalized inverted exponential distribution for progressive type-II censored sample with binomial removals. Journal of Probability and Statistics. 1-12

  68. 68. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2013). Expected total test time and Bayesian estimation for generalized Lindley distribution under progressively Type-II censored sample where removals follow the beta-binomial probability law. Applied Mathematics and Computation, 222, 402-419.

  69. 69. Singh, S. K., Singh, Umesh, & Kumar, D. (2013). Bayesian estimation of parameters of inverse Weibull distribution. Journal of Applied statistics, 40(7), 1597-1607.

  70. 70. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2013). Bayesian analysis for Type-II hybrid censored sample from inverse Weibull distribution. International Journal of System Assurance Engineering and Management, 4(3), 241-248.

  71. 71. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2013). Bayesian prediction of future observations from inverse Weibull distribution based on type-II hybrid censored sample. International Journal of Advanced Statistics and Probability, 1(2), 32-43.

  72. 72. Singh, S. K., Singh, Umesh, Kumar, M., & Singh, G. P. (2013). Estimation of Parameters of Exponentiated Pareto Distribution for Progressive Type-II Censored Data with Binomial Random Removals Scheme. Electronic Journal of Applied Statistical Analysis, 6(2), 130-148.

  73. 73. Singh, S. K., Singh, Umesh, & Sharma, V. K. (2013). Bayesian estimation and prediction for Flexible Weibull model under Type-II Censoring Scheme. Journal of Probability and Statistics, 1-16.

  74. 74. Singh, S. K., Singh, Umesh, & Kumar, D. (2013). Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors. Journal of Statistical computation and simulation, 83(12), 225 8-2269.

  75. 75. Singh, S. K., Singh, Umesh, & Kumar, M. (2013). Estimation of Parameters of Exponentiated Pareto Model for Progressive Type-II Censored Data with Binomial Removals Using Markov Chain Monte Carlo Method. International Journal of Mathematics & Computation, 21(4), 88-102.

  76. 76. Singh, G. P., Tripathi, A., Singh, S. K., & Singh, Umesh (2013). Assessment of effect of socio-economic variables on child mortality through mathematical modelling.JP Journal of Biostatistics, 9(1), 27.

  77. 77. Singh S.K., Singh, Umesh & Kumar M. (2012). Estimation of Parameters of Exponentiated Pareto Distribution. Emerging Application of Bayesian and Stochastic Modelling, Mudranik Technologies Pvt. Ltd. (ISBN 9789382359609)

  78. 78. Singh, S. K., Singh, Umesh, & Kumar, D. (2011). Bayesian estimation of the exponentiated gamma parameter and reliability function under asymmetric loss function. REVSTAT Statistical Journal, 9(3), 247-260.

  79. 79. Singh, Umesh, Singh, S. K. & Singh, G.P. (2011). Model Selection and Bayes Estimates of the Parameter for Distribution of Waiting Time to First Birth. International Journal of Current Research, 33(5). 91-95. (ISSN: 0975-833X)

  80. 80. Singh, G., Singh, B. P., Singh, S. K., Singh, Umesh, & Singh, R. D. (2011). Shrinkage estimator and estimators for shape parameter of classical Pareto distribution. Journal of Scientific Research, 55, 181-207.

  81. 81. Singh, S.K., Singh, Umesh, Singh, K.K. & Singh, G.P. (2010). Bayes Estimates of Model for Waiting Time to First Birth. Population and Reproductive Health, Hindustan Publishing Corporation (India).

  82. 82. Singh, S. K., Singh, Umesh, Singh, K. K. & Singh, G.P. (2010). Modelling of Child Death Experienced by Women in their Reproductive Life Span: A Bayesian Study. Population and Reproductive Health, Hindustan Publishing Corporation (India).

  83. 83. Singh, S. K., Singh, Umesh, Kumar, D & Singh, G.P. (2010). Bayesian Estimation of the Reliability Function and Parameter of Inverted Exponential Distribution using Informative and Non- Informative Priors. Proceedings of National Seminar on Impact of Physics on Biological Sciences, 174-185.

  84. 84. Singh, S. K., Singh, Umesh, Kumar, M and Singh G. P. (2010). Bayesian Estimation of Parameter of Exponential Distribution under General Entropy Loss Function for Progressive Type-II Censored Data with Random Scheme. Proceedings of National Seminar on Impact of Physics on Biological Sciences, 186-194.

  85. 85. Singh, R., Singh, S. K., Singh, Umesh, & Singh, G. P. (2009). Bayes Estimator of Generalized-Exponential Parameters under General Entropys Function Using Lindleys Approximation. Statistics in Transition, 10(1), 109-127.

  86. 86. Singh, R., Singh, S. K., Singh, Umesh, & Singh, G. P. (2008). Bayes estimator of generalized-exponential parameters under Linex loss function using Lindley's approximation. Data Science, 7, 65-75.

  87. 87. Singh, P. K., Singh, S. K., & Singh, Umesh (2008). Bayes estimator of inverse Gaussian parameters under general entropy loss function using Lindleys approximation. Communications in Statistics Simulation and Computation, 37(9), 1750-1762.

  88. 88. Singh, Umesh, Singh, SK, Singh, PK, Upadhyay, SK and Singh, RD. (2008). Bayes Estimator of Weibull Parameters under General Entropy Loss Function. Journal of Scientific Research, BHU 52, 249-262.

  89. 89. Singh, Umesh, Singh, SK, Singh, GP and Upadhyay, SK. (2008). Bayes Estimators of Exponential Parameters from a Censored Sample Using a Guessed Estimate. Data Science Journal 7,106-114.

  90. 90. Singh, K. K., Singh, S.K., Singh, B.P., Singh, N. & Singh, Umesh (2008). Population, poverty and health: analytical approaches. Hindustan Publishing Corporation (India).36-44.

  91. 91. Singh, SK, Singh, Umesh and Singh, P. K. (2007). Bayes estimator of Gamma Parameter Under General Entropy Loss Function Using Lindleys Approximation. Journal of Ravishankar University 20(B), 87-104.

  92. 92. Singh, B.P., Singh, Umesh, Singh, S.K., Singh, K.K. and Singh, N. (2006). A Bayesian Analysis of Risk of Under Five Mortality in Two Contrasting State of India. Jansankhyay XXIV, 7-15.

  93. 93. Singh, Umesh, Singh, S. K. & Upadhyay, S. K. (1993), Bayes Interval for the Weibull Parameters Utilizing Guessed Estimate. Microelectronics Reliability, 33, 6, pp. 909-912

  94. 94. Singh, Umesh, Singh, S. K., & Upadhyay S.K. (1991). An Adaptive Test Procedure for the Scale Parameter in Exponential Distribution. The Mathematical Society, Vol. 4, Banaras Hindu University.

  95. 95. Singh, Umesh, Singh, S. K. & Upadhyay, S.K. (1990). On the selection of Gamma vs Exponential distribution and estimation of the Parameters. Microelectronics Reliability, Vol. 31, pp. 1061-1064, 1990.

Additional Information/ Achievements:

  1. Life member and Treasurer of Indian Bayesian Society.

  2. Life member of Indian Association for the Study of Population.

  3. Member International Society for Bayesian Association

  4. Life member of Indian Association for Social Science And Health

Member of Editorial Board (Associate Editor) for different Journals:

  1. Trend in Applied Science Research

  2. Asian Journal of Applied Science

  3. Asian Journal of Mathematics and Statistics

  4. Journal of Applied Science

  5. Trend in Agricultural Economics

Designed and Developed by: Dr. R.S.Yadava, Computer Centre, BHU     |    Redesigned by: Haribansh Mishra ICT Sector, BHU
© 2018 - , Banaras Hindu University, [BHU], Varanasi-221005, U.P., India.    |    Maintained by : Computer Centre, BHU     |    Use a latest browser for best visibility